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Abstract: Amyotrophic Lateral Sclerosis (ALS) is a prototypical neurodegenerative disease charac-
terized by progressive degeneration of motor neurons to severely effect the functionality to control
voluntary muscle movement. Most of the non additive genetic aberrations responsible for ALS make
its molecular classification very challenging along with limited sample size, curse of dimensionality,
class imbalance and noise in the data. Deep learning methods have been successful in many other
related areas but have low minority class accuracy and suffer from the lack of explainailbilty when
used directly with RNA expression features for ALS molecular classification. In this paper we
propose a deep learning based molecular ALS classification and interpretation framework. Our
framework is based on training a convolution neural network (CNN) on images obtained from
converting RNA expression values into pixels based on DeeplInsight similarity technique. Then we
employed Shapley Additive Explanations (SHAP) to extract pixels with higher relevance to ALS
classifications. These pixels were mapped back to the genes which made them up. This enabled us to
classify ALS samples with high accuracy for a minority class along with identifying genes that might
be playing an important role in ALS molecular classifications. Taken together with RNA expression
images classified with CNN, our preliminary analysis of the genes identified by SHAP interpretation
demonstrate the value of utilising Machine Learning to perform molecular classification of ALS and
uncover disease-associated genes.

Keywords: Machine learning, ALS, Classification, Interpretation, Target Identification

1. Introduction

Amyotrophic lateral sclerosis (ALS) refers to a group of rare neurological disorders
in which nerve cells (neuron) functionality to control voluntary muscle movement such
as chewing, walking and talking is jeopardized [1-3]. The disease results in progressive
loss of muscle strength leading to paralysis and eventually death [2]. Genetic aberration is
one of the primary causes of ALS for many patients [2,4]. Most of these genetic aberrations
are non additive because of their interaction with each other which makes it challenging
to be detected using classical available genotype—phenotype association approaches [2].
ALS is now recognized as a multi-dimensional spectrum disorder. Recently, deep learn-
ing techniques have been proven to be widely used for predicting genotype—phenotype
associations and molecular ALS classifications [5-8]. The ability of deep learning models
to effectively extract non linear relationships from a large number of samples for complex
disorders has been reported in literature [9,10].

The molecular ALS classification is also very complex problem [11] and ideally would
require thousands of samples [12] to train any deep learning algorithm. ALS is a rare
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disease and it is challenging to find large number of samples for research purpose [12,13].
Another factor that limits the availability of samples is the accessibility of affected tissues.
ALS is a disease of motor neurons, which reside in the spinal cord and the brain [14].
Post-mortem spinal cord, brain and cerebrospinal fluid are ideal tissue sources which either
directly reflect the pathology of the disease or have interaction with central nervous system,
but they are usually more difficult to access compared to tissue like blood [15]. In a typical
dataset of rare disease (ALS) samples, the number of samples is far less than number of
expressed genes [16,17], thus introducing the curse of dimensionality [18].

Another challenge with study of RNA expression, which is the gene transcription
activity represented by count of reads mapped to the gene in next generation sequencing
data, is tissue heterogeneity and cell composition heterogeneity. Different human tissues
have distinct RNA expression patterns [19], furthermore, it has been found that ALS
patients and healthy individuals have different cell composition in same tissue [20], these
can be confounding factors in disease associated gene expression identification. As we are
using post-mortem samples in the study, RNA quality can be easily impacted by sample
collection time and storage condition, which in turn will influence data quality and gene
expression quantification. This is another confounding factor that make the data analysis
challenging.

