Article

HIF-\(\alpha\) activation impacts macrophage function during murine Leishmania major infection.

Manjunath Bettadapura\(^1\), Hayden Roys\(^1\), Anne Bowlin\(^1\), Gopinath Venugopal\(^1\), Charity L. Washam\(^2\,3\), Lucy Fry\(^1\), Steven Murdock\(^1\), Humphrey Wanjala\(^1\), Stephanie D. Byrum\(^2\,3\), and Tiffany Weinkopf\(^1\)*

1 Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA 72205; mnbettadapur@ualr.edu (M.B), hroys@uams.edu (H.R.), abowlin@uams.edu (A.B.), gvenugopal@uams.edu (G.V.), lfry@uams.edu (L.F.), sjmurdock@uams.edu (S.M.), hmwanjala@ular.edu (H.W.), and tweinkopf@uams.edu (T.W.)

2 Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA 72205; cwasham@uams.edu (C.L.W.), and sbryum@uams.edu (S.D.B.)

3 Arkansas Children’s Research Institute, Little Rock, AR, USA 72202

* Correspondence: tweinkopf@uams.edu; 501-686-5518

Abstract: Leishmanial skin lesions are characterized by inflammatory hypoxia alongside the activation of hypoxia inducible factors, HIF-1\(\alpha\) and HIF-2\(\alpha\), and subsequent expression of the HIF-\(\alpha\) target VEGF-A during Leishmania major infection. However, the factors responsible for HIF-\(\alpha\) activation are not known. We hypothesize hypoxia and pro-inflammatory stimuli contribute to HIF-\(\alpha\) activation during infection. RNASEq on leishmanial lesions found transcripts associated with HIF-1\(\alpha\) signaling are induced. To determine whether hypoxia contributes to HIF-\(\alpha\) activation, we followed the fate of myeloid cells infiltrating from the blood and into hypoxic lesions. Recruited myeloid cells experience hypoxia when they enter inflamed lesions, and the length of time in lesions increases their hypoxic signature. To determine whether pro-inflammatory stimuli in the inflamed tissue can also influence HIF-\(\alpha\) activation, we subjected macrophages to various pro-inflammatory stimuli and measured VEGF-A. While parasites alone did not induce VEGF-A, and pro-inflammatory stimuli only modestly induce VEGF-A, HIF-\(\alpha\) stabilization increases VEGF-A during infection. HIF-\(\alpha\) stabilization does not impact parasite entry, growth or killing. Alternatively, the absence of ARNT/HIF-\(\alpha\) signaling enhances parasite internalization. Altogether, these findings suggest HIF-\(\alpha\) is active during infection, and while macrophage HIF-\(\alpha\) activation promotes lymphatic remodeling through VEGF-A production, HIF-\(\alpha\) activation does not impact parasite internalization or control.

Keywords: Leishmania; leishmaniasis; macrophages; HIF-\(\alpha\)

1. Introduction

Leishmaniasis is an inflammatory disease caused by the vector-borne, obligate intracellular protozoan parasites of the genus Leishmania. Leishmaniasis is endemic in many developing countries in the tropical and subtropical regions of the globe, where up to 1.7 million new cases in 98 countries occur annually [1, 2]. Leishmania manifests in three forms: 1) visceral leishmaniasis (VL), which is systemic and fatal if untreated, 2) cutaneous leishmaniasis (CL), which causes nodules, papules and lesions on the surface of the skin, and 3) mucocutaneous leishmaniasis (MCL), wherein parasites from a primary cutaneous lesions spread to other parts of the body [3]. Infections by different species of Leishmania manifest in different clinical forms. In particular, Leishmania major is responsible for CL in the Eastern Mediterranean and North Africa where the disease is considered a major public health problem and accounts for 70% of the CL cases worldwide [4]. The burden on these countries, already high due to current socio-economic conditions, limited resources and medical infrastructure, and civil strife, is further exacerbated by the lack of a vaccine and ineffective chemotherapeutic treatment for the disease [3, 4].

The transcription factor hypoxia inducible factor-1\(\alpha\) (HIF-1\(\alpha\)), which is involved in cellular stress and the response to decreased oxygen availability, is present in lesions from humans and mice infected with Leishmania parasites [5-8]. The disease severity is also associated with enhanced levels of HIF-1\(\alpha\) in human and murine CL [6, 8]. We previously reported target genes of HIF-1\(\alpha\) as well as HIF-2\(\alpha\) are elevated following L. major infection in vivo [6, 8, 9]. These data suggest both HIF-1\(\alpha\) and HIF-2\(\alpha\) are active in
the skin during CL. Moreover, HIF-1α and the downstream target gene, VEGF-A, are elevated in infected and uninfected macrophages in the lesions [8]. Even though other species of *Leishmania* parasites activate HIF-1α [10, 11], *L. major* parasites alone do not induce HIF-1α accumulation or target gene expression in macrophages [6]. In contrast, infected macrophages cultured under hypoxic conditions or stimulated with pro-inflammatory signals like IFNγ and LPS enhanced HIF-1α activation [6]. HIF-1α activated by these inflammatory signals promoted leishmanicidal macrophage activity, but HIF-1α stabilization alone in the absence of inflammatory signals did not promote parasite killing [6]. Altogether, these data suggest the tissue microenvironment, rather than the parasites, drive pan-HIF-α activation during *L. major* infection.

