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Abstract:  

 

Background/Aim: To evaluate the association between baseline [18F]FDG-PET/CT tumor burden 

parameters and disease progression rate after first-line target therapy or immunotherapy in ad-

vanced melanoma patients. 

Materials and Methods: 44 melanoma patients, who underwent [18F]FDG-PET/CT before first-line 

target therapy (28/50) or immunotherapy (16/50), were retrospectively analyzed. Whole-body and 

per-district metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were calculated. Ther-

apy response was assessed according to RECIST 1.1 on CT scan at 3 (early) and 12 (late) months. 

PET parameters were compared with Mann-Whitney test. Optimal cut-offs for predicting progres-

sion were defined using the ROC curve. PFS and OS were studied using Kaplan-Meier analysis. 

 
Results: Median(IQR) MTVwb and TLGwb were 13.1 mL and 72.4 respectively. Non-responders 

patients were 38/44, 26/28 and 12/16 at early evaluation, and in 33/44, 21/28 and 12/16 at late evalu-

ation in the whole-cohort, target and immunotherapy subgroup respectively. At late evaluation, 

MTVbone and TLGbone were higher in non-responders compared to responder patients (all 

p<0.037) in the whole-cohort and target subgroup and also MTVwb and TLGwb (all p<0.022) in 

target subgroup. No significant differences were found for immunotherapy subgroup. No metabolic 

parameters were able to predict PFS. Controversy, MTVlfn, TLGlfn, MTVsoft+lfn, TLGsoft+lfn, 

MTVwb and TLGwb were significantly associated (all p<0.05) with OS in both the whole-cohort and 

target therapy subgroup.  

 

Conclusion: Higher values of whole-body and bone metabolic parameters were correlated with 

poorer outcome, while higher values of whole-body, lymph node and soft tissue metabolic param-

eters were correlated with OS.  

Keywords: immune checkpoint inhibitors, PD-1, PD-L1, CTLA-4, immunotherapy, target therapy, 

BRAF, MET, melanoma, [18F]FDG PET/CT. 
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1. Introduction 

Cutaneous malignant melanoma (CMM), a malignancy of melanocyte cells, has been 

strongly increased in the last 40 years, with about 287700 new cases each year (3.1 cases 

per 100000 inhabitants-year) globally in the world [1–3]. CMM is one of the most aggres-

sive type of skin cancer and is still associated with poor outcome, causing 90% of skin 

cancer mortality [4].  

Recently, the introduction of two major systemic therapies has revolutionized the 

treatment of advanced melanoma, reducing the mortality in treated metastatic melanoma 

patients: molecular targeted therapy and immunotherapy [5]. Target therapies are mainly 

based on the use of small molecule inhibitors for v-raf murine sarcoma viral oncogene 

homolog B1 (BRAF)- and/or mitogen‐activated protein kinase (MEK)-mutated melano-

mas, which specifically inhibit the most common oncogenic driver mutation responsible 

for melanoma cell proliferation and survival [6–8]. On the other hand, immune checkpoint 

inhibitors (ICIs) are based on the use of monoclonal antibodies targeting immunomodu-

latory receptors such as cytotoxic T-lymphocyte associated protein 4 (CTLA-4) or pro-

grammed cell death protein 1 (PD-1), administered alone or in combination. Anti-CTLA-

4 therapies, such as ipilimumab, and anti-PD1 therapies, such as nivolumab, are able to 

draw cytotoxic T cells onto tumor cells, by blocking these inhibitory checkpoints of the 

immune system [2,5,9,10]. 

Inspite of the high impact of systemic therapies on melanoma patient outcomes, still 

a significant percentage of patients do not achieve a response or relapse after treatment; 

the reasons of response heterogeneity and tumor relapse are still not clear and optimal 

biomarkers to predict response assessment have not yet been identified [11–14]. A person-

alized approach to select the right therapy, to predict the response to treatment and to 

avoid unnecessary toxicities appears necessary. Indeed, beside the clinical extension of 

disease, several predictive biomarkers have been already explored, such as histopathol-

ogy’s biomarkers of the primary tumor, circulating biomarkers and clinical aspect of the 

patient, as well as immunological and molecular markers [5,15–20].  