Besides limited sample size, curse of dimensionality and noise of the data, rare
disorders data also suffer from severe class imbalance problem [21,22]. In machine learning,
one of the important criteria for higher classification accuracy is a balanced dataset [22].
Datasets with a large ratio between minority and majority classes face hindrance in learning
using any classifier [22]. In order to cater for dimensionality curse and class imbalance
for molecular classification of ALS, we propose an end to end machine learning based
pipeline for ALS and control samples classification and interpretation. We used RNA
expression data for control (60) and ALS (490) samples, each sample is represented in RNA
expression values. The RNA expression values for each sample are mapped to form a
pixel value of an image, thus creating an image dataset. We utilized DeeplInsight package
[23] for image creation and a convolutional neural network (CNN) for classification. We
used various subsets of RNA expression data with our classification model. Using this
approach, even with small size, highly noisy and severe class imbalance dataset, we
achieved promising classification results. Our method achieves better performance for
a minor class in comparison to other classical methods such as fully connected neural
network trained, random forest and support vector machines trained on RNA expression
values directly.

In addition to molecular classification of ALS, we also employed SHAP (Shapley
Additive Explanations) to interpret the prediction results of our classification module
[24]. We identified the top 10 pixels with the highest SHAP values and investigated the
genes which these pixels represented. The model found known ALS-associated genes and
predicted potential new disease genes. we demonstrated the value of utilising Machine
Learning to perform molecular classification of ALS. In this study, we show that our
image-based neural network approach is able to to perform effective feature selection, learn
non-linear relationship in highly noisy data and identify biologically relevant molecular
signals.

2. Materials and Methods

In this section, we first describe the data set and the performance evaluation criteria
used in this study. Then we provide details about the developed pipeline and its major
parts such as image creation module, classification module and post-hoc interpretation
module.

2.1. Data sets

New York Genome Center (NYGC) RNASeq data was used for this study, RNA extrac-
tion, library preparation and sequencing were performed by NYGC under their protocol.
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Briefly, total RNA was extracted from flash frozen post-mortem tissues of ALS and control
samples, using trizol/chloroform method, followed by Qiagen RNeasy minikit column
purification. RNA was quantified using Nanodrop 2000 and Qubit™ 2.0 Fluorometer and
its quality was measured by RNA integrity number (RIN) scores on Agilent Bioanalyzer.
Libraries were prepared using KAPA Stranded RNA-Seq Kit, then loaded to Illumina HiSeq
2500 sequencer for 2x125 bp paired-end sequencing.

After receiving the raw sequencing data in fastq format, we performed quality control
using FASTQC [25], with mean quality value across each base position in the read and per
sequence quality scores as the main metrics for data quality evaluation. The sequences
were pseudo-aligned to reference genome of GRCh38 from Ensembl release 95 [26] by
Kallisto [27] for RNA expression quantification. GTF file from Ensemb] release 86 was used
for gene region annotation. The transcript abundance quantified by Kallisto was used for
downstream machine learning.

As sex chromosomes have different ploidies in different genders, we only use genes in
autosomes, i.e. chromosomes 1 to 22 in our pipeline. We also excluded loci with multiple
haplotypes in GRCh38 (such as MHC locus) where accurate expression quantification is
challenging. As genes with low read count carry little information and can be caused by
mapping errors, we conducted a case study which only used high expression genes, which
are genes with >= 10 reads in >= 10 samples, for model training. In another case study, we
used only protein coding genes for training, which are defined as protein coding genes in
Gencode Release 26 [28].

2.2. Evaluation criteria

In order to measure the ALS classification performance of our developed pipeline,
we used the following metrics: Area under curve of receiver operating curve (AUC-ROC),
specificity (SPE), sensitivity (SEN), negative predictive value (NPV), positive predictive
value (PPV), accuracy (ACC) and Matthew’s correlation coefficient (MCC). It should be
noted in this paper, negative class refers to control and positive class refers to ALS. The
details of these metrics are as follows:

e  Area under curve of receiver operating curve (AUC-ROC): AUC-ROC takes into
account all the threshold. The higher the value of AUC-ROC, the better the model is
distinguishing between classes. It can be computed by taking area under the curve
for true positive rate (TPR) on the y-axis and false positive rate (FPR) on the x-axis for
a given dataset. TPR which is also called sensitivity (SEN) describes how good the
model is at classifying a sample as ALS when the actual outcome is also ALS. FPR
describes how often a ALS class is predicted when the actual outcome is control.

