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Abstract: FPGA-based data acquisition and processing systems play an important role in modern1

high-speed, multichannel measurement systems, especially in High-Energy and Plasma Physics.2

Such FPGA-based systems require an extended control and diagnostics part corresponding to3

the complexity of the controlled system. Managing the complex structure of registers while4

keeping the tight coupling between hardware and software is a tedious and potentially error-5

prone process. Various existing solutions aimed at helping that task do not perfectly match all6

specific requirements of that application area. The paper presents a new solution based on the7

XML system description, facilitating the automated generation of the control system’s HDL code8

and software components and enabling easy integration with the control software. The emphasis is9

put on reusability, ease of maintenance in case of system modification, easy detection of mistakes,10

and the possibility of use in modern FPGAs. The presented system has been successfully used in11

data acquisition and preprocessing projects in High-Energy Physics experiments. It enables easy12

creation and modification of the control system definition and convenient access to the control13

and diagnostic blocks. The presented system is an open-source solution and may be adopted by14

the user for particular needs.15
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1. Introduction17

Modern measurement systems, especially those used in high-energy physics or18

plasma physics experiments, require complex data acquisition and concentration systems19

to collect data from multiple input channels efficiently. They often require high-speed20

data processing to reduce the volume of the received data stream, such as via selection21

of interesting events, aggregation, or compression [1–3]. Those systems typically use22

sensors connected via frontend electronics boards (FEBs) using specialized high-speed in-23

terfaces [4–6]. Additionally, perfect synchronization of data streams received in different24

channels is required [7]. The programmable devices - Field Programmable Gate Arrays25

(FPGA) are usually used to provide those functionalities [8–14]. Their big advantage26

is high flexibility, enabling significant changes to the communication protocols or data27

processing algorithms without modifying the underlying hardware.28

1.1. General properties of FPGA-implemented data acquisition and preprocessing systems29

Such complex systems must be implemented in a modular way where standard30

and well-tested basic blocks are used to implement more advanced functionalities. This31

pattern is repeated over the functional levels, resulting in a multilayer, hierarchical block32

structure.33

Reuse of standard blocks in various systems and for various purposes imposes their34

parameterization. The complexity of the design may change during development and35

debugging. For example, a simpler version with a limited number of input channels36
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may be used at the beginning of the development to help to detect, isolate and fix bugs.37

Therefore, the number and structure of higher-level blocks should also be parameterized.38

The data processed by such a measurement system may have a complex structure.39

The HDL language used for implementation should be capable of handling such data40

efficiently. They can be described with VHDL records [15] or with SystemVerilog struc-41

tures. However, VHDL seems to be better suited for the implementation of such complex42

and parameterized systems. Its strict type checking provides good mistakes and errors43

detection when the system is modified.44

To summarize, the data acquisition and preprocessing system is a complex, param-45

eterized, multilayer hierarchical design, significantly relying on advanced features of46

the VHDL language. The main functionalities, data collection and preprocessing, are47

usually implemented as a pipelined datapath, optimized for maximal throughput and48

minimal latency.49

Except for the datapath, such a system also requires an efficient control and diag-50

nostics layer. Its purpose is to configure the data processing part, control it, and receive51

information about its operation (for example, the warnings and errors, the performance52

metrics, etc.).53

The Control and Diagnostics (C&D) system is usually decoupled from the datapath1
54

and uses a separate control bus to access the registers.55

The read and write operations on the registers are performed by the software56

running on a CPU2. Therefore, an essential feature of the C&D-system is to provide57

convenient access from the software to selected control and diagnostics registers. The58

control and diagnostic operations usually use random access to the registers using read,59

write, and read-modify-write operations. Long block transfers are used relatively rarely.60

The typical structure of such an FPGA-implemented measurement system is shown61

in Figure 1.62
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Figure 1. The general block diagram of the data acquisition and preprocessing system imple-
mented in FPGA. The acquired data are concentrated and preprocessed in the pipelined datapath
before sending to the central data acquisition (DAQ) system. The Control and Diagnostics (C&D)
system uses an independent bus to access the registers located in different parts of the data
processing pipeline and general infrastructure blocks.

1.2. Requirements for the Control and Diagnostics (C&D) system63

The described properties of the data acquisition and preprocessing systems are the64

basis for formulating requirements for the C&D-system.65

1 Certain information about the system’s operation and processing parameters may also be added to the output data stream as metadata. That may
help in further data analysis.

2 The CPU may be implemented inside the FPGA (so-called soft CPU, like Xilinx Microblaze or Forth CPU - J1B) or an external device communicating
with FPGA via an appropriate interface.
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1.2.1. Selection of the control bus66

Currently, the most popular internal buses for FPGA designs are the Wishbone [16]67

and AXI4 [17]. The selection of the control bus depends on multiple criteria and must68

consider the specific requirements of the control and diagnostic system. Wishbone is a69

relatively old standard – version B3 [18] was released in 2002, and version B4 [19] in 2010.70

It is open and is very popular in the open-source world. There are many implementations71

of Wishbone masters and slaves [20–22]. It offers various modes of operation, where the72

“classic standard single read/write mode” enables very simple implementation of the73

slaves. The Wishbone bus is also compatible with the IPbus [23] solution, used to control74

FPGA-based boards via Ethernet.75

The AXI4 bus offers excellent block transfer performance but requires a more76

complex implementation of the bus slaves [24]. It also offers a simplified “AXI-Lite” [25]77

version suited explicitly for accessing the memory-mapped registers, but it is still more78

complex than Wishbone [26].79

Because the control and diagnostics system mainly utilizes random accesses to the80

registers, and the resource use by the C&D-system should be minimized, the Wishbone81

bus seems to be the right solution. That decision is also supported by the broad avail-82

ability of Wishbone-compatible slave blocks. The 32-bit width of data and address buses83

should be sufficient. The synthesis tools should optimize unused address lines if the84

C&D-system utilizes a smaller subset of the address space.85

1.2.2. Requirements for the registers86

Exchange of the control and diagnostic information is achieved by reading and87

writing registers. Two main types of registers may be defined: the control registers88

(available for reading and writing) and the status registers (that can be only read)3.89

If not specified otherwise, the registers have a width (number of bits) equal to the90

width of the data bus in the control system. However, if the control parameter or the91

status value to be transferred via the register has a smaller width, it is desirable that the92

width of the register could be limited accordingly.93

On the other hand, sometimes, it is useful to combine multiple low-width control94

parameters or status values into a single register. That gives a possibility to read or write95

them simultaneously and also reduces resource consumption. For that purpose, the96

C&D-system should support “bitfields” described by their width and position of their97

least significant bit in the register.98

1.2.3. Support for the hierarchical parameterized design99

As described in section 1.1, the data acquisition and processing system usually has100

a multilayer hierarchical structure. That affects the requirements for the control system.101

The hierarchy may be extended horizontally - there may be multiple identical functional102

blocks or multiple identical control or status registers. The C&D-system should support103

vectors of blocks and vectors of registers.104

The multilayer hierarchy assumes that the blocks may be nested, and the C&D-105

system system should also reflect it. In that case, the connections to the nested blocks106

must be easy to create and maintain.107

The parameterization functionality described in section 1.1 requires that the lengths108

of the mentioned vectors and the presence of the particular blocks and registers should109

be defined by modifiable parameters.110

3 In fact, it could be possible to implement also “write-only” registers. They should be backed by the “shadow registers” implemented in the software
and holding the last written value. The usage of “write-only” registers may further limit resource consumption. However, they do not allow
verification of the written value – a helpful feature in the debugging mode. Therefore, we decided not to implement them.
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1.3. Need for C&D-system generator111

The structure of the control and diagnostic system is tightly coupled with the112

structure of the measurement system. That means that usually, it must be created for the113

particular system and evolve together with it.114

An address in the address space of the control bus must be assigned to all registers.115

