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Abstract: Automatic ship detection provides an essential function towards maritime domain
awareness for security or economic monitoring purposes. This work presents an approach for
training a deep learning ship detector in Sentinel-2 multispectral images with few labeled examples.
We design a network architecture for detecting ships with a backbone that can be pre-trained
separately. By using Self Supervised Learning, an emerging unsupervised training procedure, we
learn good features on Sentinel-2 images, without requiring labeling, to initialize our network’s
backbone. The full network is then fine-tuned to learn to detect ships in challenging settings. We
evaluated this approach versus pre-training on ImageNet and versus a classical image processing
pipeline. We examined the impact of variations in the self-supervised learning step and we show
that in the few-shot learning setting self-supervised pre-training achieves better results than
ImageNet pre-training. When enough training data is available, our self-supervised approach is as
good as ImageNet pre-training. We conclude that a better design of the self-supervised task and
bigger non-annotated dataset sizes can lead to surpassing ImageNet pre-training performance
without any annotation costs.

Keywords: Ship detection, self-supervised learning, transfer learning, Sentinel 2 data set.

1. Introduction

Ship detection is an important challenge in economic intelligence and maritime
security, with applications in detecting piracy or illegal fishing and monitoring logistic
chains. For now, cooperative transponders systems, such as AIS, provide ship detection
for maritime surveillance. However some ships may have non-functioning transponders;
many times they are turned off on purpose to hide ship movements. Maritime patrols
can help to identify suspect ships, but this requires many resources and their range is
restricted. Therefore, using satellites to detect ships, especially in littoral regions, is a
promising solution thanks to their large swath and high revisit time.

Some commercial satellite constellations offer very high resolution images (<
1m/pixel) with low revisit time (1-2 days). However, they are usually limited to the
R,G,B bands and image analysis on such high resolution images is computationally
intensive. On the other hand, Synthetic Aperture Radar (SAR) satellites can also be used,
although their resolution is lower than VHR optical sources (e.g.: Sentinel 1 has 5m
resolution), the analysis of their imagery is the main approach to ship detection since
SAR images can be acquired irrespective of cloud cover and the day/night cycle. The
downsides of SAR are low performance in rough sea conditions, but, most importantly,
detection is only done on seas away from land and is not possible for moored ships in
harbor or for ships smaller than 10m [1]. Furthermore, SAR is vulnerable to jamming [2].

The Copernicus Sentinel missions of the European Space Agency offer free multi-
spectral images with a refresh rate of maximum 5 days and a resolution down to 10 m.
Our work focuses on this data source for several reasons. First, multispectral information
allows to better extract a ship fingerprint and distinguish it from land or man-made
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structures, as shown in [3,4]. Second, a multispectral optical learning based approach
can perform detection in both high seas and harbor contexts while also removing the
requirement of storing a vector map of coastlines and performing cloud removal as a
preprocessing step. Thus, it could be adapted to a real-time, onboard satellite setting
and is not affected by jamming.

Recent remote sensing approaches based on machine learning require large amounts
of annotated data. Some efforts to collect and annotate data have been made for VHR
images, for SAR and for Sentinel 2, but, for the latter, these works did not target ship
detection in particular. For object detection using Convolutional Neural Networks
(CNN), an interesting way to overcome the lack of data is to use transfer learning. This
is achieved either by using CNNs pretrained on large labeled data sets gathered in
a sufficienty "close" domain (such as digital photographs), or by pretraining a neural
network on the satellite image domain. The latter can be done through an unsupervised
pipeline using self-supervised learning (SSL) [5], a contrastive learning paradigm that
extracts useful patterns, learns invariances and disentangles causal factors in the training
data. Features learned this way are better adapted for transfer learning of few-shot object
detectors. We propose to use this paradigm to create a ship detector with few data.