TP
SEN =TPR = TP EN 1)
FP
FPR=Fp 1N @

Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False
Negatives, SEN = Sensitivity.

e  Specificity (SPE): SPE is the total number of true negatives divided by the sum of
the number of true negatives and false positives. Specificity would describe what
proportion of the negative class got correctly classified by our model.

TN
"~ TN +FP

e Negative predictive value (NPV): NPV describes the probability of a sample pre-
dicted as negative class to be actually as negative class.

SPE 3)

TN
NPV = TN +FN @)
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e  Positive predictive value (PPV): PPV describes the probability of a sample predicted
as positive class to be actually as positive class.

TP
" TP+ FP

o  Accuracy (ACC): ACC is the fraction of prediction our model got right. i.e it predicted
positive class and negative class correctly.

PPV @)

TP+ TN
A =
cc TP+TN+FP+FN (©)
e  Matthewhews correlation coefficient (MCC): MCC has a range of -1 to 1 where -1
indicates a completely wrong binary classifier while 1 indicates a completely correct

binary classifier.

MeC — TP« TN — FPxFN -
V(TP + FP)(TP + EN)(TN + EP)(TN + EN)

2.3. Image creation module

Gene features data was converted into image data of fixed size with DeeplInsight
package [23]. DeeplInsight image creation process is shown in Figure 1. The RNA expression
values are mapped to a 2D matrix such that features which are similar to each other occupy
nearby position in the matrix. As shown in Figure 1a, a transformation T is applied on the
genes feature vectors for each sample which creates a 2D matrix M. Features g1, g3, g6
and gd are closer to each other which brings them in each other vicinity after applying the
transformation T. On the other hand, gene feature g7 is different than other and mapped to a
very different location in 2D matrix. Figure 1b shows each step of the transformation T. The
first step is to find the location of each gene feature. For that purpose, similarity measuring
technique or dimensionality reduction technique like t-SNE or kernel principal component
analysis (kPCA) is applied sample-wise on the gene features data. This results in feature
locations in 2D plane. Once the location of the gene features of samples is determined, then
convex hull algorithm is used to find the smallest rectangle that contains all the points.
Rotation is performed to obtain images in horizontal or vertical orientation only. Then the
gene features are mapped to their respective positions obtained in the previous step. Thus
a new image data is created for each sample where each pixel correspond to one or more
gene features. In case of multiple genes very similar to each, their values are averaged out
to obtain a pixel.

~
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M (feature matrix)
Pixel [Framing & Mapping|
g < 4 <
. Coordinates (pixels)

 (feature vector)

Figure 1. Deeplnsight pipeline. (a) An illustration of transformation from feature vector to feature
matrix. (b) An illustration of the DeepInsight methodology to transform a feature vector to image
pixels. Image taken from Deeplnsight [23].

In specific implementation for RNA expression data as gene features in our case, we
first normalized the expression values to a range of [0, 1]. We used normalization method
named as norm-2 from DeeplInsight [23]. In this normalization, the topology of features
is reserved to a some extent DeepInsight [23]. After normalization, we used a python
package of DeeplInsight [29] with t-SNE method to generate single channel images with a
dimension of 380x380 in our final model. For the demonstration purposes, we show an
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image of 120x120 in Figure 2. Major portion of both ALS and control is similar yet subtle
changes can be observed, one of which is highlighted in Figure 2.

a) ALS sample b} Control sample

Figure 2. ALS and control sample images obtained using DeepInsight for RNA expression data
considered in this study. We show an image with a resolution of 120x120 for demonstration purposes.

