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Abstract. We demonstrate a new quantitative method to the sieve of Eratosthenes, which is an
alternative to the sieve of Legendre. In this method, every element of a given set is sifted out once
only, and therefore, this method is free of the Möbius function and of the consequential parity
barrier. Using this method, we prove that every sufficiently large even number is the sum of two
primes, and that every even number is the difference of two primes in infinitely many ways.
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1. Introduction

1.1. Representing even numbers from primes. Since the set of prime numbers is infinite, and
since all prime numbers ≥ 3 are odd numbers, then one knows immediately that there are infin-
itely many even numbers that can be represented as the sum of two primes, and, infinitely many
even numbers that can be represented as the difference of two primes. Having said that, the fol-
lowing questions then naturally arise: (i) Can every even number be represented as the sum of
two primes? (ii) Can every even number be represented as the difference of two primes? (iii) Can
any even number, or indeed all even numbers, be represented as the difference of two primes,
in infinitely many ways? (iv) If questions ‘(ii)′ and ‘(iii)′ are answered in the affirmative, can
they also hold for consecutive primes, in representing even numbers ≥ 6 as the difference of two
primes?

The earliest known record to have posed question ′(i)′, known as the Goldbach conjecture,
dates back to 1742, in a correspondence between C. Goldbach and L. Euler, where it is propo-
sitioned that every even number > 2 can be represented as the sum of two primes [1] [2]. The
Goldbach conjecture has more lately become known as the binary Goldbach conjecture, or the
strong Goldbach conjecture, in order to distinguish it from the ternary Goldbach conjecture, or
the weak Goldbach conjecture, which states that every odd number > 5 can be represented as the
sum of three primes. The binary Goldbach conjecture has to date been shown empirically to hold
for every even number ≤ 4 · 1018 [3], however, a rigorous proof, or disproof, remains elusive.

Nevertheless, some related theoretical results to the binary Goldbach conjecture have been
achieved, the closest of which is due to J. R. Chen, who in 1973, proved that every sufficiently
large even number can be represented as the sum of a prime and another prime or a semiprime,
that is, the product of at most two primes [4] [5] [6] [7]. On the other hand, significant results
have been achieved for the ternary Goldbach conjecture, culminating with a proof given by H.
Helfgott in 2014 [8] [9] [10].
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The earliest known record to have posed questions ′(ii− iv)′ are due to Alphonse de Polignac,
who in 1849, conjectured that every even number can be represented as the difference of two
consecutive primes, in infinitely many ways [11]. The most significant special case of Polignac’s
conjecture, is the so-called ‘twin prime conjecture’, which comprises of the number 2 being
represented as the difference of two primes, in infinitely many ways. The twin prime conjecture
is hugely supported by empirical data, where, over the past few decades, increasingly large twin
prime pairs have been found to exist [12], with the current world record for a twin prime pair,
found in the year 2016, standing at 388, 342 decimal digits long [13].

As with the binary Goldbach Conjecture, the closest theoretical result to Polignac’s conjecture
is given by J. R. Chen, who in the same article, proved that every even number can be represented
as the difference of a prime and another prime or semiprime, that is, the product of at most two
primes [7]. More recently, D. A. Goldston, J. Pintz, and C. Y. Yildirim, introduced the now
known ‘GPY method’, which uses approximations to the prime k-tuples conjecture, to study
small numbers that can be represented as the difference of two primes [14]. In 2013, Yitang
Zhang built on the GPY method, thereby proving for the first time the existence of some even
number < 7·107, which can be represented as the difference of two primes in infinitely many ways
[15]. Inspired by Zhang’s work, within a year after Zhang first announced his result, J. Maynard
presented an independent proof that lowered the bound to 600, which, by assuming the Elliott-
Halberstam conjecture, could be further lowered down to 12 [16]. With some refinements to
Zhang’s method and a combination of that with Maynard’s approach, the bound was then lowered
to 246 unconditionally, by an on-line collaborative project known as Polymath 8, organised by T.
Tao [17].

1.2. Sieve theory. Sieve theory is a technique for distinguishing specific subsets of integers,
amongst the set of natural numbers. Sieve theory began with Eratosthenes of Cyrene (276-194
B.C.), who constructed a method with which one could isolate the subset of prime numbers, from
the set of natural numbers [18]. It starts by first crossing the multiples of 2 in the number line
up to x, then the multiples of 3, then the multiples of 5, and then the multiples of all the primes
≤
√

x. If an integer n > 1 is not divisible by any prime p ≤
√

x, then n is necessarily a prime.
Upon completion of the sieve, one has

(1.1) # {P ∈ P : P ≤ x} = #
{
n ≤ x : P ̸ | n, P ≤

√
x
}
.

Having the means of constructing the complete subset of prime numbers, from the set of natural
numbers up to x, one would be naturally interested in quantifying these primes. To this end,
there are fundamentally two approaches that one could take, in order to quantify the set of primes
generated by the sieve of Eratosthenes. We describe each approach, as follows.

(i) In the first approach, one quantifies the subset of the integers that are sifted out at each
round of the sieve, as

#{the subset of all multiples of P up to x}
#{the set of all integers up to x}

.

The easy part with this approach, is that one has no problem in defining quantitatively both the
subset of the multiples of P up to x and the set of all integers up to x. However, the difficult part
is due to the fact that those integers which have multiple prime factors, are necessarily counted
at multiple rounds of the sieve, which must be accounted for. This is the approach taken by
A. Legendre (1752-1833), who was the first to turn the sieve of Eratosthenes into a quantitative
technique, and this has been the approach of choice ever since. In the sieve of Legendre, one
counts the integers that are crossed out at each round, and then one subtracts those that are
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counted at multiple rounds, according to the multiplicity of times that this has happened, as
follows

(1.2) [x] −
∑

P≤
√

x

[ x
P

]
+

∑
P1<P2

∑
≤
√

x

[
x

P1P2

]
−

∑
P1<P2

∑
<P3

∑
≤
√

x

[
x

P1P2P3

]
+ − · · · ,

from which, one obtains Legendre’s formula

(1.3) π(x) − π
(√

x
)
+ 1 =

∑
d

P|d→P≤
√

x

µ(d)
[ x
d

]
,

where µ(d) is the Möbius function, introduced by A. F. Möbius (1790–1868), and defined as

(1.4) µ(n) B


1 x = 1,
1 x is square-free and has an even number of prime factors,
−1 x is square-free and has an odd number of prime factors,
0 x is not square-free,

In efforts to evaluate the right-hand side of (1.3), one has

(1.5) π(x) − π
(√

x
)
+ 1 = x

∑
d

µ(d)
d
+ R = x

P≤
√

x∏
P=P1

P − 1
P
+ R,

where the remainder R is

(1.6) R = −
∑

d

µ(d)
{ x

d

}
,

which doubles at each round of the sieve, and thus quickly becomes larger than x. In modern sieve
methods, one tries to replace µ(n) by a functionΛ = (λd), referred to as the “sieve weights”, which
mimics the µ(n) and gives satisfactory estimates on upper bounds, lower bounds, and asymptotics
for smoother number sets such as almost primes, which leads to upper bounds for primes. How-
ever, obtaining lower bounds for primes has proved much more difficult, thus leaving Goldbach’s
and Polignac’s conjectures out of reach. This has been due to the so-called ′parity barrier′, where
the sieve struggles to distinguish integers with an odd number of prime factors from integers with
an even number of prime factors. Although the parity barrier has been broken for certain specific
sequences, it still remains the fundamental obstacle in the treatment of primes via this approach
of sieve theory.