1.1. Related Work and Motivations

For VHR images, a large amount of literature exists, with the number of works
following the increasing number of sensors publicly available and the quantity of avail-
able data [6,7]. Many of these approaches focused on detecting ships with classical
image processing pipelines: image processing using spectral indices or histograms
(e.g. sea-land segmentation, cloud removal), ship candidate extraction (e.g., threshold,
anomaly detection, saliency), and, then, rule-based ship identification or classification
using statistical methods. Virtually all of these works focus on VHR images with R,G,B
and PAN bands, occasionally with the addition of NIR, with resolution less than 5m.
Deep learning was applied to images with under 1m resolution by using object detection
Convolutional Neural Networks (CNN) : R-CNNs [8,9], YOLO [10,11], U-Net [12,13].

For SAR imagery, [1] reviews four operational ship detectors that work on multiple
sensors. All of the approaches use classical processing chains and start by filtering out
land pixels. This filter is either based on shapefiles or on land/water segmentation
masks generated from the SAR image. However, in both cases, a large margin is taken
around the coastlines, eliminating any ships that are moored in ports. Deep learning
was also applied to SAR ship detection, with notable results detailed in [14].

In multispectral images, the most notable work is [4] which uses SVMs to identify
water, cloud and land pixels and then builds a CNN to fuse multiple spectral channels.
This fusion network predicts whether objects in the water are ships. Other approaches,
such as [3], rely on hand made rules on size and spectral values to distinguish between
ships, clouds, islands and icebergs. The only Sentinel 2 ship data set publicly available
is [15] but it only includes small size image chips and weak annotations for precise
localization, i.e. a single point for each ship, obtained by geo-referencing AIS GPS
coordinates to pixel coordinates in the chips.

While large data sets exist for VHR images, for Sentinel-2 none are available with
pixel level annotations while usually thousands of examples are needed to train deep
learning object detectors. Few-shot learning based approaches can bring interesting
perspectives for remote sensing in general and in our setting in particular. Few-shot
learning consists in training a neural network with few labeled samples, most often
thanks to quality feature extractors upon which transfer learning is performed. One
recent method for unsupervised learning of features extractors that enable few-shot
learning is contrastive self-supervised learning [5,16]. Contrastive SSL relies on a "pretext
training task", defined by the practitioner, that helps the network to learn invariances
and latent patterns in the data [17-19].
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Several strategies exist for choosing the pretext task: context prediction [20], jigsaw
Puzzle, or simply by considering various augmented views. The latter is used by [21,22]
for remote sensing applications like land use classification and change detection.

1.2. Contributions

In this work, we make two contributions :

1) A deep learning pipeline for ship detection with few training examples. We take
advantage of self-supervised learning to learn features on large non-annotated
data sets of Sentinel 2 images and we learn a ship detector using few-shot transfer
learning.

2) A novel Sentinel 2 ship detection data set, with 16 images of harbours with a total
of 1053 ship annotations at the pixel level

2. Materials and Methods

Our approach is based on a U-Net architecture with a ResNet-50 backbone to pro-
duce binary ship/no-ship segmentation masks of the input image. U-Net has been used
extensively in remote sensing applications, traditionally with a simple downsampling
path of consecutive convolution blocks with no downward skip connections.

2.1. U-Net architecture

While the "vanilla" version of U-Net is usually trained from scratch, in this work we
modify it to use a different backbone, ResNet-50, that can be easily pre-trained separately
using a contrastive objective and then plugged into the U-Net architecture. Figure 1
describes graphically this architecture.

The network takes as input a 64x64 pixel patch with 6 channels corresponding
to the B2 (B), B3 (G), B4 (R), B8 (NIR), B11 and B12 (SWIR) spectral channels. The
downsampling path reduces the width and height through strided convolution layers
while increasing the numbers of channels. The last layer of the ResNet50 backbone has
2048 channels. A "bridge" is added between this layer and the first UPconv block of the
upsampling branch of the U-Net.

The output layer uses pointwise convolution, equivalent to applying a fully-connected
layer at each pixel, to produce a 2-dimensional vector p = p',i € {0,1}. This vector
contains class probabilities of the pixel belonging to the ship class i = 1. The classifica-
tion decision p is taken by argmax(p) of this output vector in each pixel, giving a binary
mask at the resolution of the input image.

The input patch size, 64x64 pixels, is chosen such that SSL training of the ResNet-50
backbone is technically possible on a desktop GPU, as detailed in the following section.