Since 2019, 18F-fluorodeoxyglucose ([18F]FDG) positron emission tomography/com-

puted tomography (PET/CT) has gained a leading role in malignant (stage III and IV) mel-

anoma staging and for response prediction and response monitoring of these two major 

systemic therapies in melanoma [8,21,22]. 

Semiquantitative parameters, such as the maximum standardized uptake value (SU-

Vmax), has been widely explored in the oncology field. However, in recent years interest 

has shifted more toward parameters that allow assessment of tumor metabolic burden 

(MTB) from [18F]FDG PET/CT images . MTB calculation is based on two PET parameters: 

metabolic tumor volume (MTV), which indicates the volume of metabolically active tu-

mor, and total lesion glycolysis (TLG), which is the product of SUVmean and MTV and 

provides information about average total tumor glycolysis. Moreover, these new param-

eters provide both global and district assessment of MTB, allowing to evaluate the prog-

nostic weight of the involvement of certain districts, such as bone or liver [23]. 

Indeed, we aimed to investigate whether semiquantitative parameters and metabolic 

tumor parameters on baseline [18F]FDG PET/CT scans are able to: 1- predict response to 

target- or immunotherapy at early (three months) and late evaluation (twelve months) 

after initiation of systemic therapy in a cohort of metastatic melanoma patients; 2- to pre-

dict progression-free survival (PFS) and overall survival (OS).  

 

2. Materials and Methods 

2.1. Patient selection 

This was a retrospective, observational, non-interventional, multicenter study, con-

ducted at the AOU Città della salute e della Scienza di Torino.  
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We retrospectively analyzed a cohort of 236 metastatic melanoma patients, treated 

with either immunotherapy (checkpoint-inhibitors, such as anti-PD-1/anti-CTLA-4) or 

target therapies (BRAF and/or MEK inhibitors) between January 2018 and January 2020. 

Only patients with documented willingness to the use of their medical data for re-

search were then included in this retrospective, observational study. The study was con-

ducted in compliance with ICH-GCP rules and the Declaration of Helsinki and approved 

by the Institutional Ethics Committee of University of Turin as part of the project TESEO 

(“Traguardi di Eccellenza nelle Scienze mediche Esplorando le Omiche” - protocol code 

D15D18000410001). 

Eligible patients matched all the following inclusion criteria: (a) histologically proven 

melanoma; (b) immunotherapy or target therapy administered as the first-line treatment; 

(c) pre-treatment [18F]FDG PET/CT (time-point 0, TP0) performed within four months 

prior to systemic therapies; (d) availability of baseline CT, first post-treatment CT (time-

point 1, TP1) within 3 months after the start of systemic therapy and a second post-treat-

ment CT (time-point 2, TP2) within 12 months after the start of systemic therapy. 

Exclusion criteria were: (a) they were under 18 years of age; (b) lack of follow-

up/baseline imaging and clinical data; (c) patients with others concomitant oncological 

pathology; (d) patients treated with previous cycles of systemic therapies prior to under-

going study therapy; (e) patients enrolled for systemic therapy as neoadjuvant treatment. 

2.2. Clinical evaluation and Melanoma Classification 

The following characteristics of the patients selected for the study were retrieved 

from the clinical database of the Dermatology Department of AOU Città della Salute e 

della Scienza: age, sex, genetic mutations, TNM stage at the time of PET scan, tumor stag-

ing according to AJCC VIIIth edition [24], previous, ongoing and during follow-up thera-

pies.  

2.3. PET/CT acquisition 

All included patients underwent a [18F]FDG PET/CT scan in a dedicated tomograph: 

- Philips Gemini Dual-slice EXP (Philips Medical Systems, Cleveland, OH, USA) at AOU 

Città della Salute e della Scienza; - Discovery 610 and Discovery IQ (GE Healthcare, Chi-

cago, IL, USA) at Affidea-IRMET. 