2.4. Classification module

After obtaining image data from RNA expression data, we used convolutional neural
network (CNN) to classify images into ALS and control. A convolutional neural network
is a special type of neural network for the image data. CNNs can extract low level features
from images and compute more complex features as we go deeper in the networks [30,31].
Variants of CNN like Inception, Alexnet and Resnet have been developed and employed as
highly accurate image classification models [32]. In our particular case as shown in Figure
3, there is an input, 2 conv blocks, then fully connected block followed by an output block.
Input contains image data of 490 ALS and 60 control samples. Each sample is 380 x 380
single channel image. There are two conv blocks concatenated after the input. Each of the
conv block consists of one 2D convolution layer followed by ReLU activation, max pooling
and drop out as shown in Figure 3. The depth d of 2D convolution is 32 in first conv block
and 64 in the second conv block. In fully connected block, a dense layer with 256 units
along with ReLU activation is used after flattening the output of the conv block. A single
dense unit followed by sigmoid function is applied at the end of the fully connected block.
At the output, the sample is considered as ALS for prediction probability greater than 0.5
and control for prediction probability less than 0.5.

2.4.1. CNN training

We used Keras deep learning framework [33] for developing and training the CNN
model. We trained it for 500 epochs with an early stopping criteria. During the training, we
used class weights for computing the loss function to cater for class imbalance in our data.
ALS class was assigned with a weight of 0.56 and control was assigned with a weight of
4.57 using sklearn class_weight function [34]. We used ADAM optimizer [35] with a binary
cross entropy loss function from Keras [33] for training our CNN model.

2.5. Classical machine learning methods

We used random forest (RF), support vector machines (SVM) and a fully connected
neural network (FCNN) with 33153 RNA expression features related to autosomal genes
directly to compare their results with our method.
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Figure 3. CNN architecture for classifying ALS and control images

2.5.1. Random Forest (RF)

Random forests are a combination of tree predictors such that each tree depends on
the values of a random vector sampled independently and with the same distribution for
all trees in the forest [36]. We used RF from scikit-learn machine learning library with its
default parameters [37].

2.5.2. Support vector machines (SVM)

Support vector machines (SVM) belongs to a class of supervised machine learning
methods. It attempts to find a line/hyper-plane (in multidimensional space) that separates
classes of data under observation or ranges for regression [38,39]. We used SVM from
scikit-learn machine learning library with its default parameters [37,40].

2.5.3. Fully connected neural networks (FCNN)

We also compared our method with a fully connected neural network (FCNN). FCNN
can be viewed as a complex mapping function, where the fundamental unit of a FCNN
is called a neuron. It takes input and computes the output after applying non-linearity
and gradient descent based back-propagation algorithm [41]. In specific implementation
for this study, FCNN consisted of two fully connected layers with 200 neurons in each,
a second last layer with 10 neurons and an output layer with one neuron. We placed a
dro-out rate of 0.5 after each hidden layer. we used Keras deep learning framework [33]
for training. We trained it for 100 epochs with an early stopping criteria. We used ADAM
optimizer [35] with a binary cross entropy loss function from Keras [33] and a batch size of
32 with a learning rate of 0.001.

2.6. Post-hoc interpretation module

Deep learning methods such as CNN are black-box in nature and extremely difficult
to interpret [42,43]. These methods are capable to answer "what" question about certain
prediction but fails to give an answer to "why" question [43,44]. Understanding why a
model makes a certain prediction can be as crucial as the prediction’s accuracy in many
applications [24]. In this study, we used SHAP (Shapley Additive Explanations) to interpret
the prediction results of our classification module. SHAP assigns each feature an impor-
tance value for a particular prediction. It connects game theory with local explanations and
uniting several previous methods [44—47]. SHAP represents the only possible consistent
and locally accurate additive feature attribution method based on expectations [24].

In this study, once we have trained and tested our model, we employed Deep SHAP
package [48] to interpret the prediction outcome of our classification module. In the first
step, we selected a distribution of background 200 random samples out of the input image
data to take expectations over. Then we used the selected background distribution along
with the trained model to obtain SHAP values for each pixel in a sample as shown in Figure
4. Red pixels represent positive SHAP values that increase the probability of the class,
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while blue pixels represent negative SHAP values the reduce the probability of the class.
The sum of the SHAP values equals the difference between the expected model output
(averaged over the background dataset) and the current model output. After obtaining
SHAP values of each pixel, we selected top ten pixels with the highest SHAP values and
mapped them back to specific genes forming those pixels.