2.2. Self-supervised learning of ResNet-50 backbone

We chose the MoCo architecture [23] for the self-supervised pretraining of the
ResNet-50 backbone. In this approach, a dictionary of embeddings from previous
versions of the feature extractor are cached to provide, without additional computation,
a large amount of negative examples to a contrastive loss at each iteration.

The main advantage of MoCo is that it does not require large batch sizes [5] and
thus can be trained on a single desktop GPU. In this approach only few embeddings
of negatives are computed in each training iteration using the current version of the
encoder. Many other embeddings, computed with previous versions of the encoder, are
cached and thus reused. The encoder is updated using a momentum rule based on the
encoder weights, thus converging more slowly towards the encoder.

The Moco algorithm is described in figure 2. Here x7 and x¥ are two 64x64 pixel
patches. We designate x7 as the query patch and x*~ as "negatives". At each training
iteration a new query patch is considered and a "positive" patch k. is generated by the
pretext task. A number of random negative patches are sampled and passed through the
momentum encoder to produce "negative" embeddings. The similarity, g - k is computed
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Figure 2. MoCo training algorithm [5]: negative embeddings from momentum encoders at
previous iterations (i — 1,i — 2,etc...) are cached and reused at iteration i

between the query patch and the embedding of the positive patch and of the negatives.
The embeddings of the negatives are the union of those computed from the negatives in
the current batch and those taken from a FIFO queue of negative embeddings. We use
the NTXent loss on the similarity measure:

L= lo Kexp(q ki /T) 1)
Yizoexp(q-k_/7)

The encoder and momentum encoder are both ResNet-50 networks, as described in
the backbone block of figure 1 but with an additional average pooling and fully connected
layers on top. The fully connected layer has 512 output neurons and produces the
embedding. The encoder’s parameters 6, are updated with SGD while the momentum
encoder’s parameters 8 are updated using eq. 2 where m = 0.99 is the momentum
value :

Gk — mGk + (1 — m)(?q (2)

Patches in SSL are pre-processed by first clipping to the 3" and 97t percentile com-
puted, for each band, over the pre-training data set. Then the patches are standardized
by subtracting the mean and dividing by the standard deviation computed on a part of
the EuroSAT data set [24].

2.3. Pretext task settings
We implemented two pretext tasks in this work:

¢ Data-Augmentations (A) : it consists in choosing data-augmentations according to
the invariances our network needs to learn. In our case, it has to identify ships no
matter their orientation, size, even if the water is turbulent or if the background
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is noisy. Therefore, we applied an augmentation function aug to our query patch,
where aug is one of: color jitter, random rotations, crop and resize with a small scale
difference, slight Gaussian noise: x+ = aug(x7)

*  Region-wise similarity and data augmentations (RA): learns features that increase
the similarity between two patches of the same geographical region. This task is
illustrated in Figure 3 and can be formalized as x+ = aug(sample_neighbor(x1)),
where aug is the same as above and sample_neighbor generates a geographically
close patch. Inspired by [25], this strategy aims to help the network to better cluster
together similar regions (land, water bodies, etc.). The maximum distance can be
varied to control the average overlap of sampled patches. Larger distance induces
increased diversity but can generate patches that are too different from each other
(ex: water and land when applying to littoral regions). We test two variants: high
distance (RA) and low (RA-lo).

Figure 3. Region based pretext task. Patches x7 and x** (yellow) constitute a positive pair whereas
patches x7 and x*~ (red and yellow) form a negative pair.

2.4. U-Net ship detector training

We consider full-size training images and their associated ground truth, a set of
polygonal masks around individual ships. As a first step we rasterize the ground truth
polygons associated with multi-spectral image into a binary mask where pixels with
a value of 1 are ship pixels. Next, we sample random 64x64 pixel patches from these
images, ensuring however that at least five pixels of the patch belong to a ship. Since
ships are scarce in the images this step re-balances the distribution of ship vs. non-ship
pixels in training.