(ii) In the second approach, one quantifies the subset of the integers that are sifted out at each
round of the sieve, as

#{the subset of the multiples of P up to x that survived the preceding rounds of the sieve}
#{the set of all the integers up to x that survived the preceding rounds of the sieve}

.

This means that every integer is sifted out according to its least prime factor, out of a set of
integers whose least prime factors are greater than, or equal to, the least prime factors of the
integers being sifted out at the given round, with the exception of the number 1. This is best
illustrated by the following example: In the 1st round of the sieve, one quantifies the subset of the
multiples of 2, as a ratio over the set of all integers, that is

#{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26}
#{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}

.
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In the 2nd round, one quantifies the subset of the multiples of 3 that survived the preceding round
of the sieve, as a ratio over the set of all the integers that survived the preceding round of the
sieve, that is

#{3, 9, 15, 21}
#{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25}

.

In the 3rd round, one quantifies the subset of the multiples of 5 that survived the preceding rounds
of the sieve, as a ratio over the set of all the integers that survived the preceding rounds of the
sieve, that is

#{5, 25}
#{1, 5, 7, 11, 13, 17, 19, 23, 25, }

.

Since that completes the sieve, then the subset of integers that survive the sieve is

{1, 7, 11, 13, 17, 19, 23}

which consists of the number 1 and the complete subset of primes in [
√

26, 26 ].

The easy part with this approach, is that every integer is sifted out once only, and so one does
not have the problem of certain integers appearing at multiple rounds of the sieve, which one
has with the first approach, as described above. However, the difficult part with this approach,
is that at each round of the sieve, one finds it difficult to define quantitatively, both the subset of
the multiples of P that survive the preceding rounds of the sieve and the set of all the integers
that survive the preceding rounds of the sieve. Nevertheless, since at each round of the sieve, the
subset of the multiples of P that survive the preceding rounds of the sieve consists of the complete
set of integers for which P is the least prime factor, and, the subset of all the integers that survive
the preceding rounds of the sieve contains the complete set of primes in [

√
x, x ], then one is

hopeful in being able to define quantitatively the two sets of integers, at least to the extent where
one can then determine upper and/or lower bounds.

1.3. Our results. In the present paper, we take the second approach as described above, in order
to quantify the subset of the integers that survive the sieve of Eratosthenes. On the condition that
x is sufficiently large, at each round of the sieve, we define quantitatively both the subset of the
multiples of P that survive the preceding rounds of the sieve and the set of all the integers that
survive the preceding rounds of the sieve, to the extent where we are then able to determine an
upper bound to the subset of the integers that are sifted out at each round of the sieve. To the best
of our knowledge, we are the first to take this approach for these purposes, at least to the extent
that we do.

Definition 1 (Additive representation). Let (p, q) ∈ N, let p ≤ q, and let x be an even number,
then we say that p + q is an additive representation of x, if p + q = x.

Definition 2 (Subtractive representation). Let (p, q) ∈ N, and let 2k be an even number, then we
say that q − p is a subtractive representation of 2k, if q − p = 2k.

We then extend our approach taken in the sieving of integers, to the sieving of representations,
whereby we quantify the subset of the additive representations of x, and the subset of the sub-
tractive representations of 2k up to x, that survive the sieve of Eratosthenes. As with the sieving
of integers, we quantify the subset of the representations that are sifted out at each round of the
sieve, as a ratio of the subset of representations containing multiples of P up to x that survived
the preceding rounds of the sieve, over the set of representations containing all the integers up
to x that survived the preceding rounds of the sieve. This means that additive representations,
and subtractive representations, are sifted out according to either p or q, depending on whose
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least prime factor is the smaller (or equal to) of the two. This allows for every representation that
contains at least one multiple of P to be sifted out once only, while every representation that does
not contain multiples of P, survives the sieve. Therefore, upon completion of the sieve, we have
a subset of representations, where p = 1 or a prime in [

√
x, x ] and q is a prime in [

√
x, x ], with

the quantity of representations where p = 1 being at most one.

However, contrary to the sieving of integers, in the sieving of additive representations, and in
the sieving of subtractive representations, at each round of the sieve, the subset of representations
containing multiples of P that survive the preceding rounds of the sieve does not necessarily
contain the complete subset of integers for which P is the least prime factor, and, the set of
representations containing all the integers that survive the preceding rounds of the sieve does not
necessarily contain the complete subset of primes in [

√
x, x ]. Therefore, one does not have a set

that one can define quantitatively at each round of the sieve, and therefore, one cannot determine
an upper bound to the subset of the representations that are sifted out at each round of the sieve,
in the same way that can be done for the sieving of integers. Nevertheless, as we demonstrate in
this paper, by relating the sieving of representations to the sieving of integers for the same x, one
can determine an upper bound to the quantity of the additive representations that are sifted out at
each round of the sieve, and an upper bound to the quantity of the subtractive representations that
are sifted out at each round of the sieve, which we do on the condition that x is sufficiently large.
Following on from the upper bounds, we then determine a positive lower bound to the quantity
of additive representations that survive the sieve, where both p and q are primes in [

√
x, x ], and

a positive lower bound to the quantity of subtractive representations that survive the sieve, where
both p and q are primes in [

√
x, x ].

Therefore, we prove the following:

Theorem 1. Every sufficiently large even number is the sum of two prime.

Theorem 2. Every even number is the difference of two primes in infinitely many ways.

Theorem 1 partially addresses question ′(i)′ as posed above, and, to date is the closest theo-
retical result to the binary Goldbach conjecture. Theorem 2 fully addresses questions ′(ii − iii)′

as posed above, fully establishes the twin prime conjecture, and, to date is the closest theoretical
result to Polignac’s conjecture.