To simplify the addressing, the vectors of registers should occupy the contiguous areas116

in the address space.117

Similarly, each block must have assigned its private area in the bus address space,118

and the blocks belonging to a vector should occupy the consecutive areas.119

The proper alignment of blocks simplifies the address decoding and enables reusing120

resources between address decoders. In the optimal solution, the base address of each121

block should be aligned to the 2N boundary, where 2N is the smallest power of 2 that122

may fit all the addresses belonging to the block. Such alignment allows connecting the123

block’s internal address decoder only to address bits 0 to N − 1.124

The above means that the address map of the C&D-system may require modifica-125

tion after each change of the system’s structure or even after changing the parameters126

describing that structure. Therefore, an automated system for address assignment is127

necessary.128

The assigned addresses must also be somehow passed to the C&D software. So we129

need a C&D-system generator capable of assigning the addresses and generating the130

address map in a format legible for hardware synthesis tools and software environments.131

It is also desirable that the generator implements the registers and the control bus132

infrastructure, minimizing the effort needed to integrate the generated C&D-system133

with the rest of the data acquisition and processing system.134

2. Possible existing solutions for C&D-system generation135

Generation of C&D-systems for FPGA-implemented systems is not a new problem.136

It has been investigated for many years, and many such solutions have been developed.137

2.1. SystemRDL138

The most advanced system related to the generation of the C&D-systems is Sys-139

temRDL [27]. The SystemRDL is a language aimed at the detailed description of the140

registers. It tries to cover all possible aspects of register structure and behavior, includ-141

ing descriptions of an arbitrarily complex hierarchy of blocks and registers. The last142

version supports the parameterization of components and the structure of the system.143

SystemRDL is well designed and mature but also very complex. When generating a144

C&D-system, it is necessary to use a special tool to translate the SystemRDL description145

into the output format - the HDL implementation or software source supporting the146

communication. Unfortunately, currently, there are only a few such tools available. Ag-147

nisys offers a commercial solution [28], but it is closed-source and cannot be modified by148

the user. There is an open-source ordt from Juniper [29], but it does not generate VHDL149

code. It does not support the Wishbone bus either. There is a whole set of SystemRDL150

related tools developed in the GitLab repository [30]. Unfortunately, up to now, there is151

no tool capable of generating the VHDL output.152

2.2. Internal Interface and Component Internal Interface153

The Internal Interface (II) was developed by Krzysztof Pozniak and others for154

electronic systems created for CMS and DESY [31–33]. It has been later extended with155

object functionalities, forming the Component Internal Interface (CII) [34,35]. II initially156

was using a VME-like interface as a local FPGA bus. In the CII version, it has been157

supplemented with a possibility to control the Wishbone bus. The CII-implemented158

C&D-systems may work with software written in C++, Java, and Matlab. II/CII sup-159

ports complex data structures, like arrays of arbitrary lengths, vectors of bits of arbitrary160

lengths, etc. However, that flexibility has its price: a high complexity of the interface,161
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significant resource consumption, and lower maximum clock frequency. Another disad-162

vantage of the CII is the high complexity of the description of the registers and the fact163

that it is a closed solution that cannot be used in Open Source projects.164

2.3. Address generator for IPbus165

During the development of the Data Processing Boards (DPB) for the CBM experi-166

ment [36], our team faced the situation where manual allocation of register addresses for167

IPbus-connected C&D-system became inefficient due to increase of complexity of the168

developed firmware.169

The addr_gen [37,38] system was proposed to cure that problem. It accepts the170

description of the blocks and registers in Python language. It also supports the hierarchy171

of blocks and vectors of registers and blocks.172

The system’s output is two VHDL packages defining the constants with parameters173

and a complex VHDL record with addresses of particular blocks, subblocks, and registers.174

Integration with software is supported by generating a Python dictionary with the list of175

assigned addresses and, for C++, the IPbus XML Address Map [39]. Comparing to the176

requirements formulated in section 1.2, it has the following deficiencies:177

• It does not support bitfields.178

• It does not generate the HDL code for accessing the registers.179

The user’s responsibility is to prepare the HDL code providing the read and write180

access to the registers. The practical usage of addr_gen in a few versions of the DPB181

firmware has exposed additional deficiencies:182

• Assigning subsequent addresses to the registers and blocks without alignment183

resulted in suboptimal address decoders. That increased resource consumption and184

the critical path length, resulting in lowering of maximum bus clock frequency.185

• Handling all blocks and registers in a single component appeared to be extremely186

inconvenient. Routing of signals connected to those registers between the blocks187

and through the multiple hierarchy levels was messy and error-prone. Based on188

that, it was stated that registers should be located near to the place where the189

connected signals are used. Therefore the control bus infrastructure should be190

distributed between the blocks.191

2.4. Wishbone slave generator192

One of the simplest C&D-system generators is the wbgen2 application known193

as the Wishbone slave generator [40]. It supports the Wishbone local bus. The slave194

description is prepared in the C-like format and may contain registers, memory blocks,195

and FIFOs. The wbgen2 generates the slave HDL code in VHDL or Verilog and C headers196

for integration with the software. Additionally, it may generate the documentation for197

the created slave in LATEX, Texinfo, or HTML. Unfortunately, it does not support vectors198

of registers or blocks, neither nested blocks. The wbgen2 is a free and Open Source199

project. In fact, it was an inspiration for the development of the system described in this200

paper.201

2.5. Other Open Source tools202

Other Open Source tools include:203

• Opentitan register tool [41], which unfortunately does not generate VHDL;204

• hdlregs [42], which supports VHDL generation and even AXI4-Lite converter, but205

does not support a hierarchy of blocks;206

• rggen [43], which has a limited support to hierarchical designs (only one level) and207

does not support Wishbone (only APB and AXI4-Lite buses);208

• rgen [44], written in old Python 2.7 and supporting only IP-XACT input format;209

supports Wishbone, but only the old B3 version;210
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• cheby [45], which supports VHDL output, Wishbone bus, and hierarchy but does211

not support parameterization of the description.212

2.6. Final decision213

The review of existing solutions leads to the statement that none of them may be214

used directly to implement the system fulfilling the formulated requirements. Addition-215

ally, the introductory review of the code has shown that adding the needed functionality216

may be difficult.217

Therefore, the development of the new one was started4.218

3. Development of the C&D-system generator219

The main task of the proposed C&D-system is the allocation of addresses for220

registers connected to the Wishbone bus, and the generation of appropriate HDL and221

software sources. Therefore the system was named “Address Generator for Wishbone”,222

in short AGWB. The version of the system from June 2019 is described in [46]. Since this223

time, the system has been significantly improved based on experiences from its use.224

3.1. The C&D-system hardware structure225

The general block structure of the C&D-system based on the formulated require-226

ments is shown in Figure 2.227
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Figure 2. The simplified block diagram of the AGWB-based C&D-system in the FPGA. The “WBC”
blocks are Wishbone crossbars.

The core part is the Wishbone crossbar5. The crossbar may be controlled by a single228

or multiple masters (see section 3.2.1). The crossbar provides multiple child node buses –229

one for each connected slave. Each child node bus handles a certain exclusive segment230

of the overall address space. Allocation of those segments is handled by the address231

allocation algorithm, described in section 3.3. The organization of the child node buses232

is shown in Figure 3. The implementation heavily relies on the VHDL records. Each233

Wishbone bus consists of two records – the first one for signals transmitted from master234

to slave and the second one for signals transmitted from slave to master. Another VHDL235

type is created to describe a vector of Wishbone buses.236

4 Please note that the development of AGWB was started in 2018, while the above review was done now. In fact some of the listed tools were much
less mature in 2018.

5 The xwb_crossbar component from the General cores [22] library is used as the crossbar in each block.
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Figure 3. Allocation of Wishbone buses for registers and child nodes (subblocks).

