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Abstract: Automatic ship detection provides an essential function towards maritime domain1

awareness for security or economic monitoring purposes. This work presents an approach for2

training a deep learning ship detector in Sentinel-2 multispectral images with few labeled examples.3

We design a network architecture for detecting ships with a backbone that can be pre-trained4

separately. By using Self Supervised Learning, an emerging unsupervised training procedure, we5

learn good features on Sentinel-2 images, without requiring labeling, to initialize our network’s6

backbone. The full network is then fine-tuned to learn to detect ships in challenging settings. We7

evaluated this approach versus pre-training on ImageNet and versus a classical image processing8

pipeline. We examined the impact of variations in the self-supervised learning step and we show9

that in the few-shot learning setting self-supervised pre-training achieves better results than10

ImageNet pre-training. When enough training data is available, our self-supervised approach is as11

good as ImageNet pre-training. We conclude that a better design of the self-supervised task and12

bigger non-annotated dataset sizes can lead to surpassing ImageNet pre-training performance13

without any annotation costs.14

Keywords: Ship detection, self-supervised learning, transfer learning, Sentinel 2 data set.15

1. Introduction16

Ship detection is an important challenge in economic intelligence and maritime17

security, with applications in detecting piracy or illegal fishing and monitoring logistic18

chains. For now, cooperative transponders systems, such as AIS, provide ship detection19

for maritime surveillance. However some ships may have non-functioning transponders;20

many times they are turned off on purpose to hide ship movements. Maritime patrols21

can help to identify suspect ships, but this requires many resources and their range is22

restricted. Therefore, using satellites to detect ships, especially in littoral regions, is a23

promising solution thanks to their large swath and high revisit time.24

Some commercial satellite constellations offer very high resolution images (<25

1m/pixel) with low revisit time (1-2 days). However, they are usually limited to the26

R,G,B bands and image analysis on such high resolution images is computationally27

intensive. On the other hand, Synthetic Aperture Radar (SAR) satellites can also be used,28

although their resolution is lower than VHR optical sources (e.g.: Sentinel 1 has 5m29

resolution), the analysis of their imagery is the main approach to ship detection since30

SAR images can be acquired irrespective of cloud cover and the day/night cycle. The31

downsides of SAR are low performance in rough sea conditions, but, most importantly,32

detection is only done on seas away from land and is not possible for moored ships in33

harbor or for ships smaller than 10m [1]. Furthermore, SAR is vulnerable to jamming [2].34

The Copernicus Sentinel missions of the European Space Agency offer free multi-35

spectral images with a refresh rate of maximum 5 days and a resolution down to 10 m.36

Our work focuses on this data source for several reasons. First, multispectral information37

allows to better extract a ship fingerprint and distinguish it from land or man-made38

Version September 20, 2021 submitted to Remote Sens. https://www.mdpi.com/journal/remotesensing

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 October 2021                   

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.mdpi.com
https://doi.org/10.3390/rs1010000
https://doi.org/10.3390/rs1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
http://creativecommons.org/licenses/by/4.0/


Version September 20, 2021 submitted to Remote Sens. 2 of 15

structures, as shown in [3,4]. Second, a multispectral optical learning based approach39

can perform detection in both high seas and harbor contexts while also removing the40

requirement of storing a vector map of coastlines and performing cloud removal as a41

preprocessing step. Thus, it could be adapted to a real-time, onboard satellite setting42

and is not affected by jamming.43

Recent remote sensing approaches based on machine learning require large amounts44

of annotated data. Some efforts to collect and annotate data have been made for VHR45

images, for SAR and for Sentinel 2, but, for the latter, these works did not target ship46

detection in particular. For object detection using Convolutional Neural Networks47

(CNN), an interesting way to overcome the lack of data is to use transfer learning. This48

is achieved either by using CNNs pretrained on large labeled data sets gathered in49

a sufficienty "close" domain (such as digital photographs), or by pretraining a neural50

network on the satellite image domain. The latter can be done through an unsupervised51

pipeline using self-supervised learning (SSL) [5], a contrastive learning paradigm that52

extracts useful patterns, learns invariances and disentangles causal factors in the training53

data. Features learned this way are better adapted for transfer learning of few-shot object54

detectors. We propose to use this paradigm to create a ship detector with few data.55