2. Notation

N : the set of natural numbers.
P : the set of prime numbers.
P1, P2, P3, P4, P70, P71, Pm, Pn : the 1st, the 2nd, the 3rd, the 4th, the 70th, the 71st, the mth, and the
nth prime numbers respectively. We always have Pm < Pn.
O116,O117,O118, and Oz : the 116th, 117th, 118th, and the z th integers respectively in the sequence
O : {p ∈ N : p ≤ x, P1 ̸ | p, P2 ̸ | p}.
x and 2k : even numbers.
p, pa, and pb : natural numbers, unless explicitly specified.
w : a sufficiently large positive integer, not necessarily the same at every occurrence.
y1, y2, yn, vm, vn, tm, tn : positive real numbers.
y1a, y2a, yna, y1s, y2s, yns : non-negative real numbers.
a | b : a divides b evenly, i.e. b ≡ 0 (mod a).
a ̸ | b : a does not divide b.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 December 2021                   doi:10.20944/preprints202110.0087.v3

https://doi.org/10.20944/preprints202110.0087.v3


6 ALI SHEHU 1 AND JETMIRA UKA 2

βm : {p ∈ P : P1 ≤ p < Pm}.
βn : {p ∈ P : P1 ≤ p < Pn}.
γn :

{
p ∈ P : Pn < p ≤

√
x
}
.

γ1 :
{
p ∈ P : P1 < p ≤

√
x
}
.

π(a) : #{p ∈ P : P1 ≤ p ≤ a}.
π [a, b] : # {p ∈ P : a ≤ p ≤ b}.
g(x)′ : #

{
p ∈ P : (x − p) ∈ P, p ≤ (x − p),

√
x ≤ (p, x − p) ≤ x,

}
.

π2k(x)′ : #
{
p ∈ P : (p + 2k) ∈ P,

√
x ≤ (p, p + 2k) ≤ x

}
.

π2k(x) : #{p ∈ P : (p + 2k) ∈ P, P1 ≤ (p, p + 2k) ≤ x}.

r1A : #{p ∈ N : p ≤ x}.
r1AP1 : #{p ∈ r1A : P1 | p}.
r1APn : #{p ∈ r1A : Pn | p}.
r1Aγ1 : #{p ∈ r1A : γ1 | p}.
r2A : #{p ∈ r1A : P1 ̸ | p}.
r2AP2 : #{p ∈ r2A : P2 | p}.
r3A : #{p ∈ r2A : P2 ̸ | p}.
r3AP3 : #{p ∈ r3A : P3 | p}.
rnA : #{p ∈ r1A : βn ̸ | p}.
rnAPn : #{p ∈ rnA : Pn | p}.
rnAγn : #{p ∈ rnA : γn | p}.
rn+1A : #{p ∈ rnA : Pn ̸ | p}.

r1aA : #{p ∈ N : (x − p) ∈ N, p ≤ (x − p)}.
r1aAP1 : #{p ∈ r1aA : (x − p) ∈ r1aA, p ≤ (x − p), P1 | p and/or P1 | (x − p)}.
r1aAPn : #{p ∈ r1aA : (x − p) ∈ r1aA, p ≤ (x − p), Pn | p and/or Pn | (x − p)}.
r2aA : #{p ∈ r1aA : (x − p) ∈ r1aA, p ≤ (x − p), P1 ̸ | p and P1 ̸ | (x − p)}.
r2aAP2 : #{p ∈ r2aA : (x − p) ∈ r2aA, p ≤ (x − p), P2 | p and/or P2 | (x − p)}.
r3aA : #{p ∈ r2aA : (x − p) ∈ r2aA, p ≤ (x − p), P2 ̸ | p and P2 ̸ | (x − p)}.
r3aAP3 : #{p ∈ r3aA : (x − p) ∈ r3aA, p ≤ (x − p), P3 | p and/or P3 | (x − p)}.
rnaA : #{p ∈ r1aA : (x − p) ∈ r1aA, p ≤ (x − p), βn ̸ | p and βn ̸ | (x − p)}.
rnaAPn : #{p ∈ rnaA : (x − p) ∈ rnaA, p ≤ (x − p), Pn | p and/or Pn | (x − p)}.
rn+1aA : #{p ∈ rnaA : (x − p) ∈ rnaA, p ≤ (x − p), Pn ̸ | p and Pn ̸ | (x − p)}.

rmA : #{p ∈ r1A : βm ̸ | p}.
rmAPm : #{p ∈ rmA : Pm | p}.
rmAPn : #{p ∈ rmA : Pn | p}.
rmAPmPn : #{p ∈ rmA : PmPn | p}.
rm+1A : #{p ∈ rmA : Pm ̸ | p}.
rm+1APn : #{p ∈ rm+1A : Pn | p}.
rmaA : #{p ∈ rmA : (x − p) ∈ rmA, p ≤ (x − p)}.
rmaAPm : #{p ∈ rmaA : (x − p) ∈ rmaA, p ≤ (x − p), Pm | p and/or Pm | (x − p)}.
rmaAPn : #{p ∈ rmaA : (x − p) ∈ rmaA, p ≤ (x − p), Pn | p and/or Pn | (x − p)}.
rmaAPmPn : #{p ∈ rmaA : (x−p) ∈ rmaA, p ≤ (x−p), Pm | p and/or Pm | (x−p), Pn | p and/or Pn | (x−
p)}.
rm+1aA : #{p ∈ rmaA : (x − p) ∈ rmaA, p ≤ (x − p), Pm ̸ | p and Pm ̸ | (x − p)}.
rm+1aAPn : #{p ∈ rm+1aA : (x − p) ∈ rm+1aA, p ≤ (x − p), Pn | p and/or Pn | (x − p)}.
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r1A
′ : #{(pa, pb) ∈ N : 1 ≤ pa ≤ (x − 2k), (2k + 1) ≤ pb ≤ x}.

r1A
′
P1

: #{(pa, pb) ∈ r1A
′ : P1 | pa, P1 | pb}.

r1A
′
Pn

: #{(pa, pb) ∈ r1A
′ : Pn | pa, Pn | pb}.

rnA
′ : #{(pa, pb) ∈ r1A

′ : βn ̸ | pa, βn ̸ | pb}.
rnA

′
Pn

: #{(pa, pb) ∈ rnA
′ : Pn | pa, Pn | pb}.