A special case is the Wishbone bus controlling the registers. It is handled by an237

automatically generated process supporting reading and writing registers. The registers238

are always located at the beginning of the address segment occupied by the block6. .239

The first two registers are always present and have a special meaning. They allow the240

software to verify if it communicates with the right C&D-system in the correct version.241

The first register is always the block ID 7. The second register is always the block version242

(VER) 8. Other registers are placed after the VER register9.243

The described functionalities are implemented in the automatically generated244

“AGWB local node” (ALN) shown in Figure 4.245

6 It is possible to reserve certain area below registers, using the reserved attribute described in section 3.2.2
7 The value of block ID is calculated as a CRC32 value of its name.
8 The value of VER is calculated as a CRC32 value of the combined XML configuration file used to generate the C&D-system. In designs using

variants, the VER value for each block may be different (see section 3.6).
9 It is possible to place other special registers at addresses 4–7, using the testdev_ena attribute described in section 3.2.2.
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Figure 4. The structure of the “AGWB local node” (ALN) automatically generated by AGWB.
ALN should be placed by the user in the design, as described in section 3.4.

The ALN should be instantiated by the user in the design. Except for the VHDL code246

of ALN, AGWB also generates necessary VHDL packages supporting that instantiation.247

They are described more thoroughly in section 3.4.1.248

The structure of the generated C&D-system is defined by the user in the system249

definition, described in the next section.250

3.2. AGWB format for C&D-system definition251

The C&D-system in AGWB is described with XML. The XML is often considered252

obsolete and bloated compared to newer alternatives like JSON or YAML. However, it253

distinguishes between attributes and elements. That significantly facilitates description254

of the C&D-systems. The XML format is defined with the RelaxNG schema, which255

allows automated detection of a significant part of errors10.256

The AGWB XML format uses a non-standard extension - the include element257

described in section 3.2.1 enabling splitting the whole system description into parts that258

may be reused in different projects. Only the “combined” file obtained by inserting the259

included files may be checked for compliance with the schema.260

The AGWB XML format has been designed to make it legible for a human and easy261

to edit. An example of the system description is shown in Listing 1. The definition of a262

nested block that may be included in the system definition is shown in Listing 2.263

10 The schema is also converted to RNC and DTD formats. Due to the bug in the library used to check compliance with RelaxNG and RNC schema, the
DTD version is used for the checking.
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<sysdef top="MAIN" masters="2" >

<constant name="NEXTERNS" val="4" />
<constant name="LINK_NR_BITS" val="5" />
<constant name="LINK_NR" val="(1 &lt;&lt; LINK_NR_BITS)-1" />

<include path="block1.xml" />

<block name="MAIN" reserved="1024" >
<blackbox name="I2C" type="I2C_CTRL" addrbits="3" reps="8;4" />
<subblock name="LINKS" type="SYS1" reps="LINK_NR + 1" />
<blackbox name="BRAM" type="WB_BRAM" addrbits="12" desc="Block RAM" />
<creg name="CTRL" desc="Control register in the main block" >

<field name="LINK_SELECT" width="LINK_NR_BITS" default="7" />
<field name="COUNT_MODE" width="4" default="2" />
<field name="COUNT_RESET" width="1" trigger="1" />
<field name="PLL_RESET" width="1" trigger="1" />

</creg>
<creg name="TEST_OUT" width="17" reps="3" default="23" stb="1" />
<sreg name="TEST_IN" width="16" reps="4" ack="1" />

</block>

</sysdef>

Listing 1. Example definition of the C&D-system. The example exposes various features of
AGWB, which are explained in the next sections. Please note how constants are defined and used
in expressions and attributes. The definition of LINK_NR constant exposes the limitations of
XML – the expression “1<<LINK_NR_BITS” had to be coded as “1 &lt;&lt; LINK_NR_BITS”. The
number of repetitions of block "I2C" is defined as a colon-separated list. That is associated with
variants functionality described in section 3.6.

<block name="SYS1" aggr_outs="1" >
<creg name="CTRL" desc="Control register" stb="1" >

<field name="START" width="1" trigger="1" desc="Start the operation" />
<field name="SPEED" width="4" default="-1" type="signed"

desc="Transmission speed" />
<field name="STOP" width="1" trigger="1" desc="Stop the operation" />

</creg>
<sreg name="STATUS" desc="Status register" ack="1" >

<field name="RX_AV" width="1" desc="Received data available" />
<field name="TX_RDY" width="1" desc="May accept data to transmit" />
<field name="TX_DONE" width="1" desc="All data transmitted" />
<field name="TX_ERROR" width="2" desc="TX error code" />
<field name="RX_ERROR" width="4" desc="RX error code" />

</sreg>
<sreg name="RXD" desc="Received data register" ack="1" />
<creg name="TXD" desc="Transmit data registers" stb="1" default="0x0" />

</block>

Listing 2. Example definition of the nested block. Please note that this is not a valid AGWB
XML description. It must be included in the system definition to form the valid AGWB XML
description.

The possible XML elements that may be used in the AGWB system definition are264

explained in the following sections.265
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3.2.1. sysdef element266

The main element in the AGWB XML file is sysdef. It may contain three types of267

child elements:268

• block that corresponds to the block in 1.2,269

• constant that defines a constant parameter, which may be used in further definitions.270

The constants are exported to the generated system descriptions. The constant271

element must have two attributes. The name attribute defines the unique name of272

the constant. The val attribute defines the value of the constant. It may be defined273

as a number or as a Python expression using numbers and previously defined274

constants. The constant may also have the desc attribute containing the description275

stored in the generated documentation.276

• include that defines another XML file (its path should be specified in the path277

attribute of the element), which content should be inserted instead of the include278

element. The include functionality is essential for the reuse of definitions in dif-279

ferent projects. The user may prepare a library of parameterized definitions of280

blocks and include them in descriptions of various projects. The user may also put281

the parameters, defining the system’s structure into a separate file. That enables282

the separation of user-modifiable constants from the rest of the description, which283

should not be changed by the user.284

The sysdef element must have a top attribute that should be set to the name of the block285

being the top of the design. In many applications, the C&D-system may have a few bus286

masters. For example the Wishbone bus may be controlled via an IPbus interface or287

via a JTAG-based controller, which is slower but enables debugging when the network288

connection is not available yet. Another master may be a soft CPU included in the289

design, which should perform the system’s initial configuration, making other interfaces290

operable. If the system has more than one master, the sysdef should have an optional291

masters attribute set to the number of masters.292

3.2.2. block element293

The block element defines a block of the C&D-system system. Usually, the block294

of a C&D-system is located in a block of the data processing system. The block may295

contain instances of other blocks – they are defined by subblock child elements. The296

block may also contain control and/or status registers – they are defined by creg and297

sreg child elements. It is possible to include into the block a slave that is not generated298

by AGWB - it is defined by the blackbox child node. Each block element must have a299

name attribute that defines a unique name of the block. It may also have a few optional300

attributes:301

• aggr_ins and aggr_outs, if present and set to a non-zero value, define that the302

signals associated with status and control registers, respectively, are not exposed303

individually at a port of the generated block. Instead they are encapsulated in a304

VHDL record. That simplifies the routing of those signals if they should be used in305

another part of the design. In most cases, that feature should not be necessary for306

correctly designed systems.307

• reserved attribute defines how many words should be reserved at the beginning of308

the address space assigned for the block. Such reserved areas will be excluded from309

the address allocation scheme used by AGWB. Usually, the reservation should be310

made only in the top block.311

• testdev_ena attribute if present, and set to a non-zero value, switches on the gener-312

ation of a simple test device at the beginning of the address space assigned to the313

block. Each block always has two status registers - ID (block identifier at offset 0)314

and VER (block version at offset 1) placed right after the reserved area (or at the315

beginning of the block address space when no area is reserved). The test device316

consists of four additional registers:317
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– test_rw register at offset 4, which may be written and read (it should return318

the last written value).319

– test_wo register at offset 5, which may be only written, an attempt to read320

generates the bus error.321

– test_ro register at offset 6, which may be only read (it should return the last322

value written to test_wo). An attempt to write to that register results in a bus323

error.324

– test_tout register at offset 7. Any access to that register results in a bus timeout.325