During training we further take into account the class imbalance of pixels by using
the focal loss [26] to train the U-Net model. For a prediction p = softmax(p) € [0,1)>
and ground truth y:

FL(pt) = —ar(1 — pt)"log(pt) ®)
p if y=1

= , 4
Pt {1 —p'  otherwise @

We set v = 2, a9 = 0.05 (corresponding to background pixels) and «; = 0.25 (corre-
sponding to ship pixels). We train the U-Net detector with the ADAM optimizer while
also introducing some data augmentation in training: random vertical and horizontal

flips.
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We normalize the training patches in the same way as in the pretext task (see Section
2.3).

2.5. Inference

To detect ships with our model we first cut the target image into patches of the same
size as in training - 64x64 pixels - using a regular grid. However, for inference we take
these patches with an overlap of 32 pixels. It is well known that U-Net architectures, and
CNN s in general have lower performance on the borders of the image than in the center,
due to the influence of padding in the backbone. Since our backbone is trained with a
contrastive objective task during SSL, this type of padding was the most straightforward
approach. When transferred to the U-Net setting, 0-padding introduces artifacts on
image borders. We chose to simply cut out 16 pixel wide borders of the patches.

Finally, the full image binary mask is produced by stitching the individual patch
masks together. We apply the connected components algorithm with 4-connectivity to
extract blobs in this mask. Each blob is considered as a detected ship, without additional
filtering.

2.5.1. Filtering stage

Optionally, we can filter these detections with a water/land mask generated from
OpenStreetMap coastline vector data. When enabled, we perform filtering by multiply-
ing the image binary prediction mask with the water mask, before extracting connected
components. In this way, ships that are moored will be detected without spillover to
peers or land masses. A variation of this filtering involves a water mask than removes
littoral regions (in a 600m range), in order to perform detection only in open sea. This sec-
ond open-sea mask is obtained by thresholding a distance-transform of the water/land
mask. Our pipeline thus has an optional filtering stage with two variations: coastline
(CO) or open-sea (OS).

2.6. Ship Detection Data set: S2-SHIPS

To the best of our knowledge, no ship detection Sentinel-2 data sets for both moving
and static ships with pixel level annotations has yet to be published. We introduce a
novel ship detection data set made up of littoral and harbor regions images.

This data set includes 16 L2A images of coastline, ports and the Suez canal. The
images of size 1783x938 cover 167 sq. km each, and are annotated at the pixel level
with a total of 1053 distinct ships. We also provide earth/water masks for these images,
rasterized from OpenStreetMap layers.

The ships are from various size, with areas ranging from 100 m?2 (e.g., pleasure
boats, small fishing ships) to more than 5000 m? (e.g., cargo ships). Since the Sentinel 2
mission doesn’t provide high sea tiles, the images are taken near coasts and we annotated
moored ships and ships at sea separately. Our data set also provides images taken under
different weather conditions, including turbulent seas, clouds or sun glint. Thus, the
complex environment surrounding ships in our data set makes it challenging for ship
detection. Several samples are shown in Figure 5.

We rasterize OpenStreetMap water layers (ocean, major rivers, canals) on the 16
geo-referenced images to produce binary masks of water. These layers sometimes have
the contours of peers, jetties, but the annotation of these entities as land is not insured.

2.7. Backbone pre-training data sets

For backbone pre-training with SSL, we look at existing large scale Sentinel 2 data
sets. Several have been published in recent years and usually focus on land cover
classification or segmentation. Since we do not use labels for pre-training we can use
these types of data easily and in large quantities. Some well-known data sets are:
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Figure 5. S2-SHIPS data set patch samples: Brest (FR), Toulon (FR), Rotterdam (NL), Colon (PA), Suez Canal (EG). Note that some
images have partial cloud cover or rough sea conditions.

*  EuroSAT [24], which is a 10 class land-cover classification data set containing 27 000
multi-spectral patches of size 64¥64 pixels. We apply the (A)ugmentation pretext
task on this dataset.