r1sA : #{p ∈ N : (p + 2k) ∈ N, (p + 2k) ≤ x}.
r1sAP1 : #{p ∈ r1sA : (p + 2k) ∈ r1sA, P1 | p and/or P1 | (p + 2k)}.
r1sAPn : #{p ∈ r1sA : (p + 2k) ∈ r1sA, Pn | p and/or Pn | (p + 2k)}.
r2sA : #{p ∈ r1sA : (p + 2k) ∈ r1sA, P1 ̸ | p and P1 ̸ | (p + 2k)}.
r2sAP2 : #{p ∈ r2sA : (p + 2k) ∈ r2sA, P2 | p and/or P2 | (p + 2k)}.
r3sA : #{p ∈ r2sA : (p + 2k) ∈ r2sA, P2 ̸ | p and P2 ̸ | (p + 2k)}.
r3sAP3 : #{p ∈ r3sA : (p + 2k) ∈ r3sA, P3 | p and/or P3 | (p + 2k)}.
rnsA : #{p ∈ r1sA : (p + 2k) ∈ r1sA, βn ̸ | p and βn ̸ | (p + 2k)}.
rnsAPn : #{p ∈ rnsA : (p + 2k) ∈ rnsA, Pn | p and/or Pn | (p + 2k)}.
rn+1sA : #{p ∈ rnsA : (p + 2k) ∈ rnsA, Pn ̸ | p and Pn ̸ | (p + 2k)}.

rmA
′ : #{(pa, pb) ∈ r1A

′ : βm ̸ | pa, βm ̸ | pb}.
rmA

′
Pm

: #{(pa, pb) ∈ rmA
′ : Pm | pa, Pm | pb}.

rmA
′
Pn

: #{(pa, pb) ∈ rmA
′ : Pn | pa, Pn | pb}.

rmA
′
PmPn

: #{(pa, pb) ∈ rmA
′ : PmPn | pa, PmPn | pb}.

rm+1A
′ : #{(pa, pb) ∈ rmA

′ : Pm ̸ | pa, Pm ̸ | pb}.
rm+1A

′
Pn

: #{(pa, pb) ∈ rm+1A
′ : Pn | pa, Pn | pb}.

rmsA : #{p ∈ rmA
′ : (p + 2k) ∈ rmA

′}.
rmsAPm : #{p ∈ rmsA : (p + 2k) ∈ rmsA, Pm | p and/or Pm | (p + 2k)}.
rmsAPn : #{p ∈ rmsA : (p + 2k) ∈ rmsA, Pn | p and/or Pn | (p + 2k)}.
rmsAPmPn : #{p ∈ rmsA : (p+2k) ∈ rmsA, Pm | p and/or Pm | (p+2k), Pn | p and/or Pn | (p+2k)}.
rm+1sA : #{p ∈ rmsA : (p + 2k) ∈ rmsA, Pm ̸ | p and Pm ̸ | (p + 2k)}.
rm+1sAPn : #{p ∈ rm+1sA : (p + 2k) ∈ rm+1sA, Pn | p and/or Pn | (p + 2k)}.

3. Sieve outline

3.1. Sieving integers. Prior to the 1st round of the sieve, we have

(3.1) r1AP1 =
y1

P1
· r1A,

and therefore, at the 1st round of the sieve, we have

(3.2) S (r1A, P1) = r1A−
y1

P1
· r1A = r1A ·

P1 − y1

P1
= r2A.

Since r1A = x, then

(3.3) r2A = x ·
P1 − y1

P1
.

Prior to the 2nd round of the sieve, we have

(3.4) r2AP2 =
y2

P2
· r2A,
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and therefore, at the 2nd round of the sieve, we have

(3.5) S (r2A, P2) = r2A−
y2

P2
· r2A = r2A ·

P2 − y2

P2
= r3A,

and therefore

(3.6) r3A = x ·
P1 − y1

P1
·

P2 − y2

P2
.

Likewise, prior to the nth round of the sieve, we have

(3.7) rnAPn =
yn

Pn
· rnA,

and therefore, at the nth round of the sieve, we have

(3.8) S (rnA, Pn) = rnA−
yn

Pn
· rnA = rnA ·

Pn − yn

Pn
= rn+1A,

and therefore

(3.9) rn+1A = x ·
P1 − y1

P1
·

P2 − y2

P2
· · · · ·

Pn − yn

Pn
.

Since, upon completion of the sieve, we have

(3.10) S
(
rnA, Pn,

√
x
)
= π(x) − π

(√
x
)
+ 1,

then

(3.11) π(x) − π
(√

x
)
+ 1 = x ·

Pn≤
√

x∏
Pn=P1

Pn − yn

Pn
.

Empirical data, as shown in Figure 1, suggest that yn oscillates about yn = 1, before tending
to zero as Pn →

√
x. In section 4, we determine an upper bound to yn for x ≥ w and Pn ≤

√
x.

(a) P1 ≤ Pn ≤ 1 · 103 (b) P1 ≤ Pn ≤
√

x

Figure 1.
rnAPn

rnA
=

1
Pn
· yn, for various x · 108
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3.2. Sieving additive representations. Prior to the 1st round of the sieve, we have

(3.12) r1aAP1 =
y1a

P1
· r1aA,

and therefore, at the 1st round of the sieve, we have

(3.13) S (r1aA, P1) = r1aA−
y1a

P1
· r1aA = r1aA ·

P1 − y1a

P1
= r2aA.

Since r1aA =
x
2

, then

(3.14) r2aA =
x
2
·

P1 − y1a

P1
.

Prior to the 2nd round of the sieve, we have

(3.15) r2aAP2 =
y2a

P2
· r2aA,

and therefore, at the 2nd round of the sieve, we have

(3.16) S (r2aA, P2) = r2aA−
y2a

P2
· r2aA = r2aA ·

P2 − y2a

P2
= r3aA,

and therefore

(3.17) r3aA =
x
2
·

P1 − y1a

P1
·

P2 − y2a

P2
.

Likewise, prior to the nth round of the sieve, we have

(3.18) rnaAPn =
yna

Pn
· rnaA,

and therefore, at the nth round of the sieve, we have

(3.19) S (rnaA, Pn) = rnaA−
yna

Pn
· rnaA = rnaA ·

Pn − yna

Pn
= rn+1aA,

and therefore

(3.20) rn+1aA =
x
2
·

P1 − y1a

P1
·

P2 − y2a

P2
· · · · ·

Pn − yna

Pn
.

Since, upon completion of the sieve, we have

(3.21) S
(
rnaA, Pn,

√
x
)
= g(x)′ + ua,

where ua = 1 or 0, then

(3.22) g(x)′ ≥
x
2
·

Pn≤
√

x∏
Pn=P1

Pn − yna

Pn
− 1.