The test device provides means to test the correct operation of the C&D bus reliably.326

Usually, it should be instantiated only in the top block. However, if the C&D-system327

contains parts operating with different clocks and connected via clock-domain-328

crossing (CDC) blocks, it may be reasonable to istantiate them in one block in each329

of those parts.330

• desc attribute should be set to the textual description of the block. The value of that331

element is written to the generated documentation of the C&D-system.332

• ignore attribute says that this particular block, together with its contents, should be333

ignored when generating the address map for the particular backend. Currently,334

that functionality is used only for the Forth backend. The J1B soft CPU [47,48] using335

the Forth backend has limited memory, and a huge address map may overflow it.336

This functionality enables excluding the blocks not used during the initialization337

from the address map generated for Forth CPU.338

3.2.3. The subblock element339

That element may appear inside of the block definition. It describes the instance340

of another block. The name of the instance is defined by the obligatory name attribute.341

Another obligatory type attribute must contain the name of the instantiated block. The342

optional desc and ignore attributes have the same function as in the block element. The343

reps attribute, if present, enforces the implementation of the vector of instances. Even if344

the value of the attribute is equal to one, a one-element vector is generated. If the value345

of the attribute is zero, the vector of blocks will not be instantiated. The used attribute346

enables conditional instantiation of the single instance of the subblock. If the value of347

the attribute is zero, the instance is not created. Otherwise, it is.348

3.2.4. The blackbox element349

As stated in section 3.2.3, that element defines the instance of the block that is not350

generated by AGWB. It reserves the area in the address space defined by the value of351

the addrbits attribute. The size of that area is 2addrbits words. The area is also properly352

aligned. The optional xmlpath attribute defines the name of the internal address map of353

the blackbox, defined by the user. If this attribute is not set, the name of the address map354

is created based on the type attribute, as agwb_TYPE_address.xml. Other attributes355

have the same meaning as in the subblock element.356

3.2.5. The elements for registers description357

AGWB uses two XML elements to describe the registers – creg for control registers358

and sreg for status registers. Because they are similar, they may be described together.359

The register may be split into bitfields. In that case, it contains field child elements360

(see section 3.2.7).361

The register definition must contain the name attribute which defines its name.362

The attributes: ignore, desc, reps, and used have the same meaning in registers, as in363

previously described elements. The attribute type sets the type of the register. It can364

have value "std_logic_vector" (default), "signed" or "unsigned". For each register also the365

type of the associated signal is created. By default, it has the form t_REGISTERNAME.366

That solution, however, may sometimes lead to namespace collisions. Therefore, the user367

may enforce another name of the generated type using the stype attribute. The width368
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attribute allows the user to limit the width of the register. The mode attribute is specific369

to the IPbus backend, and its value is transparently passed to the generated XML IPbus370

address map.371

The status registers may have the optional ack attribute. If it is set to a non-zero372

value, an additional acknowledge signal will be generated. Whenever the register is read,373

it will be asserted for one bus clock period.374

Similarly, the control registers may have the optional stb attribute. If it is set to a375

non-zero value, an additional strobe signal will be generated. Whenever the register is376

written, it will be asserted for one bus clock period.377

Those two signals are especially useful if the associated registers are connected to a378

FIFO block. The additional signals may be used as read and write strobes.379

The last attribute specific to control registers is the default attribute. It defines the380

register’s default value, which is set after the FPGA is reprogrammed or after the reset381

signal is asserted.382

3.2.6. Handling of registers with aggregation of inputs or outputs383

As mentioned in section 3.2.2, combining the signals associated with control and/or384

status registers into a single record is possible.385

If the aggr_ins attribute is set to the non-zero value, a single input regs_in port386

of type t_BLOCKNAME_in_regs is generated. The type t_BLOCKNAME_in_regs is387

generated as a record containing the elements with the same names as the status registers388

and the same types as those registers. If any status registers have the ack attribute active,389

there is also an output port ack_regs_o generated of type t_BLOCKNAME_ack_regs.390

The type t_BLOCKNAME_ack_regs contains elements with the same names as the391

associated registers. The std_logic elements are created for single registers, and for392

vectors of registers, the std_logic_vector elements are created.393

If the aggr_outs attribute is set to the non-zero value, the regs_out port of type394

t_BLOCKNAME_out_regs is generated. The type t_BLOCKNAME_out_regs is gener-395

ated as a record containing the elements with the same names as the control registers396

and the same types as those registers. For control registers with non-zero stb attribute,397

there are additional REGISTERNAME_stb elements created in the record. Their type is398

std_logic for single registers and std_logic_vector for vectors of registers.399

3.2.7. The field element400

The field elements define bitfields inside of registers. Their names are defined with401

the obligatory name attributes. The second obligatory attribute is width describing the402

number of bits in the bitfield. The sum of widths of all fields in the register must not403

exceed 32. The field element may also have the optional default (only for bitfield in a404

control register), desc, ignore, and type attributes with the meaning described earlier.405

The bitfield defined in the control register may have a trigger attribute. If it is406

present and set to the non-zero value, all bits in that bitfield, when written with ’1’,407

remain asserted only for a single period of the bus clock. They are always read as zeroes.408

Such bitfields are dedicated to triggering actions in the hardware.409

If the register is split into bitfields, its width is automatically set to the sum of its410

fields’ widths.411

3.3. Address allocation algorithms412

The address allocation in AGWB is designed to support the optimization of address413

decoders. Therefore each block is placed in the address space so that the certain number414

of lower address bits (let us denote them as M) is used for internal addressing (selection415

of registers or subblocks), while the rest K = 32 − M are used to select that block (so416

they are decoded by the Wishbone crossbar to which it is connected). The second goal is417

to minimize the occupied address space by avoiding unnecessary fragmentation.418

The address allocation works in the following way:419
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• For each block, the number of used addresses L is calculated as the sum of sizes of420

its registers and subblocks. The number of addresses is rounded up to the nearest421

power of two: P = 2N , where N is the smallest integer for which 2N ≥ L. The P422

value is the size of the block. That step may be performed recurrently, as the size of423

subblocks is needed to calculate the size of the parent block.424

• In each block, the registers are located at the beginning of the address space11 (so425

ID and VER have well-defined locations). The subblocks are sorted according to426

their decreasing size and are placed starting from the end of the block’s address427

space.428

• The final address map is built starting from the top block located at address 0 and429

traversing its subblocks.430

Such an algorithm ensures that each block’s base address is properly aligned and431

warrants minimal address space fragmentation.432

3.4. Integration of AGWB-generated part with user logic433

The C&D-system components generated by the AGWB must be properly embedded434

in the user logic. The user must implement the appropriate connection of the master435

Wishbone buses to the masters and route the child node Wishbone buses to the nested436

blocks. The simplified diagram of the necessary connection is shown in Figure 5.437

Block with user's logic

AGWB
local node

(ALN) 

Simple logic blocks
connected to registers 

Complex subblocks
with own ALN 

ALN

ALN

WB Master (or ALN in the
parent block)

Figure 5. Block diagram of the single block, showing how the signals generated in the AGWB local
node (ALN) should be connected to the user’s logic consisting of simple logic blocks connected
to registers and complex subblocks with their own ALN. The structure of the ALN is shown in
Figure 4..