Patients were instructed to fast for at least 6 h before the scan, and blood glucose 

levels were measured before the injection of [18F]FDG. Patients were excluded if their 

blood glucose levels at the time of the scans exceeded 150 mg/dL (median(IQR)=5.1 

(4.7|6.9) mmol/L). The intravenous injected tracer activity was of 2.5–3 MBq/kg of 18F]FDG 

(median(IQR)=230.0 (210.0|269.0) MBq), according to EAMN procedure guideline [25].  

After an uptake time of 60 minutes (median(IQR)=73.0 (57.0|112.0) min) and following 

CT acquisition both for attenuation correction and anatomical correlation (from the vertex 

of the skull to the feet), PET data were acquired, covering the identical anatomical region 

of the CT. The PET scans were reconstructed with ordered subset expectation maximiza-

tion (OSEM) algorithms. The tomographs results were validated for a proper quantifica-

tion and quality of the images recorded. 

2.4. Quantitative imaging analysis 

All PET/CT images were qualitative analyzed with dedicated workstation (Ad-

vantage; GE Healthcare) and were interpreted by one nuclear medicine physicians (VL), 

aware of clinical data. 

For each primary lesion were evaluated PET semi-quantitative parameters, including 

maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV) and to-

tal lesion glycolysis (TLG). All FDG-avid lesions were semi-automatically segmented by 

one nuclear medicine physicians using LIFEx v. 6.0 (IMIV/CEA, Orsay, France.  
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LIFEx software provide the possibility to perform a semi-automatic whole-body 

MTV and TLG, performing the following steps: - process initialization by selecting regions 

with a standard uptake value (SUV) above a predefined threshold (SUV>2.5) and apply-

ing a threshold set at 41% of maximum standard uptake value (SUVmax); - automatic 

calculation of the whole-body metabolic tumor volume (MTVwb) and total lesion glycol-

ysis (TLGwb); - visual analysis of the resulting automated volume segmentation to re-

move background physiologic uptake. 

For each lesion, the MTV and TLG were extracted. TLG was calculated by multiply-

ing the MTV of each lesion with its corresponding SUVmean value. Each FDG-avid lesion 

with clear delineation of the tumor were used for MTB parameters calculation. Each vol-

ume of interest (VOI) has been classified according to its site including soft tissue (st), 

lymph node (ln), lung, liver and bone. 

At the end of this process, the whole-body MTV and TLG (MTVwb and TLGwb) has 

been calculated, defined as the sum of all MTV and TLG of each lesion, respectively.  

We also calculated the corresponding MTV (MTVst, MTVln, MTVlung, MTVliver 

and MTVbone) and TLG (TLGst, TLGln, TLGlung, TLGliver and TLGbone) according to 

each tumor site. 

For all patients, fixed VOI's were drawn over the right lobe of liver and aortic arch to 

evaluate blood pool and parenchymal organ background, respectively, measuring as 

mean standard uptake value (SUVmean). 

2.5. Assessment of therapy response – Endpoints  

Therapy response (TR) was routinely assessed on a lesion-individual level, using re-

sponse evaluation criteria in solid tumors (RECIST) 1.1 criteria [26] and comparing lesion 

diameter at three different time-points based on CT images: baseline (TP0), first follow-

up at 3 months (TP1), second follow-up at 12 months (TP2). When CT evaluation was not 

feasible for fast disease progression or the worsening of patient clinical condition, the re-

sponse to therapy was performed by clinical and laboratory evaluation only. 

Regarding immunotherapy sub-cohort, pseudo progression (PP) was defined as a 

diameter increase by ≥20% at TP1, followed by a decrease to <20% at TP2 compared to 

TP0. True progressive disease (TPD) was defined as an increase by ≥20% on both TP1 and 

TP2 compared to TP0. 

Based on CT response assessment, patients were classified as “responder” in case of 

clinical benefit “including complete response, partial response, and stable disease or “non-

responder” in case of disease progression at first follow-up at 3 months (TP1) and second 

follow-up at 12 months (TP2), respectively. 

Overall survival (OS) was defined as the time from treatment initiation to the date of 

death. Progression-free survival (PFS) was defined as the time from treatment initiation 

to the date of first progression/appearance of new lesions.  