Macrophages perform multiple functions in the skin following *L. major* infection. Macrophages play an essential role in antileishmanial immunity by recognizing, phagocytosing and killing parasites [3]. In addition to phagocytosing parasites, dermal macrophages also phagocytose apoptotic cells and debris as part of the wound healing response [12, 13]. Even though macrophages present antigen in other infections, *Leishmania* infection in macrophages impairs antigen presentation and IL-12 release thereby dampening CD4+ Th1 immune responses [14-17]. During an efficient antileishmanial immune response, CD4+ Th1 cells produce IFNγ that signals to macrophages to kill parasites in an NO- and ROS-dependent manner which ultimately lead to parasite control and lesion resolution [3]. While the importance of macrophages in the immune response has been well-characterized, recent evidence has shown macrophages also play a role in vascular remodeling at the site of infection [8]. Macrophages produce VEGF-A which binds to VEGFR-2 on lymphatic endothelial cells to induce lymphangiogenesis [7, 8]. Macrophage VEGF-A is dependent on HIF-α signaling and mice deficient in myeloid pan-HIF-α signaling exhibit increased pathology [8]. Therefore, in addition to their well-characterized role in immune responses and parasite killing, macrophages also orchestrate the expansion of the lymphatics which leads to lesion resolution during *L. major* infection.

Given HIF-1α and HIF-2α are activated in leishmanial lesions [6-8, 18], and macrophage HIF-α activation contributes to lesion resolution [8], we investigated factors contributing to HIF-α activation as well as other downstream consequences of HIF-α activation during *L. major* infection. We developed an in vitro system where HIF-α is constitutively active by exposing macrophages to dimethyloxalylglycine (DMOG), a chemical agent that inhibits the prolyl-4-hydroxylase domain (PHD) enzymes that degrade HIF-α isoforms, thereby stabilizing HIF-α over the course of infection [19]. Therefore, macrophage DMOG treatment mimics HIF-1α and HIF-2α activation detected in leishmanial lesions. Using this system, we found HIF-α activation does not impact parasite entry or control, but rather that basal HIF-α signaling restricts parasite internalization by macrophages.

2. Results

2.1 The HIF-1α signaling pathway is increased during *L. major* infection in vivo

Leishmanial lesions in the skin are characterized by inflammatory hypoxia. To determine if hypoxia at the site of infection is associated with increased HIF-α signaling during *L. major* infection in the murine model, we infected C57BL/6 mice with *L. major* parasites. At 4 weeks p.i. when mice presented with lesions, we performed RNASeq on infected and control uninfected ears from naïve mice. Differentially expressed genes (DEGs) between infected and naïve ears were identified by Limma voomWithQualityWeights in R, and pathway enrichment analysis of DEGs was performed using EGSEA against the KEGG database. The gene expression profiles derived from the RNASeq data were considered statistically significant with a fold change >2 and p<0.05. Hierarchical clustering analysis reveals many transcripts that were significantly induced following *L. major* infection are associated with the HIF-1α signaling pathway including *Egln1 (Phd2), Egln3, (Phd3), Eno2, Hif1a, Hk2, Hk3, Ldha, Nos2, Vegfa*, and *Vhl* (Figure 1). Altogether, our global transcriptomic analysis suggests HIF-1α signaling is increased during *L. major* infection in vivo, consistent with findings that leishmanial lesions are hypoxic.
Figure 1: The HIF-1α signaling pathway is elevated following with infection with L. major parasites in vivo. C57BL/6 mice were infected with 2x10^6 L. major metacyclic promastigote parasites intradermally in the ear. At 4 weeks p.i., naïve control (N=4) and infected (N=6) ears were subjected to RNAseq analysis. Hierarchical clustering of the expression profile was performed. Heat maps indicate the fold change of gene expression in L. major-infected ears >2-fold (red) or <2-fold (blue) compared to naïve controls. The HIF-1α signaling pathway was obtained using the KEGG pathway analysis database. Relative expression was normalized with a Z score.

2.2 Myeloid cells experience inflammatory hypoxia in leishmanial lesions

We hypothesize inflammatory hypoxia further potentiates chronic inflammation in leishmanial lesions. We previously reported inflammatory monocytes, which are massively recruited to the site of infection following L. major inoculation, are less hypoxic at the cellular level compared to macrophages in the skin during infection [9]. However, it was not clear whether this was a cell intrinsic feature that distinguishes monocytes from macrophages, or if the tissue microenvironment imprints a hypoxic signature upon these cells. Therefore, we utilized an adoptive transfer system where CD11b^+ cells isolated from the bone marrow of CD45.1 donor mice were injected into CD45.2 recipient mice that were infected 4 weeks prior to the cell transfer with L. major parasites. Infected mice were then treated with pimonidazole to determine which cells are experiencing hypoxic conditions at the cellular level (Figure 2A). For most studies, hypoxia is detected at the tissue level; however, this adoptive transfer model examines hypoxia at a higher resolution and determines if monocytes can become hypoxic as they enter inflamed tissues at the cellular level. Using this system coupled with flow cytometry, we found CD11b^+CD45.1^ donor cells are detectable in the lesions of infected CD45.2^ host cells and CD45.1^ donor mice suggesting myeloid cells are actively recruited to the site of infection (Figure 2B). Further analysis of the transferred myeloid cells from the donor mouse present at the site of infection showed the CD45.1^ cells displayed a CD11b^+Ly6G^ neutrophil or CD11b^+Ly6G^-CD64^ macrophage phenotype. Confirming previous results, these data suggest monocyes differentiate into macrophages following Leishmania infection [20-22]. The amount of hypoxia staining based on the pimonidazole median fluorescence intensity (MFI) for each myeloid cell type from the donor CD45.1^ cells as well as the endogenous host CD45.2^ cells was investigated (Figure 2C). These studies revealed CD11b^+Ly6G^ neutrophils exhibited lower levels of pimonidazole staining compared to macrophages in both the CD45.2^ host and CD45.1^ transferred cells. Importantly, macrophages derived from CD45.1^ donor mice possessed similar pimonidazole MFIs compared the CD45.2^ endogenous macrophages (Figure 2D). These data suggest monocyte-derived macrophages recruited
from the circulation experience hypoxic conditions in the inflamed lesions which may impact their metabolic reprogramming, and thus the differentiation or function of that cell.