¢ BigEarthNet [27], which is a very large scale multi-label land-cover classification
data set. It contains 590 326 multi-spectral image patches of size 120*120 pixels. We
randomly crop 320 000 64x64 pixel patches from the original data set and we apply
the (A)ugmentation pretext task for BigEarthNet.

e  SENI12MS [28], which is a very large curated land cover segmentation data set,
made of Sentinel 1, 2 and MODIS images. It contains 180 662 Sentinel 2 multi-
spectral patches of size 256x256. For this dataset we apply both the (A)ugmentation
and the region-wise and augmentation (RA) pretext task. For the first one we
sample 1 337 360 patches 64x64 patches from the 256x256 patches in the dataset.
For the (RA) and (RA-lo) tasks we sample patches x7 and x*+ of size 64x64 pixels
randomly from the same 256x256 patch. The distance between these two "positive"
patches can thus be at most 1.2km for (RA) and 640m for (RA-lo), while sometimes
there can be an overlap.

2.8. Experimental settings and parameters

We run the pre-training SSL pipeline for 100 epochs with a learning rate of 0.001
and a cosine annealing schedule. For the augmentation (A) task, we used a batch size of
500 for the EuroSAT and BigEarthNet pretraining and a batch size of 900 for SEN12MS
on a multi-gpu machine. The region based pretext (RA) task was applied to SEN12MS
using the same hyperparameters as for (A), with a batch size of 500.

Next, we copied the parameters of the ResNet-50 backbone trained with SSL into
the corresponding layers of the U-Net. We train the network in two ways: fine tuning
(FT) and transfer learning (TL). The first one, FT, corresponds to training all the layers
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of the U-NET on the ship detection task, while for the latter, TL, we froze the layers of
the backbone.

For the ship detection task, both in the TL and FT modes, we train the network with
100 epochs, with a batch size of 20 and a learning rate of 0.001.

We evaluate our method as a one class object detection algorithm, using the
pycocotools package. We focused on object-wise precision, recall and Fl-score (har-
monic mean of precision and recall) metrics. We also compute the recall for each ship
size (a ship is considered as small if its area is under 2500 m?, otherwise it is considered
as being large), and for each ship location (moored ships or sailing ships).

2.9. Baselines

1. ImageNet transfer learning: Instead of pre-training the backbone with SSL, this
baseline uses a ResNet-50 encoder pretrained on ImageNet as implemented by the
torchvision package. Since these encoders are trained on RGB images, we copy
the weights of the first 3 channels of the first layer in order to initialize the channels
corresponding to spectral bands B8, B11 and B12. Both the TL and FT ship detector
training approach can be applied to this baseline.

2. Random initialization: Instead of using a trained backbone network, we initialize
the ResNet-50 encoder randomly following the standard Kaiming initialization.
Only the fine-tuning (FT) detector training mode is applied when initializing the
weights randomly.

3. BL-NDWI - Water segmentation baseline with NDWI: We develop a simple baseline
which is based on classical image processing techniques. We use the NDWI spectral
index NDWI = ggg;ggg and we threshold its value to segment water and non-
water pixels. The threshold for the NDWI segmentation is chosen to obtain the best
performance on the whole data set, which may lead to suboptimal choices for some
images.

Next, we eliminate land pixels using the water/land segmentation (CO) (Sec.
2.5.1) map, giving a ship proposal map. We consider non-water pixels in what are
normally water regions to potentially be ships. We extract connected components
and we eliminate those that have a width and height greater than 50pixels (500
meters) since no ships larger than this size exist. These are due to islands or
sandbanks not correctly mapped in OpenStreetMap layers or thin water banks
where the coastline annotation in OpenStreetMap is imprecise.

Finally we do several filtering passes on the resulting proposal map: morphological
opening and we apply watershed segmentation on the resulting map to identify
individual ships.

3. Results

Our evaluation has three objectives: (1) study the impact of the SSL pre-training
strategy of the backbone on the final performance of the ship detector, (2) compare our
SSL-trained U-Net to the baselines and, (3), analyze the few-shot performance of SSL.