Empirical data for the sieving of additive representations, as shown in Figure 2 for all Pn ≤√
x, suggest that

(3.23)
rnaAPn

rnaA
≈


1 ·

rnAPn

rnA
, if Pn | x,

2 ·
rnAPn

rnA
, if Pn ̸ | x,
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which, in section 5 we generalise for all x and Pn ≤
√

x. Through (3.23), we are able to determine
an upper bound to yna for the sieving of additive representations, which we do in section 5 for
x ≥ w and Pn ≤

√
x, which then allows us to determine a positive lower bound to (3.22) for

x ≥ w, which we do in section 7.

(a) x = 892, 371, 464 (b) x = 892, 371, 480

Figure 2.
rnAPn

rnA
=

1
Pn
· yn (red) and

rnaAPn

rnaA
=


1
Pn
· yna, if Pn | x,

2
Pn
· yna, if Pn ̸ | x,

(blue).

3.3. Sieving subtractive representations. Prior to the 1st round of the sieve, we have

(3.24) r1sAP1 =
y1s

P1
· r1sA,

and therefore, at the 1st round of the sieve, we have

(3.25) S (r1sA, P1) = r1sA−
y1s

P1
· r1sA = r1sA ·

P1 − y1s

P1
= r2sA.

Since r1sA = x − 2k, then

(3.26) r2sA = (x − 2k) ·
P1 − y1s

P1
.

Prior to the 2nd round of the sieve, we have

(3.27) r2sAP2 =
y2s

P2
· r2sA,

and therefore, at the 2nd round of the sieve, we have

(3.28) S (r2sA, P2) = r2sA−
y2s

P2
· r2sA = r2sA ·

P2 − y2s

P2
= r3sA,

and therefore

(3.29) r3sA = (x − 2k) ·
P1 − y1s

P1
·

P2 − y2s

P2
.

Likewise, prior to the nth round of the sieve, we have

(3.30) rnsAPn =
yns

Pn
· rnsA,
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and therefore, at the nth round of the sieve, we have

(3.31) S (rnsA, Pn) = rnsA−
yns

Pn
· rnsA = rnsA ·

Pn − yns

Pn
= rn+1sA,

and therefore

(3.32) rn+1sA = (x − 2k) ·
P1 − y1s

P1
·

P2 − y2s

P2
· · · · ·

Pn − yns

Pn
.

Since, upon completion of the sieve, we have

(3.33) S
(
rnsA, Pn,

√
x
)
= π2k(x)′ + us,

where us = 1 or 0, then

(3.34) π2k(x)′ ≥ (x − 2k) ·
Pn≤
√

x∏
Pn=P1

Pn − yns

Pn
− 1.

As with the sieving of additive representations, empirical data for the sieving of subtractive
representations, as shown in Figure 3 for all Pn ≤

√
x, suggest that

(3.35)
rnsAPn

rnsA
≈


1 ·

rnAPn

rnA
, if Pn | 2k,

2 ·
rnAPn

rnA
, if Pn ̸ | 2k,

which, in section 6, we generalise for all x and Pn ≤
√

x. Through (3.35), we are able to determine
an upper bound to yns for the sieving of subtractive representations, which we do in section 6 for
x ≥ w and Pn ≤

√
x, which then allows us to determine a positive lower bound to (3.34) for

x ≥ w, which we do in section 7, and which then implies that π2k(x)→ ∞ as x→ ∞.

(a) x = 892, 371, 464 and 2k = 446, 185, 732 (b) x = 892, 371, 464 and 2k = 9, 699, 690

Figure 3.
rnAPn

rnA
=

1
Pn
· yn (red) and

rnsAPn

rnsA
=


1
Pn
· yns, if Pn | 2k,

2
Pn
· yns, if Pn ̸ | 2k,

(blue).
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4. An upper bound on the sifted out integers

Prior to the nth round of the sieve, we have

(4.1)
rnAPn

rnA
=

rnAPn

rnAPn + rnAγn + π[Pn, x] + 1
≤

rnAPn

rnAPn + rnAγn + π[Pn, x]
.

Since

(4.2) π(Pn−1) + π[Pn, x] = π(x),

and

(4.3)
π(Pn−1)

rnAPn + rnAγn + π[Pn, x]
≤
π(Pn−1)
rnAPn

,

then

(4.4)
rnAPn

rnAPn + rnAγn + π[Pn, x]
≤

rnAPn + π(Pn−1)
rnAPn + rnAγn + π(x)

.

Since rnAPn consists of the complete subset of integers for which Pn is the least prime factor,
then due to the Fundamental Theorem of Arithmetic, we have

(4.5) rnAPn = π

[
Pn,

x
Pn

]
+ D,

and

(4.6) D =

rnAPn − π

[
Pn,

x
Pn

]
≥ 1, if P1 ≤ Pn ≤

3
√

x,

0, if 3
√

x < Pn ≤
√

x.

Since

(4.7) π(Pn−1) + π
[
Pn,

x
Pn

]
= π

(
x

Pn

)
,

then, due to (4.5), we have

(4.8) rnAPn + π(Pn−1) = π
(

x
Pn

)
+ D,

and, due to (4.6), we have

(4.9) D =

rnAPn + π(Pn−1) − π
(

x
Pn

)
≥ 1, if P1 ≤ Pn ≤

3
√

x,

0, if 3
√

x < Pn ≤
√

x.

Therefore

(4.10)
D

π

(
x

Pn

)
+ D
≤

rnAPn + π(Pn−1) − π
(

x
Pn

)
rnAPn + π(Pn−1)

,

and

(4.11) lim
Pn→

3√x

rnAPn + π(Pn−1) − π
(

x
Pn

)
rnAPn + π(Pn−1)

= 0.
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If Pn = P1, then we have

(4.12)
r1AP1 + π(P1−1) − π

(
x

P1

)
r1AP1 + π(P1−1)

=

x
2
− π

( x
2

)
x
2

,

and

(4.13)
r1AP1 + r1Aγ1

r1AP1 + r1Aγ1 + π(x)
=

x − π(x)
x
,

and therefore

(4.14)
r1AP1 + π(P1−1) − π

(
x

P1

)
r1AP1 + π(P1−1)

≤
r1AP1 + r1Aγ1

r1AP1 + r1Aγ1 + π(x)
.

Furthermore, we have

(4.15) lim
Pn→

√
x

rnAPn + rnAγn

rnAPn + rnAγn + π(x)
= 0,

and therefore

(4.16) lim
Pn→

3√x

rnAPn + rnAγn

rnAPn + rnAγn + π(x)
= h > 0.