Study workflow is shown in Figure S1. 

2.6. Statistical analysis 

Descriptive statistics for quantitative variables were expressed as median and inter-

quartile range (IQR), while those for categorical variables as absolute/relative frequencies. 

The inferential tests were based on the Mann-Whitney one for continuous variables and 

the Fisher's exact test for categorical ones.  

For PET parameters (whole-body and districts MTV and TLG), we used a ROC anal-

ysis to determine the best cut-off allowing to predict the patient’s outcome using the 

Youden index [20]. The area under the curves (AUC), sensitivity, specificity and accuracy 

were reported.    

The survival analysis was carried out using the Kaplan-Meier curves and the log-

rank test to compare PFS and OS between the two groups (“responders” versus “non-

responders”).  
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Statistical significance was considered for p < 0.05. Statistical analyses were per-

formed using IBM SPSS version 26.0 (IBM, Armonk, NY, USA) [27]. 

 

3. Results 

3.1. Patient and primary tumor characteristics. 

Out of the 236 malignant melanoma patients who had undergone FDG PET/CT (ret-

rospectively analyzed from the dermatology department database of our University Cen-

ter), a total of 44 patients naive to systemic therapies were included in the final analysis 

(refer to CONSORT diagram, Figure 1). 

 

Figure 1. CONSORT DIAGRAM of patient inclusion/exclusion. 

 

Before PET/CT, all 44 patients (28M, 16F) had already undergone surgery (primary 

tumor and/or lymph node surgery). Of the 44 patients, 28/44 (63.6%) underwent target 

therapy and 16/44 (36.4%) underwent immunotherapy. Patient and tumor characteristics 

are listed in Table 1. 

Table 1. Patient and primary tumor characteristics.  

Patient characteristics 
 

 

Gender, n (%) 

   Male 

   Female 

 

28.0 (63.6) 

16.0 (36.4) 

Age (years), median (IQR) 62.0 (49.7-75.0) 

Primary melanoma characteristics  

Type, n (%) 

   Superficial spreading melanoma (SSM)   

   Lentigo malignant melanoma (LMM) 

   Acral lentiginous melanoma (ALM) 

 

12 (27.3) 

2 (4.5) 

0 (0.0) 
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   Nodular melanoma (NM) 

   Unknown  

16 (36.4) 

8 (18.2) 

Location, n (%) 

   Head and neck 

   Torso 

   Limbs 

   Unknown 

 

9 (20.4) 

19 (43.3) 

10 (22.7) 

6 (13.6) 

PET stage, n (%) 

   III 

   IV 

 

11 (25.0) 

33 (75.0) 

Breslow (mm), median (IQR) 4.5 (2.0-5.0) 

Ulceration, n (%) 

  Yes 

   No 

   Unknown 

 

8 (18.2) 

11 (25.0) 

25 (56.8) 

BRAF mutation, n (%) 

  Yes 

   No 

 

29 (65.9) 

15 (34.1) 

Note: BRAF = v-Raf murine sarcoma viral oncogene homolog B; MBq = megabecquerel; PET = positron emission tomography. 

3.2. Semi-quantitative PET images results – Metabolic tumor burden 

The median(IQR) MTVwb was 13.1(4.3|30.9) mL in the entire cohort, 12.1(3.9|28.6) 

mL in the subgroup of patients treated with target therapy and 14.9(5.4|46.2) mL in the 

subgroup of patients treated with immunotherapy. The median (IQR) TLGwb was 72.4 

(11.6|17.5) in the entire cohort, 65.2(10.2|257.8) in the subgroup of patients treated with 

target therapy and 94.6 (22.7|263.6) in the subgroup of patients treated with immunother-

apy. Details of the semi-quantitative parameters extrapolated for each district from the 

PET images are summarized in Table S1. 