The AGWB has been designed in a way that simplifies the integration. The sig-438

nals associated with registers may be of type std_logic_vector, signed, or unsigned,439

as defined with the type attribute described in section 3.2.5. AGWB creates special440

types defined for individual registers (t_REGISTERNAME for individual registers and441

t_REGISTERNAME_array for vectors of registers), which may be used to define neces-442

sary signals. For registers with bitfields, the appropriate record types are created. The443

usage of generated types minimizes the risk of mistakes.444

Connections between the blocks are intended to be done with standard Wish-445

bone buses. The appropriate types t_wishbone_slave_in, t_wishbone_slave_out,446

t_wishbone_master_in, and t_wishbone_master_out are provided by the library Gen-447

eral cores [22].448

For vectors of blocks, arrays of the Wishbone buses are used. The449

related types t_wishbone_slave_in_array, t_wishbone_slave_out_array,450

11 If there is a reserved area at the beginning, defined with the reserved attribute (see section 3.2.2), it will be placed before the registers.
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t_wishbone_master_in_array, and t_wishbone_master_out_array are delivered451

by the same library.452

3.4.1. VHDL files generated by AGWB453

To support the integration of the generated C&D-system with the user-provided454

logic, AGWB generates for each block the following files:455

• the BLOCKNAME.vhd providing the AGWB local node (ALN) code,456

• the BLOCKNAME_pkg.vhd providing the BLOCKNAME_pkg package contain-457

ing the types and constants specific to that block,458

• for the top block only, the BLOCKNAME_const_pkg.vhd containing the constants459

defined in the system definition XML file.460

The block-specific constants belong to the respective packages. That enables avoid-461

ing name conflicts, which may, for example, occur when registers with the same name462

(and hence of the type with the same name) are used in multiple blocks.463

3.4.2. Use of C&D-system in designs using multiple clock domains464

Different data processing blocks may work with different clock frequencies in more465

complex data acquisition and processing systems. If the Wishbone bus working with466

the same clock is used across the whole design, reading and writing the registers driven467

by another clock requires proper synchronization. Doing it at the register level would468

be very resource-consuming. A better approach may be to create the Wishbone bus469

segments operating at different clock frequencies and connect them via an appropriate470

clock-domain-crossing (CDC) block. AGWB offers a dedicated CDC block optimized for471

use in the C&D-systems.472

However, if the blocks working with different clocks are scattered throughout the473

design, there are two approaches for splitting the control bus.474

The first approach preserves the logical organization of the control tree and uses475

CDC whenever the part of the block is operating with another clock. That approach is476

shown in Figure 6.477
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WB master 1 WB master 2 WB master 3 

CDC ALN

ALN

CDC ALN

ALN

ALN

CDC ALN

ALN

ALN

CDC

Top block of the design

Block with nested
subblocks 

Block with nested
subblocks 

Block with nested
subblocks 

Registers

ALN

ALN

ALN

ALN

ALN

ALN

ALN ALN

CDC

Clock domains:

CLK1

CLK2

CLK3

Figure 6. Block diagram of a system with multiple clock domains. One of the WB masters works
with another clock domain. Each of the top block subblocks has a part that works with another
clock. In this approach, each block is controlled via a single Wishbone bus. For the part working
with another clock, the internal CDC is implemented..

The advantage is that each block may use a coherent area in the address space. The478

cost is that the number of CDC blocks is high. This approach may lead to connecting479

a few CDC in series in certain topologies, which results in a significant slow-down of480

register accesses (each synchronization stage consumes a certain number of clock cycles481

during the transaction).482

Another approach is shown in Figure 7.483
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Figure 7. Block diagram of a system with multiple clock domains. One of the WB masters works
with another clock domain. Each of the top block subblocks has a part that works with another
clock. In this approach, for two clocks used in the Wishbone slaves, the separate buses are created
at the top level. This split of control bus needs only one additional CDC, but two buses must be
routed through the design, and the address space of each subblock is split into two areas..

In this approach, the buses working with different clocks are independently routed484

through the design. That keeps the minimal possible number of CDC blocks but increases485

resource consumption for routing the two independent buses. Additionally, the block486

may occupy two or more separate areas in the control address space, complicating the487

software’s writing.488

The selection of the right approach is the responsibility of the user. Sometimes the489

best solution could be using the first approach in certain parts of the design, and the490

second in others.491

3.5. Integration of C&D-system with software492

The hardware part of the C&D-system connected to the user’s logic must be inte-493

grated with the software. That requires a few main points:494

• The software must be informed about the structure of the hierarchy, addresses and495

properties of the individual registers (obligatory);496

• There may be a hierarchy of objects created that reflects the hierarchy of blocks and497

registers in the software (optional)498
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The method to fulfill those requirements may depend on the language in which the499

software should be written.500

Currently, there are a few languages supported, which are handled by the appropri-501

ate backend routines generating the necessary files.502

3.5.1. IPbus backend503

The AGWB development was started for the systems controlled via the IPbus504

interface [23]. Therefore the generation of the address map in the XML format suitable505

for IPbus [39] was an initial solution. The address tables generated by the IPbus backend506

may be used by Python software and by C++ software. However, the IPbus address507

table format has a significant disadvantage – it does not support vectors of registers508

nor vectors of blocks. Each element of the vector must be specified individually in the509

address table.510

The advantage of the IPbus address table is that its modification does not require511

recompilation of the software. For example, the same compiled software may support512

hardware with different versions of the firmware. It is sufficient to load the appropriate513

version of the address table.514

3.5.2. AMAP XML backend515

The AMAP XML format has been created to avoid the limitations of the IPbus516

format while preserving its advantages. It has been extended with support for vectors of517

registers and vectors of blocks. Therefore, the nodes may have two additional attributes:518

• nelems - describing the number of elements in the vector,519

• elemoffs - the distance in the address space between the base addresses of the520

consecutive elements of the vector.521

Additionally, it introduces different XML elements for different types of nodes (the522

IPbus XML address table keeps everything in an element node). The block definition is523

stored in the element module. The subblock instances are stored in the elements block.524

The register definitions are stored in the elements register.525

The software using the AMAP XML, similarly to the IPbus software, should allow526

loading or reloading the definition of the system. Therefore the modification of the527

address map does not enforce recompilation of the software.528

The AMAP XML format supports variants (described in section 3.6).529

3.5.3. Native Python backend530

The native Python backend gives the best integration with the Python language.531

The hierarchy of blocks and registers is fully reflected in the hierarchy of classes. The532

structure of the C&D-system is reflected in the tree of objects created when the user533

imports the generated Python code and accesses the register.534

The native Python mode is very flexible. It may use different connections to the535

Wishbone bus. For elementary access, the user must only define a virtual interface with536

the following methods:537

• read(self, address) that returns a 32-bit value from the register at the particular538

address,539

• write(self, address, value) that writes a 32-bit value to the register at the540

particular address,541

AGWB may be used with network-based control interfaces, which offer high throughput,542

but high round-trip latency. It may significantly affect the performance of the read-543

modify-write (RMW) operations, often used in control algorithms. Performing the544

RMW operation in hardware and aggregating multiple bit-fields operations into a single545
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RMW operation may cure that problem12. The native Python backend may use those546

optimizations if the following methods are implemented:547

• writeb(self, address, value) – only schedules a write (unless the operation list548

is full or until dispatch is called),549

• readb(self, address) – returns the "Callable" object. Calling the returned object550

returns the value (possibly executing dispatch if necessary),551

• write_masked(self, address, mask, value) – executes the read-modify-write552

operation defined as follows X:= (X and ~mask) | (value and mask) .553

• writeb_masked(self, address, mask, value, more=False) – prepares the read-554

modify-write operation defined as follows X:= (X and ~mask) | (value and mask).555

When more is set to "True" it blocks the immediate scheduling of the operation.556