1.1. Related Work and Motivations56

For VHR images, a large amount of literature exists, with the number of works57

following the increasing number of sensors publicly available and the quantity of avail-58

able data [6,7]. Many of these approaches focused on detecting ships with classical59

image processing pipelines: image processing using spectral indices or histograms60

(e.g. sea-land segmentation, cloud removal), ship candidate extraction (e.g., threshold,61

anomaly detection, saliency), and, then, rule-based ship identification or classification62

using statistical methods. Virtually all of these works focus on VHR images with R,G,B63

and PAN bands, occasionally with the addition of NIR, with resolution less than 5m.64

Deep learning was applied to images with under 1m resolution by using object detection65

Convolutional Neural Networks (CNN) : R-CNNs [8,9], YOLO [10,11], U-Net [12,13].66

For SAR imagery, [1] reviews four operational ship detectors that work on multiple67

sensors. All of the approaches use classical processing chains and start by filtering out68

land pixels. This filter is either based on shapefiles or on land/water segmentation69

masks generated from the SAR image. However, in both cases, a large margin is taken70

around the coastlines, eliminating any ships that are moored in ports. Deep learning71

was also applied to SAR ship detection, with notable results detailed in [14].72

In multispectral images, the most notable work is [4] which uses SVMs to identify73

water, cloud and land pixels and then builds a CNN to fuse multiple spectral channels.74

This fusion network predicts whether objects in the water are ships. Other approaches,75

such as [3], rely on hand made rules on size and spectral values to distinguish between76

ships, clouds, islands and icebergs. The only Sentinel 2 ship data set publicly available77

is [15] but it only includes small size image chips and weak annotations for precise78

localization, i.e. a single point for each ship, obtained by geo-referencing AIS GPS79

coordinates to pixel coordinates in the chips.80

While large data sets exist for VHR images, for Sentinel-2 none are available with81

pixel level annotations while usually thousands of examples are needed to train deep82

learning object detectors. Few-shot learning based approaches can bring interesting83

perspectives for remote sensing in general and in our setting in particular. Few-shot84

learning consists in training a neural network with few labeled samples, most often85

thanks to quality feature extractors upon which transfer learning is performed. One86

recent method for unsupervised learning of features extractors that enable few-shot87

learning is contrastive self-supervised learning [5,16]. Contrastive SSL relies on a "pretext88

training task", defined by the practitioner, that helps the network to learn invariances89

and latent patterns in the data [17–19].90
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Several strategies exist for choosing the pretext task: context prediction [20], jigsaw91

Puzzle, or simply by considering various augmented views. The latter is used by [21,22]92

for remote sensing applications like land use classification and change detection.93

1.2. Contributions94

In this work, we make two contributions :95

1) A deep learning pipeline for ship detection with few training examples. We take96

advantage of self-supervised learning to learn features on large non-annotated97

data sets of Sentinel 2 images and we learn a ship detector using few-shot transfer98

learning.99

2) A novel Sentinel 2 ship detection data set, with 16 images of harbours with a total100

of 1053 ship annotations at the pixel level101

2. Materials and Methods102

Our approach is based on a U-Net architecture with a ResNet-50 backbone to pro-103

duce binary ship/no-ship segmentation masks of the input image. U-Net has been used104

extensively in remote sensing applications, traditionally with a simple downsampling105

path of consecutive convolution blocks with no downward skip connections.106

2.1. U-Net architecture107

While the "vanilla" version of U-Net is usually trained from scratch, in this work we108

modify it to use a different backbone, ResNet-50, that can be easily pre-trained separately109

using a contrastive objective and then plugged into the U-Net architecture. Figure 1110

describes graphically this architecture.111

The network takes as input a 64x64 pixel patch with 6 channels corresponding112

to the B2 (B), B3 (G), B4 (R), B8 (NIR), B11 and B12 (SWIR) spectral channels. The113

downsampling path reduces the width and height through strided convolution layers114

while increasing the numbers of channels. The last layer of the ResNet50 backbone has115