Figure 2. Myeloid cells experience inflammatory hypoxia as they enter the dermal tissue during *L. major* infection. C57BL/6 mice were infected with *L. major* parasites intradermally in the ear. At 4 weeks post-infection, CD45.1+CD11b+ cells isolated from the bone marrow of naïve mice were adoptively transferred retroorbitally into CD45.2+ infected mice. At 7 days post-transfer, infected mice were given pimonidazole i.p. 90 min before euthanizing, and cells from infected ears were stained for pimonidazole and analyzed by flow cytometry. (A) Cartoon model of CD11b+ adoptive transfer experiment. (B) Representative dot plots showing CD45.1+ transferred cells are present in infected ears of CD45.2+ recipient mice. Cells were previously gated on total, live singlet events. (C) Representative dot plots showing flow cytometry gating strategy for CD11b+Ly6G+ neutrophils and CD11b+Ly6G-CD64+ macrophages. (D) Quantification of Pimonidazole (pimo) median fluorescence intensity (MFI) after gating on the myeloid cells: CD11b+Ly6G+ neutrophils and CD11b+Ly6G-CD64+ macrophages. Data shown here from one experiment and representative of two independent experiments with 5 mice per group. Data are presented as the mean ±SEM with no significant differences in pimonidazole MFIs between donor cells and endogenous host cells of the same cell type as analyzed by a paired *t*-test.

2.3 The length of time a myeloid cell spends in leishmanial lesions dictates the hypoxic signature of that cell

Following *L. major* infection, monocytes migrate into lesions and exhibit a hypoxic signature, but the length of time in the inflamed tissue may influence the hypoxic signature of the cell furthering impacting myeloid cell differentiation and function. To determine if increased time in the lesion enhances hypoxia at the cellular level, we investigated myeloid
cells at different stages of their transition from monocytes to macrophages based on the downregulation of Ly6C (an inflammatory monocyte marker) and upregulation of CD64 (a macrophage marker) (Figure 3A). This strategy examining myeloid cells that are actively differentiating from Ly6C^hiCD64^- inflammatory monocytes to Ly6C^loCD64^+ macrophages coupled with pimonidazole staining determined hypoxia at the cellular level across the stages of transition. Confirming previous work [9], we found Ly6C^hiCD64^- inflammatory monocytes exhibited less pimonidazole staining than Ly6C^loCD64^+ fully differentiated macrophages (Figure 3B-C). Moreover, Ly6C^hiCD64^- inflammatory monocytes have decreased pimonidazole stain, and as monocytes transition to Ly6C^loCD64^+ cells, their pimonidazole stain positivity also increases. The trend continues where Ly6C^loCD64^+ cells have higher levels of pimonidazole compared to Ly6C^hiCD64^- cells, that eventually peaks in the Ly6C^loCD64^- macrophages which have the greatest pimonidazole MFI (Figure 3B-C). These data suggest inflammatory monocytes that enter the inflamed tissue experience hypoxic conditions, and the length of time in the lesion imprints a hypoxic signature upon these cells as they differentiate into macrophages.

2.4 Proinflammatory stimuli and HIF-α stabilization induce macrophage VEGF-A production in an ARNT/HIF-dependent manner during L. major infection

To determine whether additional pro-inflammatory stimuli present at the site of infection could also activate HIF-α in addition to hypoxia during infection, we established an in vitro culture system using BMDMs. Macrophages were cultured alone or with a panel of pro-inflammatory stimuli including LPS and IFNγ in the presence or absence of DMOG to stabilize HIF-1α and HIF-2α. These conditions in conjunction with L. major infection in macrophages mimic the hypoxic environment and elevated HIF-1α and HIF-2α expression present at the site of infection in leishmanial lesions [9]. Specifically, macrophages were
cultured with LPS alone, IFNγ alone, or in combination, in macrophages that were infected or not with *L. major* parasites (5:1 MOI). Compared to uninfected control macrophages, infection with *L. major* parasites alone did not induce VEGF-A production after 24 hours (Figure 4A). Amongst uninfected macrophages, only the combination of LPS/IFNγ resulted in significant VEGF-A production (Figure 4A). In infected macrophages, the addition of LPS or LPS/IFNγ led to significant VEGF-A production (Figure 4A). Importantly, VEGF-A production was significantly elevated in all conditions with the addition of DMOG, when comparing the same condition with and without DMOG (Figure 4A).

To confirm that DMOG stabilizes HIF-α leading to HIF-α activation during infection, VEGF-A production was measured from BMDMs generated from LysMcCreARNTff which are deficient in myeloid ARNT/HIF-α signaling and LysMcCreARNTff control mice which exhibit intact ARNT/HIF-α signaling. Using these genetic mouse models demonstrates DMOG treatment is directly affecting ARNT/HIF-α signaling, and not acting as an off target effect. Compared to macrophages from LysMcCreARNTff mice, LysMcCreARNTff macrophages produced significantly less basal VEGF-A (Figure 4A-B). In LysMcCreARNTff macrophages only LPS plus parasites led to significant VEGF-A production that did not increase with DMOG suggesting some VEGF-A production during infection can be independent of ARNT/HIF-α signaling (Figure 4B). Importantly, LysMcCreARNTff macrophages produced significantly less VEGF-A compared to LysMcCreARNTff macrophages in the presence of DMOG for all conditions (Figure 4A-B). Altogether these results suggest that some pro-inflammatory stimuli present in leishmanial lesions could activate HIF-α, but the overall effects of the pro-inflammatory stimuli tested are modest compared to chemical stabilization of HIF-1α and HIF-2α.