Since
√

x
3
√

x
→ ∞ as x→ ∞, then h→ 1 as x→ ∞.

Therefore, if x ≥ w and Pn ≤
√

x, then

(4.17)
rnAPn + π(Pn−1) − π

(
x

Pn

)
rnAPn + π(Pn−1)

≤
rnAPn + rnAγn

rnAPn + rnAγn + π(x)
,

and therefore

(4.18)
rnAPn + π(Pn−1)

rnAPn + rnAγn + π(x)
≤

rnAPn + π(Pn−1) −
(
rnAPn + π(Pn−1) − π

(
x

Pn

))
rnAPn + rnAγn + π(x) −

(
rnAPn + rnAγn

) ,

and therefore

(4.19)
rnAPn

rnA
≤

π

(
x

Pn

)
π(x)

,

which we quantify as follows.

Let

(4.20) f
(

x
Pn

)
=

π

(
x

Pn

)
x

Pn

,

and

(4.21) f (x) =
π(x)

x
,
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then

(4.22)
π

(
x

Pn

)
π(x)

=
1
Pn
·

f
(

x
Pn

)
f (x)

.

Let

(4.23) f
(√

x
)
=
π
(√

x
)

√
x
,

then

(4.24)
f
(

x
Pn

)
f (x)

≤
f
(√

x
)

f (x)
.

Due to the Prime Number Theorem, we have

(4.25) lim
x→∞

f
(√

x
)

f (x)
= 2,

with the limit being approached from above. Therefore, if d > 2 and x ≥ w, then

(4.26)
f
(√

x
)

f (x)
≤ d.

Therefore, if x ≥ w and Pn ≤
√

x, then

(4.27)
rnAPn

rnA
≤

1
Pn
· 2.15.

5. Upper bounds on the sifted out additive representations

Prior to the 1st round of the sieve, we have

(5.1) r1aA =
1
2
· r1A,

and

(5.2)


if Pn | x and Pn | p, then Pn | (x − p),
if Pn ̸ | x and Pn | p, then Pn ̸ | (x − p),
if Pn ̸ | x and Pn | (x − p), then Pn ̸ | p,

and therefore

(5.3) r1aAPn =


1
2
· r1APn , if Pn | x,

1
1
· r1APn , if Pn ̸ | x.

Due to (5.1) and (5.3), we have

(5.4)
r1aAPn

r1aA
=


1 ·

r1APn

r1A
, if Pn | x,

2 ·
r1APn

r1A
, if Pn ̸ | x.
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Prior to the mth round of the sieve, we have

(5.5) rmAPm =
vm

Pm
· rmA,

and

(5.6) rmAPn =
vn

Pn
· rmA,

and therefore

(5.7) rmAPmPn =
vm

Pm
·

vn

Pn
· rmA,

and therefore

(5.8)
vn

Pn
· rmAPm ≈

vm

Pm
· rmAPn .

Suppose that, if p ∈ rmA, then (x − p) ∈ rmA, and likewise, if (x − p) ∈ rmA, then p ∈ rmA.
Then we have

(5.9) rmaA =
1
2
· rmA,

and

(5.10)


if Pm | x and Pm | p, then Pm | (x − p),
if Pm ̸ | x and Pm | p, then Pm ̸ | (x − p),
if Pm ̸ | x and Pm | (x − p), then Pm ̸ | p,

and therefore

(5.11) rmaAPm =


1
2
· rmAPm , if Pm | x,

1
1
· rmAPm , if Pm ̸ | x,

and

(5.12)


if Pn | x and Pn | p, then Pn | (x − p),
if Pn ̸ | x and Pn | p, then Pn ̸ | (x − p),
if Pn ̸ | x and Pn | (x − p), then Pn ̸ | p,

and therefore

(5.13) rmaAPn =


1
2
· rmAPn , if Pn | x,

1
1
· rmAPn , if Pn ̸ | x.

Due to (5.5), (5.9), and (5.11), we have

(5.14) rmaAPm =


vm

Pm
· rmaA, if Pm | x,

2vm

Pm
· rmaA, if Pm ̸ | x.

Therefore, if we sieve integers, then due to (5.5), at the mth round of the sieve, we have

(5.15) S (rmA, Pm) = rmA ·

(
Pm − vm

Pm

)
,
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and, if we sieve additive representations, then due to (5.14), at the mth round of the sieve, we have

(5.16) S (rmaA, Pm) =


rmaA ·

(
Pm − vm

Pm

)
, if Pm | x,

rmaA ·
(

Pm − 2vm

Pm

)
, if Pm ̸ | x.

Furthermore, due to (5.5), (5.6), (5.9), (5.11), and (5.13), we have

(5.17) rmaAPmPn =



vm

Pm
·

vn

Pn
· rmaA, if Pm | x and Pn | x,

vm

Pm
·

2vn

Pn
· rmaA, if Pm | x and Pn ̸ | x,

2vm

Pm
·

vn

Pn
· rmaA, if Pm ̸ | x and Pn | x,

2vm

Pm
·

2vn

Pn
· rmaA, if Pm ̸ | x and Pn ̸ | x,

and therefore

(5.18) rmaAPmPn ≈



vn

Pn
· rmaAPm ≈

vm

Pm
· rmaAPn , if Pm | x and Pn | x,

2vn

Pn
· rmaAPm ≈

vm

Pm
· rmaAPn , if Pm | x and Pn ̸ | x,

vn

Pn
· rmaAPm ≈

2vm

Pm
· rmaAPn , if Pm ̸ | x and Pn | x,

2vn

Pn
· rmaAPm ≈

2vm

Pm
· rmaAPn , if Pm ̸ | x and Pn ̸ | x.

Therefore, if we sieve integers, then due to (5.8), at the mth round of the sieve, we have

(5.19) S (rmAPn , Pm) ≈ rmAPn ·

(
Pm − vm

Pm

)
,

and, if we sieve additive representations, then due to (5.18), at the mth round of the sieve, we have

(5.20) S (rmaAPn , Pm) ≈


rmaAPn ·

(
Pm − vm

Pm

)
, if Pm | x,

rmaAPn ·

(
Pm − 2vm

Pm

)
, if Pm ̸ | x.

Therefore, if prior to the mth round of the sieve, we have

(5.21)
rmaAPn

rmaA
=

rmAPn

rmA
,

then, due to (5.15), (5.16), (5.19), and (5.20), post the mth round of the sieve, we have

(5.22)
rm+1aAPn

rm+1aA
≈

rm+1APn

rm+1A
.