As showed in Figure 2, PET/CT images showed soft tissue, lymph node, lung, liver, 

and bone involvement: - in respectively 25.0%, 70.5%, 38.6%, 6.8% and 13.6% of cases in 

the whole cohort; - in 28.6%, 78.6%, 17.9%, 7.1% and 14.3% of cases respectively in the 

target therapy subgroup; - in 18.9%, 56.3%, 75%, 6.3% and 12.5% of cases in respectively 

in the immunotherapy subgroup.  
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Figure 2. MTV and TLG whole body and Metabolic active lesions per district (Interest expressed in percentage) for the 

entire cohort, the target therapy subgroup, and the immunotherapy subgroup respectively. 

Stratifying patients according to stage at PET scan time (11/44 stage III and 33/44 

stage IV), in the entire cohort, the median(IQR) MTVwb and TLGwb was 4.3(2.6|30.2) mL 

and 12.3(5.3|408.2) respectively for the stage III, and 16.0(7.3|33.6) mL and 

79.1(28.8|225.8) respectively for the stage IV. However, these differences were not 

statistically significant (p=0.178 for MTVwb and p=0.406 for TLGwb). 

3.3. Early and late response assessment  

According to RECIST 1.1 criteria, the favorable outcome (complete response + partial 

response + stable disease = 'patients with clinical benefit') in the entire cohort, in the target 

therapy subgroup and in the immunotherapy subgroup was respectively identified in 

6/44 (13.6%), 2/28 (7.1%) and 4/16 (25%) of cases at 3 months and in 11/44 (25%), 7/28 (25%) 

and 4/16 (25%) of cases at 12 months. For the immunotherapy subgroup, no pseudopro-

gression events occurred at 3 months, as all progressions at 3 months were confirmed at 

12 months. 

On the Mann-Whitney test, no semi-quantitative PET parameter was associated to 

response to therapy at 3 months in either in the whole-cohort or the two subgroups.  

Conversely, at the 12-month evaluation, higher values of skeletal metabolic tumor 

burden in the entire cohort and in the target therapy subgroup (MTVbone, TLGbone and 

SUVmax-bone; all p<0.037) and higher values of total metabolic tumor burden (MTVwb 

and TLGwb; all p<0.022) in the target therapy subgroup were associated with radiological 

disease progression (non-responder patients). Data are summarized in Table S2. 

For the above-mentioned parameters, optimal cut-offs to predict responder vs non-

responder patients at 12 months were defined using the receiver operating characteristic 

(ROC) curve, the results of which are shown in Table 2 and Figure S2. 
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Table 2. Optimal cut-offs of semi-quantitative parameters associated to responder vs non-re-

sponder patients at 12 months defined using the receiver operating characteristic (ROC) curve. 

Parameters at 12 months Optimal cut-off Sensitivity Specificity AUC p-value 

Entire cohort 

Bone MTV (mL) 

Bone TLG 

Bone SUVmax 

 

6.1 

18.8 

4.1 

 

36% 

45% 

36% 

 

97% 

97% 

97% 

 

0.713 

0.716 

0.716 

 

0.037 

0.034 

0.034 

Target therapy cohort 

Bone MTV (mL) 

Bone TLG 

Bone SUVmax 

 

13.1 

18.8 

5.7 

 

42% 

57% 

42% 

 

100% 

100% 

100% 

 

0.786 

0.786 

0.786 

 

0.027 

0.027 

0.027 

Target therapy cohort 

Whole body MTV (mL) 

Whole body TLG 

 

24.6 

208.4 

 

71% 

71% 

 

85% 

85% 

 

0.814 

0.793 

 

0.015 

0.023 

 

3.4. Patients’ outcome results  

Median (IQR) follow up for the whole cohort and for the target therapy and the im-

munotherapy sub-groups was 21.0(13.2|35.7), 22.5(15.0|37.7) and 16.5(7.5|34.7), respec-

tively. In the entire cohort, there were 11/44 (25%) deaths and 22/44 (50%) progression 

events; OS was 24.2 (range: 2.0–59.0; IQR: 13.2-35.7), while PFS was 21.0 (range: 2.0–53.0; 

IQR: 10.2-32.7). In the target therapy sub-cohort, there were 6/28 (21.4%) deaths and 13/28 

(46.4%) progression events; OS was 26.8 (range: 9.0–59.0; IQR: 15.0-37.7), while PFS was 

22.6 (range: 3.0–53.0; IQR: 14.0-31.7). In the immunotherapy sub-cohort, there were 5/16 

(31.3%) deaths and 9/16 (56.3%) progression events; OS was 19.6 (range: 2.0–42.0; IQR: 7.5-

34.7), while PFS was 18.0 (range: 2.0–42.0; IQR: 3.2-33.7). 