2048 channels. A "bridge" is added between this layer and the first UPconv block of the116

upsampling branch of the U-Net.117

The output layer uses pointwise convolution, equivalent to applying a fully-connected118

layer at each pixel, to produce a 2-dimensional vector p = pi, i ∈ {0, 1}. This vector119

contains class probabilities of the pixel belonging to the ship class i = 1. The classifica-120

tion decision p is taken by argmax(p) of this output vector in each pixel, giving a binary121

mask at the resolution of the input image.122

The input patch size, 64x64 pixels, is chosen such that SSL training of the ResNet-50123

backbone is technically possible on a desktop GPU, as detailed in the following section.124

2.2. Self-supervised learning of ResNet-50 backbone125

We chose the MoCo architecture [23] for the self-supervised pretraining of the126

ResNet-50 backbone. In this approach, a dictionary of embeddings from previous127

versions of the feature extractor are cached to provide, without additional computation,128

a large amount of negative examples to a contrastive loss at each iteration.129

The main advantage of MoCo is that it does not require large batch sizes [5] and130

thus can be trained on a single desktop GPU. In this approach only few embeddings131

of negatives are computed in each training iteration using the current version of the132

encoder. Many other embeddings, computed with previous versions of the encoder, are133

cached and thus reused. The encoder is updated using a momentum rule based on the134

encoder weights, thus converging more slowly towards the encoder.135

The Moco algorithm is described in figure 2. Here xq and xk are two 64x64 pixel136

patches. We designate xq as the query patch and xk− as "negatives". At each training137

iteration a new query patch is considered and a "positive" patch k+ is generated by the138

pretext task. A number of random negative patches are sampled and passed through the139

momentum encoder to produce "negative" embeddings. The similarity, q · k is computed140
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Figure 1. ResNet50-UNET architecture (s2 = stride 2px). The FC layer of ResNet50 has been removed. Numbers show output channels
of each block
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Figure 2. MoCo training algorithm [5]: negative embeddings from momentum encoders at
previous iterations (i− 1,i− 2,etc...) are cached and reused at iteration i

between the query patch and the embedding of the positive patch and of the negatives.141

The embeddings of the negatives are the union of those computed from the negatives in142

the current batch and those taken from a FIFO queue of negative embeddings. We use143

the NTXent loss on the similarity measure:144

Lq = −log
exp(q · k+/τ)

∑K
i=0 exp(q · ki

−/τ)
(1)

The encoder and momentum encoder are both ResNet-50 networks, as described in145

the backbone block of figure 1 but with an additional average pooling and fully connected146

layers on top. The fully connected layer has 512 output neurons and produces the147

embedding. The encoder’s parameters θq are updated with SGD while the momentum148

encoder’s parameters θk are updated using eq. 2 where m = 0.99 is the momentum149

value :150

θk ← mθk + (1−m)θq (2)

Patches in SSL are pre-processed by first clipping to the 3rd and 97th percentile com-151

puted, for each band, over the pre-training data set. Then the patches are standardized152

by subtracting the mean and dividing by the standard deviation computed on a part of153

the EuroSAT data set [24].154

2.3. Pretext task settings155

We implemented two pretext tasks in this work:156

• Data-Augmentations (A) : it consists in choosing data-augmentations according to157

the invariances our network needs to learn. In our case, it has to identify ships no158

matter their orientation, size, even if the water is turbulent or if the background159
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is noisy. Therefore, we applied an augmentation function aug to our query patch,160

where aug is one of: color jitter, random rotations, crop and resize with a small scale161

difference, slight Gaussian noise: xk+ = aug(xq)162

• Region-wise similarity and data augmentations (RA): learns features that increase163

the similarity between two patches of the same geographical region. This task is164

illustrated in Figure 3 and can be formalized as xk+ = aug(sample_neighbor(xq)),165

where aug is the same as above and sample_neighbor generates a geographically166

close patch. Inspired by [25], this strategy aims to help the network to better cluster167

together similar regions (land, water bodies, etc.). The maximum distance can be168

varied to control the average overlap of sampled patches. Larger distance induces169

increased diversity but can generate patches that are too different from each other170

(ex: water and land when applying to littoral regions). We test two variants: high171

distance (RA) and low (RA-lo).172

Figure 3. Region based pretext task. Patches xq and xk+ (yellow) constitute a positive pair whereas
patches xq and xk− (red and yellow) form a negative pair.