3.1. Self-supervised learning approach analysis

We train the ship detector on the S2-SHIPS data set in the leave-one-out setting: out
of N images we choose N — 1 for training and one for testing. For certain geographical
regions there are several images in the dataset while for others only one. Therefore, by
varying the testing and training images we measure the transferability of the learned
detector, for different levels of domain difference between training and testing sets. We
do not perform cross-validation, the hyperparameters for U-Net are chosen a priori and
not optimized.

We obtain 16 folds with 15 training images and one testing image. The training
set consists of patches that match the ship presence criterion described in Section 2.4,
extracted from the original images. This sampling produced about 1800 patches on
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average per fold. We report Precision, Recall and F1-score averaged over the 16 folds,
averaged over 5 runs of the experiments. We do not report standard deviations as they
were always insignificant.

Table 1. Average performance measures for the various SSL settings, over 5 runs over the 16 folds
of the S2-SHIPS dataset. Note that the Fl1-score here is the average of F1 scores over folds

Pre-training  SSL Transfer learning Fine-tuning
dataset pretext task Precision Recall F1 | Precision Recall F1
EuroSAT A 17.0 80.1 247 - - -
BigEarthNet A 19.3 81.5 271 18.4 781  26.0
SEN12MS A 21.3 76.7  29.1 225 743 295
SEN12MS RA 21.9 769 291 25.2 764  33.0
SEN12MS RA-lo 21.0 771 284 25.7 774  33.0

Our initial aim is to evaluate the overall performance of the detector, irrespective of
land cover in the images. Thus we first test without the filtering stage, and the precision
results reflect false positives both on land and at sea.

Table 1 presents the results of this comparison. First, we can observe that there is a
strong relationship between the dataset size and the performance attained. To see this in
more detail, in Figure 6 we show graphically the difference in F1 score depending on the
size of the pre-training dataset, under the (A)ugmentation pre-text task, using Transfer

Learning (TL).
Ship detection performance vs. SSL dataset size
30.0%
29.0%
28.0%
27.0%
2
g 0% +1,000,000
]
S 25.0%
55
24.0% +300,000
23.0%
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27000 320000 1337360

Number of pre-training patches

Figure 6. Impact of dataset size on F1 score in the TL settings with the A pretext task

Using the large SEN12MS data set we obtain four percentage points of F1 score
more than with EuroSAT for the same pretext task. In Table 1 we note that this gain in
performance is due to a stronger gain of relative precision than the loss of relative recall.

Table 1 also shows that the region-wise similarity, coupled to augmentation (RA),
outperforms augmentation-only pre-training (four F1 percentage points in the FT setting).
Furthermore, a large maximum positive patch distance is beneficial, compared to low-
distance/high overlap (RA-lo).

Additionally, Table 2 shows how the false alarm rate drastically decreases from 1.70
ship/km? for EuroSAT to 1.20 ship/km? for SEN12MS-A without filtering, and down to
0.14 ships/km? for the open-sea setting (OS).

3.2. Comparison of SSL to baseline approaches

Next, we compare our best pre-training method (SEN12MS+RA) to the ImageNet
pretraining and to the BL-NDWI baseline. Table 3 presents this comparison, Table 4
analyzes the false alarm rate for the different methods and Figure 7 compares the results
by image.
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Figure 8. Ship detection samples, in various conditions. In green are drawn true positives, in red false positives and in yellow missed
ships (false negatives). Best viewed in color
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Table 2. False alarm rates for the various SSL settings (Transfer Learning)

Pre-training ~ SSL False alarm (FA) rate (ship/km?)

dataset pretext task No filt. | CO filt. OS filt. AFA'1 | AFA2
EuroSAT A 1.70 0.92 0.22 -0.78 | -148

BigEarthNet A 1.60 0.84 0.16 -0.76 | -1.44
SEN12MS A 1.20 0.63 0.14 -057 | -1.06
SEN12MS RA 1.19 0.65 0.19 -054 | -1.00
SEN12MS RA-lo 1.23 0.68 0.21 -055 | -1.02

Table 3. Ship detection performance - best SSL based approach versus baselines. Average Precision,
Recall and F1-score computed over the 16 folds