On the Mann-Whitney test, no semi-quantitative PET parameter was associated to 

progression either in the whole cohort or in the two subgroups. 

Conversely, the following semi-quantitative PET parameter was able to predict OS: - 

lymph nodes (MTVlfn, p=0.011; TLGlfn, p=0.005; SUVmax-lfn, p=0.036), soft tissue + 

lymph nodes (MTVsoft+lfn, p=0.036; TLGsoft+lfn, p=0.018; SUVmax-soft+lfn; all p=0.047) 

and whole body (MTVwb, p=0.044; TLGwb, p=0.009; SUVmax-wb, p=0.029) metabolic tu-

mor burden in the entire cohort; - lymph nodes (MTVlfn, p<=0.020; TLGlfn, p=0.005), soft 

tissue + lymph nodes (MTVsoft+lfn, p=0.010; TLGsoft+lfn, p=0.004) and whole body 

(MTVwb, p=0.045; TLGwb, p=0.008) metabolic tumor burden in the target therapy sub-

group. For the above-mentioned parameters, optimal cut-offs to predict OS were defined 

using the receiver operating characteristic (ROC) curve, the results of which are shown in 

Table 3 and Figure S3. 

Table 3. Optimal cut-offs of semi-quantitative parameters associated to OS defined using the re-

ceiver operating characteristic (ROC) curve. 

Parameters for OS Optimal cut-off Sensitivity Specificity AUC p-value 

Entire cohort 

Lymph nodes MTV (mL) 

Lymph nodes TLG 

Lymph nodes SUVmax* 

 

10.6 

55.1 

9.7 

 

63% 

63% 

72% 

 

76% 

76% 

64% 

 

0.755 

0.777 

0.713 

 

0.012 

0.006 

0.036 

Entire cohort 

Soft tissue +LFN MTV (mL) 

Soft tissue + LFN TLG 

Soft tissue + LFN SUVmax* 

 

10.6 

66.1 

9.2 

 

72% 

63% 

81% 

 

67% 

70% 

61% 

 

0.713 

0.738 

0.702 

 

0.036 

0.019 

0.046 

Entire cohort 

Whole body MTV (mL) 

Whole body TLG 

Whole body SUVmax* 

 

14.8 

86.4 

11.6 

 

72% 

72% 

72% 

 

61% 

64% 

61% 

 

0.705 

0.760 

0.720 

 

0.043 

0.010 

0.030 
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Target therapy cohort 

Lymph nodes MTV (mL) 

Lymph nodes TLG 

 

10.9 

137.4 

 

66% 

66% 

 

73% 

82% 

 

0.811 

0.864 

 

0.022 

0.007 

Target therapy cohort 

Soft tissue +LFN MTV (mL) 

Soft tissue + LFN TLG 

 

14.6 

132.1 

 

66% 

66% 

 

82% 

78% 

 

0.841 

0.871 

 

0.012 

0.006 

Target therapy cohort 

Whole body MTV (mL) 

Whole body TLG 

 

17.6 

158.1 

 

66% 

66% 

 

69% 

78% 

 

0.773 

0.848 

 

0.044 

0.010 

 

In the entire cohort and target therapy subgroup, Kaplan–Meier curves showed a 

marginal trend in predicting disease progression among patients with MTVlfn, TLGlfn, 

MTVsoft+lfn, TLG soft+lfn, MTVwb and TLGwb lower or higher the median values.  

(Figure 5 for the entire cohort and Figure 6 for the target therapy cohort). 

 

 

Figure 3. Kaplan–Meier plot analysis for whole-body and district MTV and TLG with overall survival (OS) in the entire 

cohort. Population was grouped by the median value. 
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Figure 4. Kaplan–Meier plot analysis for whole-body and district MTV and TLG with overall survival (OS) in the target 

cohort. Population was grouped by the median value. 