Then multiple writes to fields located in the same register are accumulated. The557

last call must have more set to False - it schedules the resulting read-modify-write558

command.559

• dispatch() – executes the accumulated list of operations (the list may be automati-560

cally executed if it grows to its maximal allowed length).561

The native Python mode is ideal for interactive debugging that involves the software562

running on a PC. The user may directly access the registers. The Python introspection563

and reflection functionalities are available in the interactive mode. The complex Python564

routines also may be executed.565

3.5.4. C header backend566

For software written in C, AGWB generates a few C headers. The con-567

stants defined for the whole system are placed into the agwb_TOPBLOCK_const.h568

file. The constants are generated as numerical values, but they are accompa-569

nied by a comment explaining how that value was calculated in Python (e.g.,:570

#define NSEL_MAX 31 // (1 << NSEL_BITS)-1).571

For each block, there is a header agwb_BLOCKNAME.h generated. This header572

contains the following content:573

• Constants with the block ID and VER values (see section 3.1).574

• Definition of the type associated with the structure consisting of575

– uint32_t fields (corresponding to registers),576

– similar structures describing the nested blocks,577

– uint32_t fillers (corresponding to unused parts of the address space).578

• Definitions of the inline functions for reading or writing the values of the bitfields.579

A necessity to use special functions instead of standard C bitfields results from the580

fact that the C standard does not define how the bitfields are placed in words. Therefore,581

another portable method was finally implemented after initial attempts to encode the582

bitfields using the standard C mechanism. The access functions are defined as follows:583

• inline uint32_t agwb_BLOCK_REG_FIELD_get(uint32_t * ptr)584

• void agwb_BLOCK_REG_FIELD_set(uint32_t * ptr, uint32_t val)585

The C backend is generally dedicated to writing the C drivers (especially the kernel586

drivers) for systems where the FPGA-implemented register is directly mapped into the587

CPU address space. Typical use cases are the SoC or MPSoC with FPGA part connected588

directly to the AXI bus of the CPU (in that case, an AXI to Wishbone bridge is needed) or589

system with FPGA connected via PCIe interface (in that case also an appropriate bridge590

PCIe-AXI-WB is needed).591

The advantage of the C backend is fast and direct access to the C&D-system registers.592

Of course, the user must take care of all particular hardware platform features, like593

operations reordering, access synchronization, etc.594

12 A good example may be an Ethernet-based IPbus [23] interface which implements both mentioned optimizations.
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The disadvantage of the C backend is that it requires recompilation of the software595

whenever the design is modified.596

3.5.5. Forth backend597

The Forth backend enables control of the AGWB-generated system from the J1B598

Forth CPU [47,49,50]. It is a simple synthesizable CPU able to execute the programs599

written in Forth [51] language.600

The Forth language supports very efficient interactive work, so it is a good tool601

for interactive debugging. It requires only a console connection13 to the FPGA with602

firmware containing J1B. During the interactive work, the programmer still may define603

procedures (called “words” in Forth) and create fairly complex algorithms. It is also604

possible to put the defined procedures into the FPGA configuration bitstream, enabling605

automated execution of a certain word after the system starts. Therefore, J1B may be a606

perfect tool for the initialization of the board.607

The J1B CPU is optimized for low resource consumption and, therefore, it has608

limited code memory. In the case of a complex AGWB-generated C&D-system, its609

memory may get filled just with the names of blocks and registers. For initialization,610

usually, only a small subset of the registers is needed. The unused blocks and registers611

may have the "ignore" attribute set to "forth" to be excluded from the generated Forth612

software (see section 3.2.2).613

The “Swapforth” version of Forth used by J1B [52] offers a possibility to clean and614

reload word definitions. When generating the Forth code for J1B, it is possible to define615

a special marker word before the AGWB definitions.616

marker del_agwb617

Executing that word cleans its definition and all further definitions, enabling the user to618

load another set of word definitions14.619

The Forth code generated for the system definition from Listings 1 and 2 is shown620

in Listing 3.621

13 Usually, Forth debugging uses the UART, but it is also possible to provide a console via JTAG, SPI, or another interface.
14 Of course, the del_agwb marker should be recreated before.
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: /%NEXTERNS $4 ; \ 4
: /%LINK_NR_BITS $5 ; \ 5
: /%LINK_NR $1f ; \ (1 << LINK_NR_BITS)-1
: // $0 ;
: //_ID // $400 + ;
: //_VER // $401 + ;
$89bd20d0 constant //_ID_VAL
$a81ec322 constant //_VER_VAL
: //_CTRL // $402 + ;
: //_CTRL.LINK_SELECT //_CTRL $1f $0 ;
: //_CTRL.COUNT_MODE //_CTRL $1e0 $5 ;
: //_CTRL.COUNT_RESET //_CTRL $200 $9 ;
: //_CTRL.PLL_RESET //_CTRL $400 $a ;
: //#TEST_OUT // + $403 + ;
: //#TEST_IN // + $406 + ;
: //#I2C // $ec0 + swap $8 * + ;
: //#LINKS // $f00 + swap $8 * + ;
: //#LINKS_ID //#LINKS $0 + ;
: //#LINKS_VER //#LINKS $1 + ;
$5bd964c2 constant //#LINKS_ID_VAL
$b0efef2 constant //#LINKS_VER_VAL
: //#LINKS_CTRL //#LINKS $2 + ;
: //#LINKS_CTRL.START //#LINKS_CTRL $1 $0 ;
: //#LINKS_CTRL.SPEED //#LINKS_CTRL $1e $1 ;
: //#LINKS_CTRL.STOP //#LINKS_CTRL $20 $5 ;
: //#LINKS_STATUS //#LINKS $3 + ;
: //#LINKS_STATUS.RX_AV //#LINKS_STATUS $1 $0 ;
: //#LINKS_STATUS.TX_RDY //#LINKS_STATUS $2 $1 ;
: //#LINKS_STATUS.TX_DONE //#LINKS_STATUS $4 $2 ;
: //#LINKS_STATUS.TX_ERROR //#LINKS_STATUS $18 $3 ;
: //#LINKS_STATUS.RX_ERROR //#LINKS_STATUS $1e0 $5 ;
: //#LINKS_RXD //#LINKS $4 + ;
: //#LINKS_TXD //#LINKS $5 + ;
: //_BRAM // $1000 + ;

Listing 3. The Forth code generated by AGWB. The names of words are based on the names of
block instances and registers. The initial “//” enables avoiding collisions with standard Swapforth
words. The names include block instance(s), register (separated with “_”), and optionally bitfield
(separated with “.”). The use of “#” instead of “_” as a separator informs that the object is a part of
a vector of blocks or registers. The element number (or numbers if it is a vector of registers in an
element of a blocks’ vector) must be put on the stack before executing such word.