. Transfer learnin Fine-tunin
Method (w. CO filtering) Precision Recall 8 F1 | Precision Recal% F1
Scratch - - - 46.9 733 531
ImageNet 39.2 76.5 47.9 429 76.8  50.2
SEN12MS+RA 39.5 764  47.9 44 .4 755 522
BL-NDWI H 25.0 39.0 278 ‘ 25.0 39.0 278

Table 4. Average False Alarm rate comparison of the best SSL result versus the baselines

Method Falge alarm (FA) ra?e (ship/ knf) '
No filtering | CO Filtering | OS Filtering | AFA1 | AFA 2
BL-NDWI - 0.83 0.71 - -0.12
Scratch (fine-tuning) 0.85 0.48 0.15 -037 | -0.70
ImageNet 1.02 0.57 0.14 -045 | -0.88
SEN12MS+RA 1.19 0.65 0.19 -0.54 | -1.00
Average F1 score (TL) per test image
100,0%
90,0% M
80,0% R
70,0%
60,0% -
50,0% 7 ] [
§ 00% 7 7
& 30,0%
20,0%
10,0% 7
~HREJU D SRR
%"&Z %"0\ %"& %&% %&& %&& %"0% <b‘§<a>‘§%&°°\o:\\%‘(’ég;@ooié@i@&&@b&v&&Q
RAEE SR S S

B BL-NDWI @ SEN12MS+RA OSEN12MS+RA-CO

Figure 7. Fl-score variation on all S2-SHIPS dataset for NDWI, SEN12MS-RA (no filt.) and
SEN12MS-RA with CO filt.

Table 3 shows that when all methods are filtered with land /sea map, deep learning
algorithms lead to largely better results than the BL-NDWI method : in Transfer Learning
mode, it gains 20 percentage points of F1 and double the recall. This means that many
ships are not detected with BL-NDWI, and one explanation could be the threshold choice
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for the NDWI that is not generally optimal to all images. The problem of sub-optimal
threshold can be seen on Figure 7 where for some test images like Suez 1 and 2 the
threshold is almost perfectly chosen, whereas on Suez 3, Suez 5 and Suez 6 the detection
is really weak. As the threshold of the NDWI is chosen to maximize performance over
the whole dataset, it is suboptimal on individual images.

For deep learning methods like SEN12MS-RA generalizing problems are evidenced
on images Suez 2, Panama and Rotterdam 2, but this is mainly due to the challenging
conditions induced by those test images, rather than domain difference : large land cover
(Suez canal), clouds (Rotterdam, Panama) and turbulent sea (Panama).

Our SSL based pipeline achieves similar results to ImageNet pre-training in the
Transfer Learning setting and two percentage points higher F1 score in the Fine Tuning
setting. It is worth noticing that training from scratch acheived better F1 score in the fine-
tuning setting. When training on 15 images, learning from scratch seems a better choice
due to simplicity and better performance. Indeed, most works use this setting for remote
sensing applications. However, our aim is to study few shot learning performance and in
this setting, as shown in the following sections, learning from scratch is disadvantaged.

Generally, deep learning methods are weak in areas with dark background (grass,
cloud shadow), waves or large boat trail, where they lead to many false positives. Table
8 presents a qualitative analysis their results. In these conditions, networks trained from
scratch or pretrained on EuroSAT and BigEarthNet lead to the worst results. Some peers
and docks are also confused with ships. Deep learning methods seem to be robust to
brightness, water color or environment difference, and they also rarely predict small
islands as ships.

3.3. Few-shot performance of the methods under study

To evaluate the performance dynamics of the proposed method in the few-shot
learning setting we split the dataset into two parts. The training set contains 13 images
and the test set three: one from the Suez canal, a second from Brest and the last one from
Rotterdam. We vary the number of training images from 1 to 13, which corresponds
to a variation in the number of distinct ships from 42 to 742. This experiment aims
at highlighting the networks’ robustness towards training data sets frugality and also
changing conditions (sun glint, water color, etc.).