Figure 4. Macrophages produce VEGF-A in response to proinflammatory stimuli and HIF-α stabilization during *L. major* infection in an ARNT/HIF-dependent manner. BMDMs were cultured with LPS (100 ng/mL) alone, IFNγ (10 ng/mL) alone, or in combination, in macrophages that were infected or not with *L. major* parasites (5:1 MOI). BMDMs were also cultured under these conditions with and without 0.2 mM DMOG which stabilizes HIF-α. BMDMs were generated from (A) LysMcCreARNTff or (B) LysMcCreARNTff to determine contribution of ARNT/HIF signaling for VEGF-A production. Supernatants were collected after 24 hours. VEGF-A production was quantified by ELISA. Data are presented as mean ± SEM. **p < 0.01, *p < 0.05, t-test comparing proinflammatory stimuli to media alone; # # # p < 0.005, # # p < 0.01, t-test comparing the same treatment condition with and without DMOG. Even though not depicted in the figure, it should be noted all
LysM^{Cre}ARNT^{α/α} BMDMs treated with DMOG produced significantly more VEGF-A than LysM^{Cre}ARNT^{α/−} BMDMs treated with DMOG (p < 0.01 by t-test comparing different mouse strains exposed to the same condition).

2.5 DMOG induces HIF-1α and HIF-2α activation during L. major infection

During L. major infection in vivo, HIF-1α and HIF-2α as well as multiple HIF-1α and HIF-2α targets including Vegfa, Nos2, and Arg1 and are elevated at the site of infection [7, 8, 18]. To determine the effects of pan-HIF-α stabilization during L. major infection, we stimulated BMDMs in the presence of DMOG to mimic HIF-1α and HIF-2α stabilization in vitro. Macrophages were generated from LysM^{Cre}ARNT^{α/α} and LysM^{Cre}ARNT^{α/−} mice to determine the requirement for myeloid HIF-α signaling in response to DMOG administration. Macrophages were exposed to 0.1 or 0.2 mM DMOG prior to infection and the expression of VEGF-A which can result from HIF-1α or HIF-2α activation was examined by real-time PCR. Our results show L. major parasites alone do not induce VEGF-A expression in LysM^{Cre}ARNT^{α/α} macrophages (Figure 5A), confirming previous findings [9]. However, DMOG exposure in infected and uninfected macrophages upregulated Vegfa, confirming results in Figure 4. Importantly, VEGF-A expression was lower in LysM^{Cre}ARNT^{α/α} macrophages compared to LysM^{Cre}ARNT^{α/−} control BMDMs during L. major infection in response to DMOG, suggesting HIF-α mediates Vegfa expression during infection. In addition, HIF-1α-specific and HIF-2α-specific target genes were examined during infection in BMDMs treated or not with DMOG. As with Vegfa, the expression of HIF-1α-specific targets Nos2 and Pgk1 was significantly higher in uninfected DMOG-treated LysM^{Cre}ARNT^{α/α} macrophages compared to uninfected LysM^{Cre}ARNT^{α/−} controls, but the same trend was not seen in LysM^{Cre}ARNT^{α/α} macrophages (Figure 5B-C). While DMOG increased both HIF-1α-specific targets Nos2 and Pgk1 in LysM^{Cre}ARNT^{α/α} macrophages compared to untreated cells during infection, this effect was only significant for Nos2 expression (Figure 5B-C). Importantly, there was no significant difference detected in HIF-1α targets Nos2 and Pgk1 in LysM^{Cre}ARNT^{α/α} macrophages with DMOG treatment compared to untreated cells (Figure 5B-C). The expression of HIF-2α-specific target Arg1 was significantly higher in both uninfected and infected LysM^{Cre}ARNT^{α/α} macrophages with DMOG treatment compared to uninfected LysM^{Cre}ARNT^{α/α} macrophages (Figure 5D). While Arg1 was not significantly elevated in LysM^{Cre}ARNT^{α/α} macrophages with DMOG treatment, some increased Arg1 was detected in uninfected LysM^{Cre}ARNT^{α/α} macrophages suggesting some DMOG-induced Arg1 is independent of ARNT/HIF-α signaling (Figure 5D). The expression of HIF-2α-specific target Epo was higher in both uninfected and infected LysM^{Cre}ARNT^{α/α} macrophages with DMOG treatment compared to uninfected LysM^{Cre}ARNT^{α/α} macrophages, but this result was not significant (Figure 5E). Altogether, these data indicate that DMOG is an effective tool to simulate Vegfa and other HIF-α targets during L. major infection.
Figure 5. DMOG treatment induces HIF-1α and HIF-2α activation during *L. major* infection. BMDMs were generated from LysM^{Cre}ARNT^{fl/fl} or LysM^{Cre}ARNT^{fl/+} mice. Macrophages were infected or not with *L. major* parasites (5:1 MOI) and cultured with and without 0.1 mM or 0.2 mM DMOG for 24 hours. The expression of Vegfa (A), Nos2 (B), Pgk1 (C), Arg1 (D), and Epo (E) was analyzed by quantitative real-time PCR. Relative mRNA expression was normalized to the housekeeping gene *Rps12*. Results shown here are the mean ±SEM of the fold change over untreated controls (Con) pooled from 4-6 individual experiments. *p* ≤ 0.05, Mann-Whitney test, comparing infected DMOG-treated to infected untreated controls (blue to blue), or comparing uninfected DMOG-treated to uninfected untreated controls (orange to orange).