4. Discussion 

Over the past decade [18F]FDG PET/CT has gained a central role in stage III and IV 

melanoma staging and become widely used in this clinical scenario, even if limited and 

heterogeneous data are currently available regarding the role of PET/CT semi-quantitative 

parameters as predictors of patient outcome [8,21,22]. 

Whole-body MTV and TLG are the PET-derived parameters that have been previ-

ously applied to assess the tumor metabolic activity in malignant melanoma patients 

[22,28–31]. To the best of our knowledge, this is the first study that attempts to identify 

PET parameters to assess their predictive value of disease progression and survival not 

only based on whole body involvement (whole-body tumor metabolic burden), but also 

as district-based disease involvement.   
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The most significant results of our study were as follows: we observed that (1) PET 

semi-quantitative parameters were not significantly correlated with radiological progres-

sion at three months (2) higher MTVbone and TLGbone value (all p<0.037) in both the 

entire cohort and in the target therapy subgroup as well as higher MTVwb and TLGwb 

value (all p<0.022) in the target therapy subgroup were correlated with radiological pro-

gression at twelve months ; (3) higher MTVlfn, TLGlfn, MTVsoft+lfn, TLGsoft+lfn, 

MTVwb and TLGwb value (all p<0.05) in both the entire cohort and in the target therapy 

subgroup were correlated with OS ; (4) no correlation was found between PET semi-quan-

titative parameters and both radiological progression and OS in patients receiving immu-

notherapy. 

From these results, we can deduce that [18F]FDG baseline PET/CT may have a role 

in predicting disease progression in patients with high tumor burden, especially in pa-

tients candidates to target therapy.  

 

Compatibly with the small sample size, our study suggests that the bone involvement 

could be a predictor of worse response to new generation systemic therapies. The skeleton 

is the fourth site of metastasis in malignant melanoma (occurring in about 11–18% of pa-

tients); however, the impact of bone disease in melanoma has been scarcely investigated 

[32]. However, our results seem in line with data collected from the SEER (Surveillance, 

Epidemiology and End Results) database, which showed how bone metastases are fre-

quently associated with poor prognosis [33]. Recently, in their retrospective survey on 

bone metastasis in melanoma, Mannavola et al. [32] confirmed the unfavorable impact of 

bone metastases on patient survival. The authors found a direct correlation between prog-

nosis and skeletal tumour burden (</> of 5 bone lesions); moreover, their analysis revealed 

that patients receiving ICIs and/or targeted agents showed a better prognosis (9.0–16.5 

months) than those undergoing chemotherapy (4.0 months). Finally, Kudura et al. [31] 

have recently showed how melanoma metastases located in bone structures had a nega-

tive influence on the outcome at [18F]FDG PET/CT scans performed six months after im-

munotherapy start in 111 metastatic melanoma patients, particularly in women. 

 

With regarding to the negative results obtained in the immunotherapy subgroup pa-

tients, the small sample size certainly represents a limitation for the statistical analysis and 

future studies with inclusion of a larger sample are needed to evaluate the possible asso-

ciation of PET district-based semi-quantitative parameters with outcome. However, alt-

hough several studies have already shown a correlation between PET parameters 

(MTVwb and TLGwb) and outcome [34], our results may however be in line with what 

has recently been shown by several works. Tumor burden is not the only factor impacting 

the response to immunotherapy, indeed tumor microenvironments and the patient's im-

mune response seem to play a predominant role [10]. Recently, in a retrospective study 

on 112 metastatic melanoma patients treated with immune checkpoint inhibition, Basler 

et al. [29] assessed that a combined blood biomarkers (LDH+S100) and non-invasive 