2.4. U-Net ship detector training173

We consider full-size training images and their associated ground truth, a set of174

polygonal masks around individual ships. As a first step we rasterize the ground truth175

polygons associated with multi-spectral image into a binary mask where pixels with176

a value of 1 are ship pixels. Next, we sample random 64x64 pixel patches from these177

images, ensuring however that at least five pixels of the patch belong to a ship. Since178

ships are scarce in the images this step re-balances the distribution of ship vs. non-ship179

pixels in training.180

During training we further take into account the class imbalance of pixels by using181

the focal loss [26] to train the U-Net model. For a prediction p̂ = so f tmax(p) ∈ [0, 1]2182

and ground truth y:183

FL(pt) = −αt(1− pt)
γlog(pt) (3)

pt =

{
p̂i if y=1
1− p̂i otherwise

(4)

We set γ = 2, α0 = 0.05 (corresponding to background pixels) and α1 = 0.25 (corre-184

sponding to ship pixels). We train the U-Net detector with the ADAM optimizer while185

also introducing some data augmentation in training: random vertical and horizontal186

flips.187
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We normalize the training patches in the same way as in the pretext task (see Section188

2.3).189

2.5. Inference190

To detect ships with our model we first cut the target image into patches of the same191

size as in training - 64x64 pixels - using a regular grid. However, for inference we take192

these patches with an overlap of 32 pixels. It is well known that U-Net architectures, and193

CNNs in general have lower performance on the borders of the image than in the center,194

due to the influence of padding in the backbone. Since our backbone is trained with a195

contrastive objective task during SSL, this type of padding was the most straightforward196

approach. When transferred to the U-Net setting, 0-padding introduces artifacts on197

image borders. We chose to simply cut out 16 pixel wide borders of the patches.198

Finally, the full image binary mask is produced by stitching the individual patch199

masks together. We apply the connected components algorithm with 4-connectivity to200

extract blobs in this mask. Each blob is considered as a detected ship, without additional201

filtering.202

2.5.1. Filtering stage203

Optionally, we can filter these detections with a water/land mask generated from204

OpenStreetMap coastline vector data. When enabled, we perform filtering by multiply-205

ing the image binary prediction mask with the water mask, before extracting connected206

components. In this way, ships that are moored will be detected without spillover to207

peers or land masses. A variation of this filtering involves a water mask than removes208

littoral regions (in a 600m range), in order to perform detection only in open sea. This sec-209

ond open-sea mask is obtained by thresholding a distance-transform of the water/land210

mask. Our pipeline thus has an optional filtering stage with two variations: coastline211

(CO) or open-sea (OS).212

2.6. Ship Detection Data set: S2-SHIPS213

To the best of our knowledge, no ship detection Sentinel-2 data sets for both moving214

and static ships with pixel level annotations has yet to be published. We introduce a215

novel ship detection data set made up of littoral and harbor regions images.216

This data set includes 16 L2A images of coastline, ports and the Suez canal. The217

images of size 1783x938 cover 167 sq. km each, and are annotated at the pixel level218

with a total of 1053 distinct ships. We also provide earth/water masks for these images,219

rasterized from OpenStreetMap layers.220

The ships are from various size, with areas ranging from 100 m2 (e.g., pleasure221

boats, small fishing ships) to more than 5000 m2 (e.g., cargo ships). Since the Sentinel 2222

mission doesn’t provide high sea tiles, the images are taken near coasts and we annotated223

moored ships and ships at sea separately. Our data set also provides images taken under224

different weather conditions, including turbulent seas, clouds or sun glint. Thus, the225

complex environment surrounding ships in our data set makes it challenging for ship226

detection. Several samples are shown in Figure 5.227

We rasterize OpenStreetMap water layers (ocean, major rivers, canals) on the 16228

geo-referenced images to produce binary masks of water. These layers sometimes have229

the contours of peers, jetties, but the annotation of these entities as land is not insured.230

2.7. Backbone pre-training data sets231

For backbone pre-training with SSL, we look at existing large scale Sentinel 2 data232

sets. Several have been published in recent years and usually focus on land cover233

classification or segmentation. Since we do not use labels for pre-training we can use234

these types of data easily and in large quantities. Some well-known data sets are:235
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Figure 4. S2-SHIPS geographical distribution of image tiles. Points on Western Europe map (middle) represent image tiles in data set
for ports of: Southampton, Portsmouth, Brest, Rotterdam (3 tiles), Toulon, Rome, Marseille

Figure 5. S2-SHIPS data set patch samples: Brest (FR), Toulon (FR), Rotterdam (NL), Colon (PA), Suez Canal (EG). Note that some
images have partial cloud cover or rough sea conditions.