Average F1 score (FT), varying number of training examples
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Figure 10. Impact of number of training ships variation on mean F1 score calculated on Brest,
Rotterdam and Suez canal

Varying the number of training samples shows that SSL methods trained on large
data sets, especially with the region based pretext task, achieve competitive and even
better results than ImageNet pretrained networks fine-tuned on a small amount of data.
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Figure 9. Ship detection performance according on ship size and location, with a frugal setting (126 training ships)

Indeed, in Figure 10 we see that having only between 200 and 300 training examples is
sufficient for SEN12MS-RA method to get close to a F1 score of 35%, while ImageNet
network needs at least 350 samples to reach this performance. This experiment also
confirms the importance of the pretext task : the region invariances induced by SEN12MS-
RA method increased considerably the performances. Indeed, only 290 ships are needed
by SEN12MS-RA to get 92% of the best performances obtained with 750 training ships,
while other methods need at least a third more training ships.

Moreover, in a few-shot setting, with 126 training examples, Figure 9 analyzes the
performance of the methods under study on different sub-classifications of the ships:
small vs large and moored or at sea. SEN12MS-A and SEN12MS-RA have a better recall
than ImageNet or training from scratch by far. SEN12MS pretraining is significantly
better at detecting moored ships than other methods, including ImageNet.

The weakness of ImageNet may come from the fact that it needs to fine-tune more
its weights, because of the large domain difference that exists when transfering the
knowledge learned on object centric data sets to remote sensing images. Therefore,
robust SSL methods give a good boost when having few training samples, unlike
networks trained from scratch or pretrained on ImageNet.

4. Discussion

Globally, the results allow us to conclude that deep learning techniques achieve
promising results. In all cases (close to shore and open-sea) recall is high, more than
75%. We obtained less than 0.14 false alerts per square kilometer in the open sea and
close to the sea shore, the false alarm rate is around 1 ship/ km?2. While the BL-NDWI
baseline could be improved by finding more optimal NDWI thresholds for each image,
the performance difference with respect to deep learning approaches seems hard to
make up for.

Networks trained with SSL achieve better results compared with ImageNet pre-
trained ones. In the few-shot setting, SSL pre-training is usually better and more stable.
When sufficient examples are available SSL pretraining is as good as ImageNet or
training from scratch. We notice also that performance increases with the size of the
pre-training datasets. Since these are not annotated it is easy to build such datasets.
The ones chosen here have no relation to the ship detection problem at hand, thus no
significant effort is needed to select the images in these datasets.

The pretext task needs to be chosen thoroughly according to the downstream task
in order to learn the needed invariances. The region based pretext task looks promis-
ing probably because it helps the encoder to better cluster together similar elements
such as water, agriculture crops or residential areas, while a simple pretext task data-
augmentation only focuses on color or noise invariances. The benefit of such pretext task
can be seen in our case as it lowers the number of false positives over land and near the
shore.
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5. Conclusion

We presented a method to train a ship detector in Sentinel-2 images using self-
supervised learning. Our method plugs in a SSL-trained backbone in a U-NET archi-
tecture. It achieved better or similar results to standard deep-learning approaches and
significantly better results than a spectral index based method. The choice of pretext task
in the SSL stage is a major source of performance improvements.

Further studies should focus on the design of a more effective pretext task. Our
work shows that there is room for improvement although the direction towards this goal
remains unclear. Instead of hand-designed pretext tasks, learning a better pretext task
could be a fruitful avenue of research. However, the computational cost of pre-training is
high, so it would be necessary to first reduce this cost or to approximate the pre-training
stage performance with a light-weight proxy model.

The SSL pipeline can be applied to networks where no ImageNet pretraining is
available such as custom architectures specific to remote sensing. Thus, an interesting
research goal would be training, through SSL, a feature extractor designed for remote-
sensing applications, that improves upon learning from scratch or ImageNet pretraining
by a large margin.

For ship detection, our image-based approach is still two orders of magnitude
away from the false alert performance of SAR methods. To improve image-based ship
detection, a better network backbone could be studied, more adapted to small objects.
Furthermore, it would be better to include cloud filtering and land /water classification
explicitly in the network. While adding more data is always a good idea, the few-shot
setting is more challenging and can bring about more methodological improvements in
deep learning for remote sensing.
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