2.6 Macrophage HIF-α deletion and stabilization during *L. major* internalization and killing

Given DMOG induces transcripts involved in parasite persistence like Arg1 indicative of an M2 macrophage, and parasite killing like Nos2 indicative of a M1 pro-inflammatory macrophage simultaneously, we analyzed parasite persistence in macrophages by monitoring parasite internalization as well as their growth and survival in macrophages with and without DMOG treatment. To determine if HIF-α stabilization impacts the ability of macrophages to phagocytose *L. major* parasites, C57BL/6 BMDM were treated with DMOG prior to infection. We found an equal number of parasites per macrophage after 2 hours of infection in DMOG-treated cells compared to untreated macrophages suggesting HIF-α stabilization does not impact macrophage phagocytosis of *L. major* parasites (Figure 6A). To determine if HIF-α stabilization impacts parasite killing, BMDM were infected and then treated with DMOG for the duration of infection. As we previously reported, DMOG treatment does not impact parasite growth in macrophages for the first 72 hours of infection (Figure 6B). Although LPS and IFN_γ leads to parasite killing resulting in lower numbers of parasites after 72 hours, DMOG treatment does not impact the effects of LPS and IFN_γ (Figure 6B).
While HIF-α stabilization did not affect host-parasite interactions in the first 72 hours, we wanted to determine if the absence of HIF-α signaling affects host-parasite interactions early during infection. BMDCMs from Lys^Cre^ARNT^{f/f} and Lys^Cre^ARNT^{f/+} mice were infected and internalized L. major parasites were quantified after 2 hours. Surprisingly, Lys^Cre^ARNT^{f/f} macrophages possessed a significantly higher number of parasites per macrophage compared to Lys^Cre^ARNT^{f/+} macrophages, independent of DMOG treatment (Figure 6C). These data show that macrophages deficient in ARNT/HIF-α signaling exhibit higher numbers of phagocytosed parasites at 2 hours. After 72 hours p.i., parasite numbers were higher in Lys^Cre^ARNT^{f/f} macrophages compared to Lys^Cre^ARNT^{f/+} controls, irrespective of DMOG treatment (Figure 6D). Lys^Cre^ARNT^{f/f} macrophages exposed to LPS and IFNγ resulted in lower numbers of parasites when compared to untreated Lys^Cre^ARNT^{f/+} macrophages suggesting macrophages deficient in ARNT/HIF-α signaling can control parasites upon pro-inflammatory stimulation (Figure 6D). However, Lys^Cre^ARNT^{f/f} macrophages possessed a higher number of parasites per macrophage compared to Lys^Cre^ARNT^{f/+} controls following LPS and IFNγ stimulation indicating Lys^Cre^ARNT^{f/f} macrophages do exhibit a slight, yet significant, defect in their ability to kill parasites (Figure 6D, significant by t-test but not depicted on graph). Taken together, our findings show macrophage HIF-α stabilization does not impact parasite phagocytosis or killing, but ARNT/HIF-α signaling restricts parasite entry into macrophages.

Figure 6. HIF-α stabilization does not impact parasite burdens in macrophages following L. major infection. For all experiments the number of parasites per macrophage was quantified by fluorescence microscopy. (A) C57BL/6 BMDCM were pretreated overnight with or without 0.2 mM DMOG before infection with fluorescently-labelled DsRed L. major parasites (MOI 5:1). Parasites were quantified at 2 hours p.i. (B) C57BL/6 BMDCM were infected with DsRed L. major and cultured for 72 hours with or without 0.2 mM DMOG in the presence or absence of 100 ng/mL LPS + 10 ng/mL IFNγ. (C) BMDCM derived from Lys^Cre^ARNT^{f/f} and Lys^Cre^ARNT^{f/+} mice were pretreated overnight with and without 0.2 mM DMOG before being infected with DsRed L. major for 2 hours. (D) Lys^Cre^ARNT^{f/+} and Lys^Cre^ARNT^{f/f} BMDCM were cultured for 72 hours after infection with or without 0.2 mM DMOG in the presence or absence of 100 ng/mL LPS + 10 ng/mL IFNγ. Results shown in A-B are pooled from 4 individual experiments. Results shown in C-D are a single experiment representative of 3-4 individual experiments. Data presented as the mean ±SEM. *p < 0.05, **p < 0.01 and ***p < 0.005, t-test comparing DMOG and LPS/IFNγ treatment to media alone and conditioned media, or t-test comparing Lys^Cre^ARNT^{f/+} and Lys^Cre^ARNT^{f/f} macrophages under the same treatment conditions.
3. Discussion

During *L. major* infection myeloid cells including monocytes are recruited to dermal lesions where they experience hypoxic conditions. Our data shows the longevity of myeloid cells in the inflamed tissue enhances their hypoxic state. We find the hypoxic environment in leishmanial lesions is associated with the activation of HIF-α signaling. Given monocytes differentiate into macrophages at the site of infection, and HIF-α activation can impact macrophage function, we investigated the role of HIF-α signaling using a combination of strategies to augment and delete HIF-α activation during *L. major* infection. Upon infection, macrophages become activated to phagocytize and kill parasites by NO and ROS. However, macrophages also serve as the host cell and replicative niche for parasites. Macrophages also orchestrate lymphatic remodeling for lesion resolution. Therefore, macrophages play multiple roles in both parasite control and persistence as well as wound healing in CL. Altogether, we found pharmacological HIF-α activation promoted the ability of macrophages to drive lymphatic remodeling through VEGF-A production during infection, but HIF-α activation did not impact parasite phagocytosis or killing. Alternatively, basal HIF-α signaling restricted macrophage parasite phagocytosis. While HIF-α stabilization did not enhance parasite killing, our findings suggest pharmacological activation of HIF-α could induce VEGF-A which would be beneficial for promoting lymphangiogenesis to improve lesion resolution during CL.