• EuroSAT [24], which is a 10 class land-cover classification data set containing 27 000236

multi-spectral patches of size 64*64 pixels. We apply the (A)ugmentation pretext237

task on this dataset.238

• BigEarthNet [27], which is a very large scale multi-label land-cover classification239

data set. It contains 590 326 multi-spectral image patches of size 120*120 pixels. We240

randomly crop 320 000 64x64 pixel patches from the original data set and we apply241

the (A)ugmentation pretext task for BigEarthNet.242

• SEN12MS [28], which is a very large curated land cover segmentation data set,243

made of Sentinel 1, 2 and MODIS images. It contains 180 662 Sentinel 2 multi-244

spectral patches of size 256x256. For this dataset we apply both the (A)ugmentation245

and the region-wise and augmentation (RA) pretext task. For the first one we246

sample 1 337 360 patches 64x64 patches from the 256x256 patches in the dataset.247

For the (RA) and (RA-lo) tasks we sample patches xq and xk+ of size 64x64 pixels248

randomly from the same 256x256 patch. The distance between these two "positive"249

patches can thus be at most 1.2km for (RA) and 640m for (RA-lo), while sometimes250

there can be an overlap.251

2.8. Experimental settings and parameters252

We run the pre-training SSL pipeline for 100 epochs with a learning rate of 0.001253

and a cosine annealing schedule. For the augmentation (A) task, we used a batch size of254

500 for the EuroSAT and BigEarthNet pretraining and a batch size of 900 for SEN12MS255

on a multi-gpu machine. The region based pretext (RA) task was applied to SEN12MS256

using the same hyperparameters as for (A), with a batch size of 500.257

Next, we copied the parameters of the ResNet-50 backbone trained with SSL into258

the corresponding layers of the U-Net. We train the network in two ways: fine tuning259

(FT) and transfer learning (TL). The first one, FT, corresponds to training all the layers260
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of the U-NET on the ship detection task, while for the latter, TL, we froze the layers of261

the backbone.262

For the ship detection task, both in the TL and FT modes, we train the network with263

100 epochs, with a batch size of 20 and a learning rate of 0.001.264

We evaluate our method as a one class object detection algorithm, using the265

pycocotools package. We focused on object-wise precision, recall and F1-score (har-266

monic mean of precision and recall) metrics. We also compute the recall for each ship267

size (a ship is considered as small if its area is under 2500 m², otherwise it is considered268

as being large), and for each ship location (moored ships or sailing ships).269

2.9. Baselines270

1. ImageNet transfer learning: Instead of pre-training the backbone with SSL, this271

baseline uses a ResNet-50 encoder pretrained on ImageNet as implemented by the272

torchvision package. Since these encoders are trained on RGB images, we copy273

the weights of the first 3 channels of the first layer in order to initialize the channels274

corresponding to spectral bands B8, B11 and B12. Both the TL and FT ship detector275

training approach can be applied to this baseline.276

2. Random initialization: Instead of using a trained backbone network, we initialize277

the ResNet-50 encoder randomly following the standard Kaiming initialization.278

Only the fine-tuning (FT) detector training mode is applied when initializing the279

weights randomly.280

3. BL-NDWI - Water segmentation baseline with NDWI: We develop a simple baseline281

which is based on classical image processing techniques. We use the NDWI spectral282

index NDWI = B03−B08
B03+B08 and we threshold its value to segment water and non-283

water pixels. The threshold for the NDWI segmentation is chosen to obtain the best284

performance on the whole data set, which may lead to suboptimal choices for some285

images.286

Next, we eliminate land pixels using the water/land segmentation (CO) (Sec.287

2.5.1) map, giving a ship proposal map. We consider non-water pixels in what are288

normally water regions to potentially be ships. We extract connected components289

and we eliminate those that have a width and height greater than 50pixels (500290

meters) since no ships larger than this size exist. These are due to islands or291

sandbanks not correctly mapped in OpenStreetMap layers or thin water banks292

where the coastline annotation in OpenStreetMap is imprecise.293

Finally we do several filtering passes on the resulting proposal map: morphological294

opening and we apply watershed segmentation on the resulting map to identify295

individual ships.296

3. Results297

Our evaluation has three objectives: (1) study the impact of the SSL pre-training298

strategy of the backbone on the final performance of the ship detector, (2) compare our299