The defined words push to the data stack the address of the accessed register, which622

can be later on read with wb or written with wb!. When accessing bitfields, the register623

address and the bitfield parameters are pushed to the stack. Afterward, the bitfield may624

be read with wb@ or written with bf!.625

3.6. Support for special types of designs626

The AGWB assumes that the instances of the block are identical. It was a conscious627

design decision that simplifies the allocation of addresses and generation of code. That is628

why no user parameters are passed to the subblock element. Therefore the size allocated629

for the block in the address space is always the same.630

However, there may be situations where not all resources provided by certain631

instances of the block are needed.632

An example may be the usage of multigigabit transceivers (MGT). They are often633

grouped in banks containing four transceivers, which share certain infrastructure. There-634

fore, it makes sense to create an MGT controller block in C&D-system that controls four635

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 October 2021                   doi:10.20944/preprints202110.0098.v1

https://doi.org/10.20944/preprints202110.0098.v1


Version October 6, 2021 submitted to Sensors 21 of 28

MGTs. Let us assume that our FPGA has four such banks, but we need to utilize two636

MGTs for other purposes and require another controller. So we need three instances of637

MGT controller that control four MGTs, and one instance which controls only two MGTs.638

AGWB handles such cases at the level of integration of the AGWB-generates C&D-639

system with the user logic. In theory, we could only not connect two MGTs to the last640

instance of the MGT controller. Unfortunately, that approach does not warrant that641

unused resources will be optimized out during the firmware synthesis15.642

3.6.1. precise customization643

To avoid it, AGWB offers a precise customization functionality, enabling the de-644

veloper to control which registers or subblocks and how many of them are synthesized.645

The generated ALN code uses special generics of form g_REGISTERNAME_size or646

g_SUBBLOCKNAME_size. Those generics may be set to 0 (excluding the related object647

from synthesis) or 1 (including it) for single blocks or registers. For vectors of blocks and648

registers, the generics may be set to 0 (excluding the whole vector from synthesis) or to649

any value between 1 and the maximum size (defined with the reps attribute described in650

section 3.2.3). That maximum size is defined as the constant c_REGISTERNAME_size651

or c_SUBBLOCKNAME_size in the generated VHDL package. The generics defined in652

the same package have default values set to those constants to keep using the AGWB653

simple when the user does not want to utilize precise customization. The user may omit654

the generic during instantiation, and it will be set to its maximum value.655

Using precise customization also affects the definitions of types for signals.656

Therefore, except for types described in section 3.4 like t_REGISTERNAME_array,657

there are also declared unconstrained types ut_REGISTERNAME_array.658

Of course, the above modifications affect the hardware part of the generated C&D-659

system. The user’s responsibility is to ensure that the C&D software is aware of the660

irregularities handled by precise customization.661

3.6.2. Design variants662

Usage of AGWB with big Xilinx FPGAs that use Stacked Silicon Interconnect (SSI)663

technology [53] and are divided into multiple Super Logic Regions (SLRs)[54] have664

exposed yet another need for handling irregularities in the AGWB-described C&D-665

system.666

The communication between SLRs requires special Super Long Lines (SLL) [55], a667

scarce resource. Therefore, if the FPGA has two SLRs16, where each is connected to the668

host via a separate PCIe interface, the optimal solution may be to implement two similar669

data acquisition and processing subsystems – one in each SLR.670

Certain blocks, however, have to be implemented only in one SLR and communicate671

with another SLR via SLLs. That introduces irregularities of another kind than those672

described in section 3.6.1. There, the irregularities appeared in the same C&D-system.673

Here, we need to put two different versions of the C&D-system into the same FPGA. The674

first possibility seemed to be the use of include functionality of AGWB. Two top-level675

XMLs could be created – one for each SLR. Each should include an SLR-dependent set676

of constants and then the standard description of the system. Of course the generated677

files should be put into other directories for each SLR. Unfortunately, such a solution is678

not possible due to VHDL limitations. To have two different versions of the generated679

VHDL code, one should place each of them into another VHDL library. The code680

integrating the user logic with the generated code should then select the appropriate681

library. Unfortunately, up to now, the VHDL does not support selecting the library by682

generics, passing the library name as a generic, or creating an alias to the library.683

15 The control registers are storage elements, so they remain synthesized even if they are not connected to any user logic. Similarly, the CDC blocks
must be protected against certain optimizations, resulting in keeping them even if they are not used.

16 That is the case of the xcku115-flvf1924 FPGA available in the CRI boards used in the CBM experiments.
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The finally implemented and working solution extends the precise customization684

described in section 3.6.1 and is called variants.685

The user may define a few variants of the design, and specify the values of certain686

attributes for each variant individually. That is achieved by defining a colon-separated687

list of possible values instead of a single value, like below:688

<blackbox name="I2C" type="I2C_CTRL" addrbits="3" reps="8;6;4" />689

The above description defines three variants of the design, where variant 0 has 8 I2C690

controllers, variant 1 – 6, and variant 2 – 4 controllers.691

Of course, all variant-dependent attributes must define the same number of variants.692

The following description will result in an error:693

<blackbox name="I2C" type="I2C_CTRL" addrbits="3" reps="8;6;4" />694

<blackbox name="SPI" type="SPI_CTRL" addrbits="3" used="1;0" />695

because the first line defines three variants, while the second only two.696

When using variants, the additional constants v_REGISTERNAME_size or697

v_SUBBLOCKNAME_size are defined in the generated package, which are the integer698

arrays, storing the size of the object in each variant.699

Currently, only two software backends support variants:700

• native Python (see section 3.5.3),701

• AMAP XML (see section 3.5.2).702

If the block is variant-dependent and the C&D-system is supposed to be used with703

the variants-aware software, the user should set the VER value for the variant-dependent704

value (calculated as a CRC32 of the generated AMAP XML description of that block).705

The following setting of generic provides that during the instantiation of the block:706

g_ver_id => v_BLOCKNAME_ver_id(variant_number),.707

708

The number of the variant should be propagated throughout the design as a dedi-709

cated integer generic.710

The example of the instantiation of the variant-dependent block is shown in Listing711

4.712
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[...]

-- LINKS are a vector of blocks so they use a vector of Wishbone buses
signal LINKS_wb_m_o : t_wishbone_master_out_array(v_LINKS_size(var_nr)-1 downto 0);
signal LINKS_wb_m_i : t_wishbone_master_in_array(v_LINKS_size(var_nr)-1 downto 0);
-- EXTHUGE is a single block present in only one variant
signal EXTHUGE_wb_m_o : t_wishbone_master_out;
signal EXTHUGE_wb_m_i : t_wishbone_master_in;
-- TEST_IN is a variant-dependent vector
signal TEST_IN_i : ut_TEST_IN_array(v_TEST_IN_size(var_nr)-1 downto 0)

:= (others => (others => '0' ));
-- The below signals are related to the variant-independent blocks and registers
signal EXTERN_wb_m_o : t_wishbone_master_out_array((C_NEXTERNS-1) downto 0);
signal EXTERN_wb_m_i : t_wishbone_master_in_array((C_NEXTERNS-1) downto 0);
signal CDC_wb_m_o : t_wishbone_master_out_array((C_NEXTERNS-1) downto 0);
signal CDC_wb_m_i : t_wishbone_master_in_array((C_NEXTERNS-1) downto 0);
signal CTRL_o : t_CTRL;
signal TEST_OUT_o : t_TEST_OUT_array := (others => (others => '0' ));

[...]

MAIN_1 : entity agwb.MAIN
generic map(

g_ver_id => v_MAIN_ver_id(var_nr),
g_LINKS_size => v_LINKS_size(var_nr),
g_EXTHUGE_size => v_EXTHUGE_size(var_nr),
g_registered => 2

)
port map (

slave_i => wb_s_in,
slave_o => wb_s_out,
LINKS_wb_m_o => LINKS_wb_m_o,
LINKS_wb_m_i => LINKS_wb_m_i,
EXTHUGE_wb_m_o => EXTHUGE_wb_m_o,
EXTHUGE_wb_m_i => EXTHUGE_wb_m_i,
EXTERN_wb_m_o => CDC_wb_m_o,
EXTERN_wb_m_i => CDC_wb_m_i,
CTRL_o => CTRL_o,
TEST_IN_i => TEST_IN_i,
TEST_OUT_o => TEST_OUT_o,
rst_n_i => rst_n_i,
clk_sys_i => clk_sys_i);

[...]

Listing 4. Example of instantiation of the variant-dependent ALN.