Hypoxia promotes macrophage phagocytosis in a HIF-1α-dependent manner; while, HIF-2α is not involved in phagocytosis under hypoxic conditions [23]. In this study, we detected higher numbers of internalized parasites in macrophages deficient in myeloid ARNT/HIF-α signaling compared to macrophages with intact ARNT/HIF-α signaling in normoxic conditions. These data suggest HIF-α inhibits parasite phagocytosis. While HIF-2α may not participate in phagocytosis under hypoxic conditions, basal HIF-2α is necessary and sufficient to suppress phagocytosis and efferocytosis under normoxic conditions [24]. The uptake of apoptotic cells or *Staphylococcus aureus* is higher in LysM^Cre^HIF-2α^fl/fl^ macrophages compared to controls [24]. Moreover, LysM^Cre^ARNT^fl/fl^ macrophages (missing both HIF-1α and HIF-2α signaling like the macrophages used in our experiments) show enhanced phagocytosis and efferocytosis compared to control macrophages [24]. As a result, we hypothesize the absence of HIF-2α in our LysM^Cre^ARNT^fl/fl^ macrophages is responsible for the enhanced parasite uptake during *L. major* infection. Therefore, we propose HIF-2α acts as a phagocytic repressor during Leishmania infection.

HIF-α stabilization leads to lower bacterial and fungal burdens within macrophages [25, 26]. Complementing the work of others, our data show inflammatory stabilization of HIF-α by LPS and IFNγ promotes parasite killing but chemical HIF-α stabilization by DMOG treatment does not lead to parasite killing [6, 18]. HIF-α stabilization can occur by two major mechanisms including inhibiting prolyl hydroxylase (PHD) enzymes or factor inhibiting HIF (FIH) [27]. While previous studies stabilized HIF-α by inhibiting PHD enzymes without affecting FIH [6], we stabilize HIF-α by DMOG treatment, which inhibits both PHD enzymes and FIH, and showed chemical HIF-α stabilization alone does not induce parasite killing in the absence of additional pro-inflammatory stimuli. Therefore, our body of work continues to support the hypothesis that multiple factors from the tissue microenvironment like hypoxia and pro-inflammatory cytokines contribute to parasite killing. However, the requirement for HIF-α signaling in parasite killing is not completely clear. While it has been reported that myeloid HIF-1α is required for the robust killing of *L. major* parasites in a NO-dependent manner, we found ARNT/HIF-α signaling only plays a minor, although significant, role in parasite killing. Given LysM^Cre^ARNT^fl/fl^ macrophages could efficiently kill parasites in response to LPS and IFNγ, our data suggest *L. major* parasites are controlled in an ARNT/HIF-α-independent mechanism in vitro. Mice deficient in myeloid HIF-1α exhibit higher parasite numbers following *L. major* infection in vivo, but we did not detect differences in parasite burdens in infected LysM^Cre^ARNT^fl/fl^ mice, which are deficient in both myeloid HIF-1α and HIF-2α signaling [6, 18]. Our in vitro findings here showing LysM^Cre^ARNT^fl/fl^ macrophages can kill parasites in response to pro-inflammatory stimuli are consistent with our findings in vivo showing LysM^Cre^ARNT^fl/fl^ mice can control parasites at similar levels to LysM^Cre^ARNT^fl/fl^ controls [8, 18]. Altogether, these data suggest HIF-α signaling may contribute to parasite control following exposure to pro-inflammatory stimuli, but parasite killing occurs predominantly through HIF-α-independent mechanism.
While it is clear that HIF-α subunits are active during infection, the specific factors responsible for HIF-α activation have not been defined and appear to be context dependent. Hypoxia is hypothesized to be a major driver of HIF-α activation, but pro-inflammatory signals can also activate HIF-1α and HIF-2α [28, 29]. Here, we used VEGF-A production as a surrogate for HIF-α activation during infection. L. major parasites can activate TLRs and TLR activation can lead to HIF-α activation [30-34]. Similarly, L. major induces reactive oxygen species (ROS) production and ROS can activate HIF-α [35-38], but parasites alone did not induce VEGF-A production by macrophages. These data suggest parasites, parasite TLR ligation, and parasite-induced ROS production do not contribute to HIF-α activation during infection in vitro. We tested LPS and IFNγ alone and in combination given their known roles in stimulating pro-inflammatory M1 macrophages. We also predict macrophages are exposed to these molecules during L. major infection. LPS may activate skin macrophages during CL given the presence of the microbiome and the compromised integrity of the skin [39]. IFNγ is also elevated at the site of infection due to the host Th1 immune response [3]. While pro-inflammatory stimuli have been hypothesized to induce HIF-α activation, we did not find these factors to be robust drivers of macrophage VEGF-A production. As a result, we speculate hypoxia or other soluble mediators in the inflamed skin drive HIF-α activation and VEGF-A production by macrophages during L. major infection. VEGF-A can also be induced by a variety of growth factors and cytokines including FGF2, PDGF, TGF-β, IL-1β, IL-6, IL-8/CXCL8, TNFα, and some of these soluble mediators act synergistically with hypoxia [40-47]. Importantly, many of these factors are present in leishmanial lesions and may induce VEGF-A during L. major infection. As a result, the identification of the factors responsible for VEGF-A production by macrophages is the focus of ongoing investigation in the lab given the critical role of VEGF-A in lesion resolution during CL.