SSL-trained U-Net to the baselines and, (3), analyze the few-shot performance of SSL.300

3.1. Self-supervised learning approach analysis301

We train the ship detector on the S2-SHIPS data set in the leave-one-out setting: out302

of N images we choose N − 1 for training and one for testing. For certain geographical303

regions there are several images in the dataset while for others only one. Therefore, by304

varying the testing and training images we measure the transferability of the learned305

detector, for different levels of domain difference between training and testing sets. We306

do not perform cross-validation, the hyperparameters for U-Net are chosen a priori and307

not optimized.308

We obtain 16 folds with 15 training images and one testing image. The training309

set consists of patches that match the ship presence criterion described in Section 2.4,310

extracted from the original images. This sampling produced about 1800 patches on311
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average per fold. We report Precision, Recall and F1-score averaged over the 16 folds,312

averaged over 5 runs of the experiments. We do not report standard deviations as they313

were always insignificant.314

Table 1. Average performance measures for the various SSL settings, over 5 runs over the 16 folds
of the S2-SHIPS dataset. Note that the F1-score here is the average of F1 scores over folds

Pre-training
dataset

SSL
pretext task

Transfer learning Fine-tuning
Precision Recall F1 Precision Recall F1

EuroSAT A 17.0 80.1 24.7 - - -
BigEarthNet A 19.3 81.5 27.1 18.4 78.1 26.0
SEN12MS A 21.3 76.7 29.1 22.5 74.3 29.5
SEN12MS RA 21.9 76.9 29.1 25.2 76.4 33.0
SEN12MS RA-lo 21.0 77.1 28.4 25.7 77.4 33.0

Our initial aim is to evaluate the overall performance of the detector, irrespective of315

land cover in the images. Thus we first test without the filtering stage, and the precision316

results reflect false positives both on land and at sea.317

Table 1 presents the results of this comparison. First, we can observe that there is a318

strong relationship between the dataset size and the performance attained. To see this in319

more detail, in Figure 6 we show graphically the difference in F1 score depending on the320

size of the pre-training dataset, under the (A)ugmentation pre-text task, using Transfer321

Learning (TL).322
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Ship detection performance vs. SSL dataset size
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Figure 6. Impact of dataset size on F1 score in the TL settings with the A pretext task

Using the large SEN12MS data set we obtain four percentage points of F1 score323

more than with EuroSAT for the same pretext task. In Table 1 we note that this gain in324

performance is due to a stronger gain of relative precision than the loss of relative recall.325

Table 1 also shows that the region-wise similarity, coupled to augmentation (RA),326

outperforms augmentation-only pre-training (four F1 percentage points in the FT setting).327

Furthermore, a large maximum positive patch distance is beneficial, compared to low-328

distance/high overlap (RA-lo).329

Additionally, Table 2 shows how the false alarm rate drastically decreases from 1.70330

ship/km² for EuroSAT to 1.20 ship/km² for SEN12MS-A without filtering, and down to331

0.14 ships/km² for the open-sea setting (OS).332

3.2. Comparison of SSL to baseline approaches333

Next, we compare our best pre-training method (SEN12MS+RA) to the ImageNet334

pretraining and to the BL-NDWI baseline. Table 3 presents this comparison, Table 4335

analyzes the false alarm rate for the different methods and Figure 7 compares the results336

by image.337
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Context BL-NDWI ImageNet SEN12MS-RA

Large ships in open sea

Moored ships

Small ships

Ship trails

Waves, clouds

Moored ships, canals, cloud shadows

Figure 8. Ship detection samples, in various conditions. In green are drawn true positives, in red false positives and in yellow missed
ships (false negatives). Best viewed in color
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Table 2. False alarm rates for the various SSL settings (Transfer Learning)