Therefore, due to (5.4), we have

(5.23)
rnaAPn

rnaA
≈


1 ·

rnAPn

rnA
, if Pn | x,

2 ·
rnAPn

rnA
, if Pn ̸ | x,
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and therefore

(5.24)
rnaAPn

rnaA
=


1 ·

rnAPn

rnA
· fa, if Pn | x,

2 ·
rnAPn

rnA
· fa, if Pn ̸ | x.

We determine an upper bound to fa, as follows.
Since Pn ≤

√
x and rnA ≥ π

[√
x, x

]
, then

(5.25)
Pn

rnA
≤

√
x

π
[√

x, x
] .

Since π
[√

x, x
]
→ π(x) as x→ ∞, and

(5.26) lim
x→∞

√
x

π(x)
= 0,

as implied by the Prime Number Theorem, then

(5.27) lim
x→∞

√
x

π
[√

x, x
] = 0,

and therefore

(5.28) lim
x→∞

Pn

rnA
= 0.

Therefore, if

(5.29)
Pn

rnA
· rnAPn = ca > 0,

and therefore

(5.30)
Pn

rnaA
· rnaAPn ≈ ca,

where ca is a constant, then rnAPn → ∞ as x → ∞, and therefore rnaAPn → ∞ as x → ∞.
Therefore, if

(5.31)
Pn

rnaA
· rnaAPn ≥ ca,

then fa → 1 as x→ ∞, and therefore, if x ≥ w, then fa ≤ 1.15. Since ca may be chosen arbitrarily
close to 0, then

(5.32)
rnaAPn

rnaA
≤


1 ·

rnAPn

rnA
· 1.15, if Pn | x,

2 ·
rnAPn

rnA
· 1.15, if Pn ̸ | x.

Since

(5.33)
rnAPn

rnA
≤

2.15
Pn
,
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then

(5.34)
rnaAPn

rnaA
≤


1 ·

2.15
Pn
· 1.15, if Pn | x,

2 ·
2.15
Pn
· 1.15, if Pn ̸ | x,

and therefore

(5.35)
rnaAPn

rnaA
≤

5
Pn
.

Furthermore, empirical data show that

(5.36)
r1aAP1

r1aA
≤

1
P1
,

and

(5.37)
r2aAP2

r2aA
≤

2
P2
+ 2,

and

(5.38)
r3AP3

r3A
≤

1
P3
+ 1.

Due to (5.32) and (5.38), we have

(5.39)
r3aAP3

r3aA
≤ 2 ·

(
1
P3
+ 1

)
· 1.15 <

3
P3
+ 3.

6. Upper bounds on the sifted out subtractive representations

Prior to the 1st round of the sieve, we have

(6.1) r1sA =
1
2
· r1A

′,

and

(6.2)


if Pn | 2k and Pn | p, then Pn | (p + 2k),
if Pn ̸ | 2k and Pn | p, then Pn ̸ | (p + 2k),
if Pn ̸ | 2k and Pn | (p + 2k), then Pn ̸ | p,

and therefore

(6.3) r1sAPn =


1
2
· r1A

′
Pn
, if Pn | 2k,

1
1
· r1A

′
Pn
, if Pn ̸ | 2k.

Due to (6.1) and (6.3), we have

(6.4)
r1sAPn

r1sA
=


1 ·

r1A
′
Pn

r1A
′
, if Pn | 2k,

2 ·
r1A

′
Pn

r1A
′
, if Pn ̸ | 2k.

Prior to the mth round of the sieve, we have

(6.5) rmA
′
Pm
=

tm

Pm
· rmA

′,
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and

(6.6) rmA
′
Pn
=

tn

Pn
· rmA

′,

and therefore

(6.7) rmA
′
PmPn
=

tm

Pm
·

tn

Pn
· rmA

′,

and therefore

(6.8)
tn

Pn
· rmA

′
Pm
≈

tm

Pm
· rmA

′
Pn
.

Suppose that, if p ∈ rmA
′, then (p+ 2k) ∈ rmA

′, and likewise, if (p+ 2k) ∈ rmA
′, then p ∈ rmA

′.
Then we have

(6.9) rmsA =
1
2
· rmA

′,

and

(6.10)


if Pm | 2k and Pm | p, then Pm | (p + 2k),
if Pm ̸ | 2k and Pm | p, then Pm ̸ | (p + 2k),
if Pm ̸ | 2k and Pm | (p + 2k), then Pm ̸ | p,

and therefore

(6.11) rmsAPm =


1
2
· rmA

′
Pm
, if Pm | 2k,

1
1
· rmA

′
Pm
, if Pm ̸ | 2k,

and

(6.12)


if Pn | 2k and Pn | p, then Pn | (p + 2k),
if Pn ̸ | 2k and Pn | p, then Pn ̸ | (p + 2k),
if Pn ̸ | 2k and Pn | (p + 2k), then Pn ̸ | p,

and therefore

(6.13) rmsAPn =


1
2
· rmA

′
Pn
, if Pn | 2k,

1
1
· rmA

′
Pn
, if Pn ̸ | 2k.

Due to (6.5), (6.9), and (6.11), we have

(6.14) rmsAPm =


tm

Pm
· rmsA, if Pm | 2k,

2tm

Pm
· rmsA, if Pm ̸ | 2k.

Therefore, if we sieve integers, then due to (6.5), at the mth round of the sieve, we have

(6.15) S (rmA
′, Pm) = rmA

′ ·

(
Pm − tm

Pm

)
,
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and, if we sieve subtractive representations, then due to (6.14), at the mth round of the sieve, we
have

(6.16) S (rmsA, Pm) =


rmsA ·

(
Pm − tm

Pm

)
, if Pm | 2k,

rmsA ·
(

Pm − 2tm

Pm

)
, if Pm ̸ | 2k.

Furthermore, due to (6.5), (6.6), (6.9), (6.11), and (6.13), we have

(6.17) rmsAPmPn =



tm

Pm
·

tn

Pn
· rmsA, if Pm | 2k and Pn | 2k,

tm

Pm
·

2tn

Pn
· rmsA, if Pm | 2k and Pn ̸ | 2k,

2tm

Pm
·

tn

Pn
· rmsA, if Pm ̸ | 2k and Pn | 2k,

2tm

Pm
·

2tn

Pn
· rmsA, if Pm ̸ | 2k and Pn ̸ | 2k,

and therefore

(6.18) rmsAPmPn ≈



tn

Pn
· rmsAPm ≈

tm

Pm
· rmsAPn , if Pm | 2k and Pn | 2k,

2tn

Pn
· rmsAPm ≈

tm

Pm
· rmsAPn , if Pm | 2k and Pn ̸ | 2k,

tn

Pn
· rmsAPm ≈

2tm

Pm
· rmsAPn , if Pm ̸ | 2k and Pn | 2k,

2tn

Pn
· rmsAPm ≈

2tm

Pm
· rmsAPn , if Pm ̸ | 2k and Pn ̸ | 2k.