3.7. Usage of the AGWB C&D-system generator713

Processing of the AGWB C&D-system description and generating of the output files714

is performed by executing the addr_gen_wb.py script with the following command-line715

options:716

• -h, –help – show help message and exit,717

• –infile INFILE – Input file path,718

• –hdl HDL – destination directory for VHDL output files,719

• –ipbus IPBUS – destination directory for IPbus output files,720

• –amapxml AMAPXML – destination directory for AMAP XML output files,721

• –header HEADER – destination directory for C headers,722
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• –fs FS – destination directory for Forth output files,723

• –python PYTHON – destination directory for deprecated Python output files (not724

described in this article, cannot be used together with –pythondca),725

• –pythondca PYTHONDCA – destination directory for the native Python files (can-726

not be used together with –python),727

• –html HTML – destination directory for HTML documentation destination,728

• –fusesoc generate FuseSoc .core file in the current directory,729

• –fusesoc_vlnv FUSESOC_VLNV – FuseSoc VLNV tag,730

• –eprj – generate the VEXTPROJ .eprj file in the VHDL output directory.731

The AGWB system may be used with the FuseSoc [56] or VEXTPROJ [57] environ-732

ments for FPGA firmware synthesis.733

4. Results - practical applications734

Usage of AGWB requires connection to a compatible hardware interface, supporting735

control of the Wishbone bus from the software. Up to now, the following hardware736

interfaces have been prepared and tested.737

• The simplified cbus.py interface supporting only read and write commands. It738

enables testing of AGWB-generated C&D-system in simulation with GHDL.739

• Connection to the IPbus master, with minimal signals adjustments (as described in740

[58]). The IPbus may be used with AGWB in two ways:741

– using the standard C++ and Python libraries designed for IPbus (with the code742

generated by the IPbus backend in section 3.5.1),743

– using only the “client” object offered by the IPbus library and its access pro-744

cedure. This method works with the native Python backend (see section745

3.5.3).746

• The interface controlling Wishbone bus via JTAG interface [59].747

• The PCIe interface based on Xilinx “AXI Bridge for PCI ExpressGen3 Subsystem748

v3.0” [60] and simple AXI-Lite to Wishbone bridge. The solution is available in the749

project [61] (branch “agwb”).750

• The dedicated PCIe to Wishbone bridge developed for the CBM experiment [62].751

That interface allows operation in “native Python” mode and in “AMAP XML”752

mode.753

• A specialized GBT-SC [63] interface which, when used together with the GBT-754

FPGA [4] core, enables control of the Wishbone bus via the GBT [64] link.755

Up to now, the AGWB has been successfully used in a few experimental projects [50,61,756

65] and four serious projects used for CBM and BM@N experiments:757

• the DPB firmware [37],758

• the GBTX Emulator (GBTxEMU) [66,67],759

• the SMX tester [62],760

• the CRI firmware [62].761

Intensive use of AGWB in real projects, and feedback received from other developers762

and users contributed to introducing new functionalities and eliminating bugs. The763

DPB firmware [37] was the first practical project using AGWB. In the GBTX Emulator764

(GBTxEMU) [66], AGWB is used with three different masters - the IPbus, the J1B, and765

a project-specific GBT IC master. This project enabled testing and has proven the766

correctness of the multi-master functionality. It also required the use of the CDC block.767

The CRI firmware [62] project was the most demanding for AGWB up to now. The768

software uses extensive hardware detection and testing functions, which require reliable769

support for bus errors and timeouts. Its development and usage resulted in significant770

improvement and intensive testing of the CDC block and the introduction of the built-771

in test device. The CRI firmware is used in the big FPGAs consisting of two SLRs772

resulting in introducing the “variants” functionality described in section 3.6. The designs773

prepared for the CBM experiment share significant parts of the C&D-system. Therefore,774
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their development was a good test of the reusability of fragments of the AGWB system775

description.776

5. Discussion and conclusions777

The AGWB was created simultaneously as the description format and as a conver-778

sion tool. Therefore all proposed functionalities were immediately analyzed concerning779

the viability of implementation. A good example was adding the support for precise780

customization and variants. This approach resulted in a good balance between the781

functionality available to the user, low complexity of implementation, and simplicity of782

description.783

The AGWB appeared to be a useful tool for generating C&D-systems. The syntax784

of the C&D-system description is simple and may be easily edited in any text editor.785

Good support for parameterization of the design has been confirmed in practical786

use, such as changing the number of components for simplified debugging versions. It787

has been confirmed that properly used AGWB indeed minimizes the effort needed to788

adjust the user logic to the modified parameters.789

The possibility to include the fragments of XML files facilitates sharing of the790

definitions between different C&D-system systems.791

Adding new registers and blocks is relatively simple. The workflow is friendly for792

text-based tools, end hence for version control systems.793

Of course, AGWB has its limitations resulting from the compromise between func-794

tionality and simplicity. It does not offer the versatility and completeness of SystemRDL,795

but is a small and consistent solution.796

It is a fully open-source solution. The source code is available in the GitHub797

repository [68]. The LGPL V2 license allows the user to modify it for his or her needs,798

and the system’s simplicity should facilitate such modifications.799

The code generated by the AGWB may be freely used and distributed by the800

user, but it relies on the General cores library and uses the components licensed under801

Solderpad Hardware License, Version 2.0 [69].802

5.1. Future plans803

The AGWB system has been developed as a tool supporting currently developed804

systems. Its gradual evolution resulted in a structure where analysis of the system805

description is somehow interconnected with the output generation. In future versions,806

it may be advantageous to improve that separation by formalizing the internal repre-807

sentation of the generated system. That may urge users to create their own software or808

hardware backends.809

The end users suggested improvements to add support for local constants and810

pass user arguments to block instances (subblocks). Such extensions may increase811

the usability of AGWB, but they must be carefully tested regarding the possibility of812

implementation. For example, making the block’s address space size dependent on813

the user-provided parameters would significantly complicate the address allocation814

algorithm and the generated ALN code.815

It is expected that the role of SystemRDL will increase in the future. Therefore,816

it should be investigated if it is possible to support conversion between the AGWB817

description and a certain well-defined subset of SystemRDL.818

Author Contributions: Conceptualization, W.Z.; methodology, all authors; software, W.Z., M.G.819

and M.K.; validation, all authors; investigation, all authors; writing—original draft preparation,820

W.Z.; writing—review and editing, all authors ; visualization, W.Z.; supervision, W.Z. The percent-821

age contribution of the authors is: W.Z. – 60%, M.G. – 15%, M.K. – 15%, W.M. – 10%. All authors822

have read and agreed to the published version of the manuscript.823

Funding: This research received no external funding.824

Institutional Review Board Statement: Not applicable.825

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 October 2021                   doi:10.20944/preprints202110.0098.v1

https://doi.org/10.20944/preprints202110.0098.v1


Version October 6, 2021 submitted to Sensors 26 of 28

Informed Consent Statement: Not applicable.826

Acknowledgments: The work has been partially supported by the statutory funds of the Institute827

of Electronic Systems and partially by the Facility for Antiproton and Ion Research (FAIR).828

Conflicts of Interest: The authors declare no conflict of interest.829

References
1. Engel, H.; Alt, T.; Kebschull, U.; ALICE Collaboration. FPGA based data processing in the ALICE High Level Trigger in LHC

Run 2. Journal of Physics: Conference Series 2017, 898, 032018. doi:10.1088/1742-6596/898/3/032018.
2. Li, Q.; Amar-Youcef, S.; Doering, D.; Deveaux, M.; Fröhlich, I.; Koziel, M.; Krebs, E.; Linnik, B.; Michel, J.; Milanovic, B.; Müntz,

C.; Stroth, J.; Tischler, T. A FPGA-based Cluster Finder for CMOS Monolithic Active Pixel Sensors of the MIMOSA-26 Family.
Journal of Physics: Conference Series 2014, 513, 022021. doi:10.1088/1742-6596/513/2/022021.

3. Zabołotny, W.M.; Czarski, T.; Chernyshova, M.; Czyrkowski, H.; Dąbrowski, R.; Dominik, W.; Jakubowska, K.; Karpiński,
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