Pre-training
dataset

SSL
pretext task

False alarm (FA) rate (ship/km²)
No filt. CO filt. OS filt. ∆FA 1 ∆FA 2

EuroSAT A 1.70 0.92 0.22 - 0.78 - 1.48
BigEarthNet A 1.60 0.84 0.16 - 0.76 - 1.44

SEN12MS A 1.20 0.63 0.14 - 0.57 - 1.06
SEN12MS RA 1.19 0.65 0.19 - 0.54 - 1.00
SEN12MS RA-lo 1.23 0.68 0.21 - 0.55 - 1.02

Table 3. Ship detection performance - best SSL based approach versus baselines. Average Precision,
Recall and F1-score computed over the 16 folds

Method (w. CO filtering) Transfer learning Fine-tuning
Precision Recall F1 Precision Recall F1

Scratch - - - 46.9 73.3 53.1
ImageNet 39.2 76.5 47.9 42.9 76.8 50.2

SEN12MS+RA 39.5 76.4 47.9 44.4 75.5 52.2
BL-NDWI 25.0 39.0 27.8 25.0 39.0 27.8

Table 4. Average False Alarm rate comparison of the best SSL result versus the baselines

Method False alarm (FA) rate (ship/km²)
No filtering CO Filtering OS Filtering ∆FA 1 ∆FA 2

BL-NDWI - 0.83 0.71 - - 0.12
Scratch (fine-tuning) 0.85 0.48 0.15 - 0.37 - 0.70

ImageNet 1.02 0.57 0.14 - 0.45 - 0.88
SEN12MS+RA 1.19 0.65 0.19 - 0.54 - 1.00

Figure 7. F1-score variation on all S2-SHIPS dataset for NDWI, SEN12MS-RA (no filt.) and
SEN12MS-RA with CO filt.

Table 3 shows that when all methods are filtered with land/sea map, deep learning338

algorithms lead to largely better results than the BL-NDWI method : in Transfer Learning339

mode, it gains 20 percentage points of F1 and double the recall. This means that many340

ships are not detected with BL-NDWI, and one explanation could be the threshold choice341
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for the NDWI that is not generally optimal to all images. The problem of sub-optimal342

threshold can be seen on Figure 7 where for some test images like Suez 1 and 2 the343

threshold is almost perfectly chosen, whereas on Suez 3, Suez 5 and Suez 6 the detection344

is really weak. As the threshold of the NDWI is chosen to maximize performance over345

the whole dataset, it is suboptimal on individual images.346

For deep learning methods like SEN12MS-RA generalizing problems are evidenced347

on images Suez 2, Panama and Rotterdam 2, but this is mainly due to the challenging348

conditions induced by those test images, rather than domain difference : large land cover349

(Suez canal), clouds (Rotterdam, Panama) and turbulent sea (Panama).350

Our SSL based pipeline achieves similar results to ImageNet pre-training in the351

Transfer Learning setting and two percentage points higher F1 score in the Fine Tuning352

setting. It is worth noticing that training from scratch acheived better F1 score in the fine-353

tuning setting. When training on 15 images, learning from scratch seems a better choice354

due to simplicity and better performance. Indeed, most works use this setting for remote355

sensing applications. However, our aim is to study few shot learning performance and in356

this setting, as shown in the following sections, learning from scratch is disadvantaged.357

Generally, deep learning methods are weak in areas with dark background (grass,358

cloud shadow), waves or large boat trail, where they lead to many false positives. Table359

8 presents a qualitative analysis their results. In these conditions, networks trained from360

scratch or pretrained on EuroSAT and BigEarthNet lead to the worst results. Some peers361

and docks are also confused with ships. Deep learning methods seem to be robust to362

brightness, water color or environment difference, and they also rarely predict small363

islands as ships.364

3.3. Few-shot performance of the methods under study365

To evaluate the performance dynamics of the proposed method in the few-shot366

learning setting we split the dataset into two parts. The training set contains 13 images367

and the test set three: one from the Suez canal, a second from Brest and the last one from368

Rotterdam. We vary the number of training images from 1 to 13, which corresponds369

to a variation in the number of distinct ships from 42 to 742. This experiment aims370

at highlighting the networks’ robustness towards training data sets frugality and also371

changing conditions (sun glint, water color, etc.).372

Figure 10. Impact of number of training ships variation on mean F1 score calculated on Brest,
Rotterdam and Suez canal