4. Materials and Methods

4.1 Mice

Female and male animals used in these experiments were either purchased from the National Cancer Institute or bred in a vivarium on campus. CD45.2− C57BL/6 and CD45.1− C57BL/6 mice were purchased from the National Cancer Institute. Mice with a myeloid-specific ARNT conditional knockout were bred by crossing a strain expressing the LysMCre allele with a strain with a floxed ARNT conditional allele [48, 49]. The LysMCreARNTf/+ and LysMCreARNTf/+ control mice were a gift from M. Celeste Simon (University of Pennsylvania, Philadelphia, PA). LysMCreARNTf/+ mice were infected alongside LysMCreARNTf/+ controls for experiments. All mice were housed in vivariums under pathogen-free conditions at the University of Arkansas for Medical Sciences (UAMS). All infections were done on mice between 6 and 8 weeks of age. All procedures performed were approved by UAMS IACUC and followed institutional guidelines.

4.2 Parasites

Leishmania major and DsRed L. major Friedlin strain parasites were grown in vitro in Schneider’s insect media (Gibco), supplemented with 20% heat-inactivated fetal bovine serum (FBS, Invitrogen), 100 U/ml penicillin and 100 U/ml streptomycin, and 2 mM L-glutamine (MilliporeSigma). Metacyclic promastigotes used for infections were isolated from 4-5 day old cultures using Ficol gradient separation (MilliporeSigma) [50].

4.3 In vivo infections

Infections were performed by injecting 2x10⁶ parasites in 10 μL of PBS intradermally into the right ear of mice. Mice were anesthetized with ketamine and xylazine prior to infection. Lesion development was monitored weekly by measuring ear thickness, lesion diameter, and pathology to calculate lesion volume. Ears were digested for 90 minutes at 37°C with 0.25 mg/mL liberase TL (Roche) with 10 μg/mL DNase I (Sigma) in RPMI 1640 media (Gibco).

4.4 Isolation of CD11b+ cells and adoptive transfer

Spleens, femurs, tibias, and fibulas were taken from C57BL/6 mice to obtain bone marrow cells. Single cell suspensions were enriched using a CD11b MicroBead isolation kit (Miltenyi Biotec) to obtain myeloid cells. For positive selection, the autoMACS Pro Separator (Miltenyi) was used. CD11b+ cells from the bone marrow (purity >97%) were resuspended in PBS and 4x10⁶ cells were injected into the retroorbital sinus of the recipient C57BL/6 mouse.
4.5 Flow cytometry

Surface staining were performed on dermal cells from ears after enzymatic digestion and processing. To exclude dead cells, cell suspensions were first incubated with LIVE/DEAD Fixable Aqua Dead cell dye (Invitrogen) for 10 min at room temperature. Fc receptor blocking was performed with 2.4G2 anti-mouse CD16/32 antibody (BioXCell) and 0.2% normal rat IgG (BioXCell) for 10 min at 4°C. For surface staining, cells were stained for 30 min at 4°C using antibodies: anti-CD45 AF 700 (clone 30-F11), anti-CD45.1 eFlour450 (clone A20), anti-CD45.2 AF 700 (clone 104), anti-Ly6C PerCPeCy5.5 (clone HK1.4) (all from eBiosciences); anti-CD11b BV605 (clone M1/70), anti-Ly6G APC (clone 1A8), anti-CD64 PECy7 (clone X54-5/7.1) (all from Biolegend) in the presence of Brilliant Violet Buffer (BD Biosciences) or Super Bright staining buffer (eBiosciences). Cell events were acquired using the LSRII Fortessa flow cytometer (BD Biosciences) and analyzed using FlowJo software Version 10 (Tree Star).

4.6 Pimonidazole

Each mouse was injected with 1.5 mg pimonidazole (Hypoxprobe kit) in 200 μL PBS intraperitoneally (i.p.) 90 min before sacrifice to measure hypoxia at the cellular level. Cells were fixed and permeabilized using the Foxp3 intracellular staining kit (eBiosciences) after cell-surface staining. Intracellular staining was carried out with α-pimonidazole-FITC (1:100) according to the manufacturer’s instructions.

4.7 mRNA extraction and real-time PCR

mRNA was extracted using the EZNA Total RNA Kit I (Omega BioTek) and reverse transcribed using high-capacity cDNA Reverse Transcription (Applied Biosystems). Quantitative real-time PCR (qPCR) was performed on a QuantStudio 6 Flex Real-Time PCR system (Life Technologies) with SYBR Green PCR Master Mix. qPCR results were normalized using the trimmed mean of M (mode:intersection nonempty) [51] with a comparative threshold cycling method (2^ΔΔCT) to quantify. The following mouse primers were selected from Harvard’s Primer Bank (https://pga.mgh.harvard.edu/primarybank/): Vegfa (Forward 5'-ATCTTCAAGCCGCTCTGTGT-3' and Reverse 5'-GATTCCATCTGCTGTCTGCT-3'), Nos2 (Forward 5'-ATGGAGACTGTCCCAGCAAT-3' and Reverse 5'-GGCGCAGAACCTGTAGGGTA-3'), Epo (Forward 5'-CATCTGCGACAGTCGAGTTCTG-3' and Reverse 5'-CCACAACCATGCTGTATTTTCT-3'), Pgk1 (Forward 5'-ATGTGCCTTAACAAACGCTG-3' and Reverse 5'-GCTCCATTGTCTCAAGCAGAT-3'), Arg1 (Forward 5'-CTCCAAGGGAAGTCCATTAGAG-3' and Reverse 5'-AGGAGGTCATTAGGGACATC-3'), and Rps11 (Forward 5'-CGTGAGAAGATTGAGAATGC-3' and Reverse 5'-GCACATTGAATCGCAGTC-3').