Therefore, if we sieve integers, then due to (6.8), at the mth round of the sieve, we have

(6.19) S (rmA
′
Pn
, Pm) ≈ rmA

′
Pn
·

(
Pm − tm

Pm

)
,

and, if we sieve subtractive representations, then due to (6.18), at the mth round of the sieve, we
have

(6.20) S (rmsAPn , Pm) ≈


rmsAPn ·

(
Pm − tm

Pm

)
, if Pm | 2k,

rmsAPn ·

(
Pm − 2tm

Pm

)
, if Pm ̸ | 2k.

Therefore, if prior to the mth round of the sieve, we have

(6.21)
rmsAPn

rmsA
=

rmA
′
Pn

rmA
′
,

then, due to (6.15), (6.16), (6.19), and (6.20), post the mth round of the sieve, we have

(6.22)
rm+1sAPn

rm+1sA
≈

rm+1A
′
Pn

rm+1A
′
.
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Therefore, due to (6.4), we have

(6.23)
rnsAPn

rnsA
≈


1 ·

rnA
′
Pn

rnA
′
, if Pn | 2k,

2 ·
rnA

′
Pn

rnA
′
, if Pn ̸ | 2k.

If 2k ≤
x
2

, then

(6.24)
rnA

′
Pn

rnA
′
=

rnAPn

rnA
,

and therefore

(6.25)
rnsAPn

rnsA
≈


1 ·

rnAPn

rnA
, if Pn | 2k,

2 ·
rnAPn

rnA
, if Pn ̸ | 2k,

and therefore

(6.26)
rnsAPn

rnsA
=


1 ·

rnAPn

rnA
· fs, if Pn | 2k,

2 ·
rnAPn

rnA
· fs, if Pn ̸ | 2k.

We determine an upper bound to fs, as follows.
Since Pn ≤

√
x and rnA ≥ π

[√
x, x

]
, then

(6.27)
Pn

rnA
≤

√
x

π
[√

x, x
] .

Since π
[√

x, x
]
→ π(x) as x→ ∞, and

(6.28) lim
x→∞

√
x

π(x)
= 0,

as implied by the Prime Number Theorem, then

(6.29) lim
x→∞

√
x

π
[√

x, x
] = 0,

and therefore

(6.30) lim
x→∞

Pn

rnA
= 0.

Therefore, if

(6.31)
Pn

rnA
· rnAPn = cs > 0,

and therefore

(6.32)
Pn

rnsA
· rnsAPn ≈ cs,
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where cs is a constant, then rnAPn → ∞ as x → ∞, and therefore rnsAPn → ∞ as x → ∞.
Therefore, if

(6.33)
Pn

rnsA
· rnsAPn ≥ cs,

then fs → 1 as x→ ∞, and therefore, if x ≥ w, then fs ≤ 1.15. Since cs may be chosen arbitrarily
close to 0, then

(6.34)
rnsAPn

rnsA
≤


1 ·

rnAPn

rnA
· 1.15, if Pn | 2k,

2 ·
rnAPn

rnA
· 1.15, if Pn ̸ | 2k.

Since

(6.35)
rnAPn

rnA
≤

2.15
Pn
,

then

(6.36)
rnsAPn

rnsA
≤


1 ·

2.15
Pn
· 1.15, if Pn | 2k,

2 ·
2.15
Pn
· 1.15, if Pn ̸ | 2k,

and therefore

(6.37)
rnsAPn

rnsA
≤

5
Pn
.

Furthermore, empirical data show that

(6.38)
r1sAP1

r1sA
≤

1
P1
,

and

(6.39)
r2sAP2

r2sA
≤

2
P2
+ 2,

and

(6.40)
r3AP3

r3A
≤

1
P3
+ 1.

Due to (6.34) and (6.40), we have

(6.41)
r3sAP3

r3sA
≤ 2 ·

(
1
P3
+ 1

)
· 1.15 <

3
P3
+ 3.

7. Lower bounds on the surviving representations

Let x ≥ w, then resulting from the upper bounds in section 5, we have

(7.1) g(x)′ ≥

 x
2
·

(P1 − 1)
P1

·
(P2 − 2)

P2
·

(P3 − 3)
P3

·

Pn≤
√

x∏
Pn=P4

(Pn − 5)
Pn

 − 6,

which we quantify as follows. Since

(7.2)
Pn≤
√

x∏
Pn=P4

(Pn − 5)
Pn

≥

Pn=P70∏
Pn=P4

(Pn − 5)
Pn

·

Pn≤
√

x∏
Pn=P71

(Pn − 6)
Pn

,
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and

(7.3)
(P1 − 1)

P1
·

(P2 − 2)
P2

·
(P3 − 3)

P3
·

Pn=P70∏
Pn=P4

(Pn − 5)
Pn

>
79

500, 000
,

then

(7.4) g(x)′ ≥

x ·
79

1, 000, 000
·

Pn≤
√

x∏
Pn=P71

(Pn − 6)
Pn

 − 6.

Since P71 = O118, then

(7.5)
Pn≤
√

x∏
Pn=P71

(Pn − 6)
Pn

≥

Oz≤
√

x∏
Oz=O118

(Oz − 6)
Oz

,

and therefore

(7.6) g(x)′ ≥

x ·
79

1, 000, 000
·

Oz≤
√

x∏
Oz=O118

(Oz − 6)
Oz

 − 6.

Since Oz ≤
√

x, then

(7.7)
Oz≤
√

x∏
Oz=O118

(Oz − 6)
Oz

≥
O116 · O117

x
.

Since O116 = 347 and O117 = 349, then

(7.8) g(x)′ ≥
(
79 · 347 · 349

1, 000, 000

)
− 6 ≥ 1.

This completes the proof for theorem 1.

Let x ≥ w and let 2k ≤
x
2

, then resulting from the upper bounds in section 6, we have

(7.9) π2k(x)′ ≥

 x
2
·

(P1 − 1)
P1

·
(P2 − 2)

P2
·

(P3 − 3)
P3

·

Pn≤
√

x∏
Pn=P4

(Pn − 5)
Pn

 − 6,

and therefore, as with (7.8), we have

(7.10) π2k(x)′ ≥
(
79 · 347 · 349

1, 000, 000

)
− 6 ≥ 1,

and therefore π2k(x)→ ∞ as x→ ∞. This completes the proof for theorem 2.
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