Varying the number of training samples shows that SSL methods trained on large373

data sets, especially with the region based pretext task, achieve competitive and even374

better results than ImageNet pretrained networks fine-tuned on a small amount of data.375
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Figure 9. Ship detection performance according on ship size and location, with a frugal setting (126 training ships)

Indeed, in Figure 10 we see that having only between 200 and 300 training examples is376

sufficient for SEN12MS-RA method to get close to a F1 score of 35%, while ImageNet377

network needs at least 350 samples to reach this performance. This experiment also378

confirms the importance of the pretext task : the region invariances induced by SEN12MS-379

RA method increased considerably the performances. Indeed, only 290 ships are needed380

by SEN12MS-RA to get 92% of the best performances obtained with 750 training ships,381

while other methods need at least a third more training ships.382

Moreover, in a few-shot setting, with 126 training examples, Figure 9 analyzes the383

performance of the methods under study on different sub-classifications of the ships:384

small vs large and moored or at sea. SEN12MS-A and SEN12MS-RA have a better recall385

than ImageNet or training from scratch by far. SEN12MS pretraining is significantly386

better at detecting moored ships than other methods, including ImageNet.387

The weakness of ImageNet may come from the fact that it needs to fine-tune more388

its weights, because of the large domain difference that exists when transfering the389

knowledge learned on object centric data sets to remote sensing images. Therefore,390

robust SSL methods give a good boost when having few training samples, unlike391

networks trained from scratch or pretrained on ImageNet.392

4. Discussion393

Globally, the results allow us to conclude that deep learning techniques achieve394

promising results. In all cases (close to shore and open-sea) recall is high, more than395

75%. We obtained less than 0.14 false alerts per square kilometer in the open sea and396

close to the sea shore, the false alarm rate is around 1 ship/km2. While the BL-NDWI397

baseline could be improved by finding more optimal NDWI thresholds for each image,398

the performance difference with respect to deep learning approaches seems hard to399

make up for.400

Networks trained with SSL achieve better results compared with ImageNet pre-401

trained ones. In the few-shot setting, SSL pre-training is usually better and more stable.402

When sufficient examples are available SSL pretraining is as good as ImageNet or403

training from scratch. We notice also that performance increases with the size of the404

pre-training datasets. Since these are not annotated it is easy to build such datasets.405

The ones chosen here have no relation to the ship detection problem at hand, thus no406

significant effort is needed to select the images in these datasets.407

The pretext task needs to be chosen thoroughly according to the downstream task408

in order to learn the needed invariances. The region based pretext task looks promis-409

ing probably because it helps the encoder to better cluster together similar elements410

such as water, agriculture crops or residential areas, while a simple pretext task data-411

augmentation only focuses on color or noise invariances. The benefit of such pretext task412

can be seen in our case as it lowers the number of false positives over land and near the413

shore.414
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5. Conclusion415

We presented a method to train a ship detector in Sentinel-2 images using self-416

supervised learning. Our method plugs in a SSL-trained backbone in a U-NET archi-417

tecture. It achieved better or similar results to standard deep-learning approaches and418

significantly better results than a spectral index based method. The choice of pretext task419

in the SSL stage is a major source of performance improvements.420

Further studies should focus on the design of a more effective pretext task. Our421

work shows that there is room for improvement although the direction towards this goal422

remains unclear. Instead of hand-designed pretext tasks, learning a better pretext task423

could be a fruitful avenue of research. However, the computational cost of pre-training is424

high, so it would be necessary to first reduce this cost or to approximate the pre-training425

stage performance with a light-weight proxy model.426

The SSL pipeline can be applied to networks where no ImageNet pretraining is427

available such as custom architectures specific to remote sensing. Thus, an interesting428

research goal would be training, through SSL, a feature extractor designed for remote-429

sensing applications, that improves upon learning from scratch or ImageNet pretraining430

by a large margin.431

For ship detection, our image-based approach is still two orders of magnitude432

away from the false alert performance of SAR methods. To improve image-based ship433

detection, a better network backbone could be studied, more adapted to small objects.434

Furthermore, it would be better to include cloud filtering and land/water classification435

explicitly in the network. While adding more data is always a good idea, the few-shot436

setting is more challenging and can bring about more methodological improvements in437

deep learning for remote sensing.438
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