4.8 RNA Sequencing (RNASeq): data analysis

Following demultiplexing, RNA reads were surveyed for sequencing quality using FastQC (version 1.7.1) (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and MultiQC (version 1.6) [51]. Next, the raw reads were processed according to Lexogen’s QuantSeq data analysis pipeline with slight modification. Residual 3’ adapters, polyA read through sequences, and low quality (Q < 20) bases were trimmed using BBTools BBDuk (version 38.52) (https://sourceforge.net/projects/bbmap/). Additionally, first 12 bases were also removed per the manufacturer’s suggestion. Cleaned reads (> 20 bp) were mapped to the mouse reference genome (GRCm38/mm10/ensemble release-84.38/ GCA_000001635.6) using STAR (version 2.6.1a), permitting up to 2 mismatches depending on the alignment length (e.g. 0 mismatches for 20-29 bp; 1 mismatch for 30-50 bp; 2 mismatches for 50-60+ bp) [52]. Reads mapping to > 20 locations were discarded. Gene level counts were quantified using HTSeq (htseq-counts) (version 0.9.1 (mode:intersection nonempty)) [53]. Genes with unique Entrez IDs and at least ~2 counts-per-million (CPM) in 4 or more samples were chosen for statistical testing. Next, scaling normalization using the trimmed mean of M-values (TMM) method was used to correct for compositional differences between sample libraries [54]. Differential expression was assessed using limma voomWithQualityWeights function with empirical bayes smoothing [55]. Genes with Benjamini & Hochberg adjusted p-values ≤ 0.05 and fold-changes > 2 were considered significant [56]. Gene set enrichment analysis (GSEA) using Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways was carried out using EGSEA with default parameters [57].

4.9 Generation of bone marrow-derived macrophages
Femurs were removed from mice and soaked in 70% ethanol for 2 minutes then flushed with 10 mL cDMEM. The cells were resuspended, counted, and plated 5 x 10^6/mL in a 100 mm petri dish in 10 mL of conditioned macrophage media (cDMEM with 25% of L929 cell supernatants) for 7 days. At day 3 of 7, an additional 10 mL of conditioned macrophage media is added to each petri dish. At day 7, the cells were washed with ice cold PBS and harvested by dislodging by pipetting and a cell scraper. The cells were then pooled and counted to plate into either 24 well plates (1x10^5 cells in 1 mL) or 48 well plates (5x10^6 cells in 500 µL).

4.10 In vitro infections with DMOG treatment

Bone marrow-derived macrophages (BMDMs) were plated as described above into 24 well plates for overnight. Macrophages were cultured with L. major parasites (MOI 5:1) and extracellular parasites were washed away after 2 hours. Following the washes, cells were cultured in triplicate with 100 ng/mL LPS (Sigma), 10 ng/mL IFNγ (Peprotech), with or without 0.1, 0.2, or 0.3 mM DMOG (Sigma) for 2, 24, or 72 hours. Pretreated macrophages were incubated for overnight with DMOG prior to infection.

4.11 Microscopy for parasite quantification in vitro

After infection with DsRed L. major parasites, BMDMs were stained by removing conditioned media from each well and washing with PBS before fixation by methanol at -20 °C for 3 minutes. After fixation, the methanol was removed and the wells washed twice with PBS before staining with DAPI in PBS (Invitrogen) for 5 minutes in the dark at room temperature. After staining, the DAPI solution was removed and the wells again washed twice with PBS. After washing, 500 µL of PBS was added to each well to keep the cells hydrated. The plate then was wrapped in aluminum foil and stored in a 4 °C refrigerator. Fluorescence imaging was performed on a Keyence BZ-X810 using the 20X Plan-Fluor NA 0.45 objective in high resolution mode. Five images were taken at random locations in each well in both the DAPI and DsRed/TxRed channels. Cell counts were recorded using the BZ Image Analyzer (Keyence). Parasite counts were normalized to macrophage number by dividing the average number of parasites by the average number of macrophages for an individual well.

4.12 VEGF-A production

Cell free supernatants were collected at 24 hours following parasite infection to measure VEGF-A production using the Mouse VEGF-A ELISA kit according to manufacturer’s instructions (R and D Systems).

4.13 Statistics

All data were analyzed using GraphPad Prism 8 or 9, and p ≤ 0.05 was considered statistically significant. Statistical significance was calculated using a 2-tailed Student's unpaired or paired t-test for a single comparison between groups. A Grubbs' test was used to identify and mathematically remove outlier data points. For multiple-comparison analysis, statistical significance was determined by a one-way analysis of variance (ANOVA) followed by the post hoc Tukey’s test with no designated control group, or a Mann-Whitney test with a designated control group.

Funding: This research was funded by the Center for Microbial Pathogenesis and Host Inflammatory Responses (funded by National Institutes of Health National Institute of General Medical Sciences Centers of Biomedical Research Excellence Grant P20 GM103625) and the Oak Ridge Associated Universities (ORAU) 2019 Ralph E. Powe Junior Faculty Enhancement Award to Dr. Weinkopff. This work was also supported by the UAMS Translational Research Institute in collaboration with the UAMS Division for Diversity, Equity and Inclusion (DDEI) Mini Grants for Under-Represented Faculty Researchers to Dr. Weinkopff as part of the NIH National Center for Advancing Translational Sciences (NCATS), UL1 TR003107. Additionally, the work is supported by the Center for Translational Pediatric Research funded under the NIH grant P20GM121293. The funders had no role in study design, data analysis, decision to publish or preparation of the manuscript.
Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Institutional Review Board of the University of Arkansas for Medical Sciences (animal protocol use 4013 approved on June 10, 2020).

Data Availability Statement: Data is contained within the article and the data from our bulk RNA-Seq analysis were deposited in Gene Expression Omnibus (GEO accession number – GSE185253).

Acknowledgments: We thank Andrea Harris from flow cytometry core facility, and veterinary staff from the Division of Laboratory Animal Medicine (DLAM) at UAMS for their excellent technical assistance.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