18F]FDG PET/CT-based radiomic models are promising biomarkers for early differentia-

tion of pseudo-progression. In the previous mentioned work of Kudura et al. [31] on 111 

melanoma patients treated with immunotherapy, the initial metastatic volume identified 

at baseline [18F]FDG PET/CT scans was not a predictive biomarker of response. Hence, 

the incorporation of circulating biomarkers in predictive models of immunotherapy re-

sponse has become crucial. Recent studies suggest that immune analysis of tumor samples 

and, more specifically, degree of T cell infiltration in tumor environment have a pivotal 

role to understand the tumor response to immunotherapy; since ICI are supposed to trig-

ger the T cells activity [16,17]. 
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Regarding the analysis of overall survival, significant correlations were found in the 

stratification of the analyzed semi-quantitative parameters. Patients with higher meta-

bolic tumor burden (MTVwb > 13.1 mL and TLGwb > 72.4 in the entire cohort; MTVwb > 

12.1 mL and TLGwb > 65.2 in the target therapy subgroup) showed a worse prognosis.  

These results agree with those found in the previous works of Seban et al. [28] and 

Ito et al. [35] performed respectively on 56 and 142 patients with malignant melanoma 

undergoing immunotherapy; although in both studies the median cut-off value identified 

was higher for MTV (25 mL and 26.8 mL respectively, versus 13.1 mL), higher for TLG in 

the study of Seban et al. (TLG cut-off = 258) and comparable with the study of Ito et al. 

(TLG cut-off = 78.7 versus 72.4 at our study). These differences could be justified both by 

the limited sample of our study and by the different setting of patients evaluated (both 

target and immunotherapy in our study, only immunotherapy in the other two studies 

mentioned).  

 

Finally, probably the most interesting finding in our work relates to the impact of 

lymph node and “soft tissue + lymph node” tumor burden on overall survival in both the 

entire cohort (MTV = 5.6 mL and 6.5 mL respectively; TLG = 17.9 and 28.8 respectively) 

and in the target therapy subgroup (MTV = 6.4 mL and 8.6 mL respectively; TLG = 38.0 

and 42.5 respectively).  

In 2015, Beasley et al [36] reported a 5-year survival rate of 59% in patients without 

regional lymph node disease compared to 19% for those with lymph node disease. In ad-

dition, cutaneous and subcutaneous metastases of melanoma are known to be associated 

with the development of lymph node and/or systemic metastases [37,38] and with poor 

prognosis [39–45]. Knowing in which patients the lymph node and soft tissue tumor bur-

den assessed at baseline [18F]FDG PET/CT scan may be associated with a worse prognosis 

could be extremely useful, especially for patients candidates to target therapy, in which 

acquired resistance could eventually develops in most patients due to several secondary 

events including mutations that evolve in response to treatment [22] and it is important 

to recognize that development of new cutaneous lesions with high FDG uptake can reflect 

accelerated growth. 

 

Limitation 

This work is not exempt from limitations. Due to the retrospective design of the 

study, the population selected was not homogeneous (e.g., different sample size between 

target and immunotherapy subgroup, range of time between PET scan and start of sys-

temic therapy). However, this is a real-world scenario cohort, represented by patients who 

generally are referred to [18F]FDG PET/CT before systemic therapy in daily clinical prac-

tice. 

This analysis was performed in a relatively small sample size. A larger cohort would 

be preferable. In our study, we observed an association of MTV and TLG with both re-

sponder vs. non-responder status and OS. Nevertheless, this association was not main-

tained in the Kaplan–Meier analysis and, despite a non-negligible trend, MTV and TLG 

were not statistically significantly associated with PFS. The limited number of events at 

the end of follow-up influenced the correlation between these metabolic parameters and 

responder status and OS. It is probable that our statistical model might rich significance 

in a larger cohort, which would also allow stratification of patients according to clinical 

stage and risk of progression (based on clinical, laboratory and radiological data). 

5. Conclusions 

According to our results, baseline [18F]FDG PET/CT performed before the start of 

systemic therapy might be an important tool to predict response to treatment in patients 

with advanced melanoma. 
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Our study, despite far from definitive evidence, encouraged to consider the im-

portance of whole-body tumor metabolic burden, together with single district involve-

ment of metabolically active disease, especially bone metabolic parameters for disease 

progression and lymph node and soft tissue metabolic parameters for the OS and espe-

cially in patients treated with target therapy. These data should in future be validated in 

prospective studies with a larger patient population. 
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