RO , , T T ]
—0.003 —0.002 —-0.001 0000 0001 0002 0003
SHAP value

Figure 4. Left side is gray-scale image of an ALS sample. Right side shows highlighted pixels in the
image with SHAP values.

3. Results and discussion

In this section, we present classification performance of our method with different
image resolutions and RNA expression features related to various sets of genes. We also
show our method’s performance compared with classical machine learning models, and
top 10 gene extracted using SHAP interpretation of our method. Finally we investigate the
functional and disease association of the extracted genes, then discuss some potentially
identified new genes.

3.1. Samples and quality controls

Fastq files of 550 samples (490 ALSs and 60 controls) were downloaded from NYGC
database, all of them passed the default quality control criteria of mean quality value
in the read and per sequence quality scores of FASTQC, and all samples were used for
downstream analysis. The samples are from different tissues sources, including cerebellum
(n =98), frontal cortex (96), motor cortex (118), occipital cortex (58) and spinal cord (163)
(Table S2). We quantified the expression of 39,429 genes (33,153 autosomal and 6,276
non-autosomal genes), expression data of autosomal genes were used for model training.

RIN is one of most commonly used metrics for RNA quality control. It has been
shown that RIN values have impact on RNA sequencing data quality and gene expression
quantification [49]. The suggested threshold of RIN value for sample inclusion varied in
different studies, it can be as high as 8 [50] and as low as 3.95 [51]. The samples in this
study have RIN values range from 2.2 to 9.9 (Figure S1), we did not filter out samples with
low RNA quality using a RIN threshold, as it can reduce the power of the analysis [49], in
contrast, we just used all samples for model training, and left the task of distinguishing
biological signals from RNA quality confounding effects to the model.

3.2. Classification performance for various image resolutions

We present the effects of different image resolutions on the classification performance
of our method. For this purpose, we used RNA expression features of 33,153 autosomal
genes. We performed 12-fold cross validation experiments with image resolutions starting
from 50x50 till 380x380 as shown in Figure 5. AUC and ACC improves with higher image
resolutions. The highest value of AUC: 0.927 is obtained for the resolution of 320X320
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whereas for that of ACC: 0.827 is obtained for the resolution of 380X380. For F1 and MCC,
we observe an initial improvement with a dip in between around 220 and 250 followed
by improvement till 380x380. The highest values for both F1: 0.813 and MCC: 0.639 are
obtained for the resolution of 380X380. As the data is highly imbalanced with ALS as
major class and control as minor class, we see higher sensitivity with little variations as
compared to specificity for all image resolutions. SPE increases continuously with higher
image resolution with a highest value of 0.706 for 380x380. The ability of our model to
correctly identify minor class which is control in our case improves significantly with
higher resolution images. For PPV on the other hand, there is a slight improvement with
a highest value of 0.963 for for 380x380. The highest value for NPV however occurs at a
resolution of 180x180 which is 0.790. Also, with higher resolutions, the standard deviation
for 12 folds increases as shown by the black error bars in Figure 5.

AUC and ACC F1 and MCC

SEN and SPE PPV and NPV

0.9
0.8
0.74

051
0.4
031
021
014

Image resolution Image resolution

Figure 5. 12 fold cross validation performance for creating images of various resolutions.

3.3. Comparison with classical models

In order to investigate the effectiveness of our method, we compared its results with
classical machine learning methods such as random forest, support vector machine and
fully connected neural networks. As shown in Table 1, our method performs significantly
better in most of the classification metrics. Specifically in classifying the control class
correctly, our method proves to be very robust as shown by SPE value in Table 1. Both RF
and SVM achieves very poor performance for classifying the minor class correctly. FCNN
performs relatively well though as compared to RF and SVM for SPE. Relatively higher
value of AUC for RF and SVM is strongly influenced by major class which is most of the
time predicted correctly. AUC for our method is the highest as compared other classical
methods. Nearly all the methods are performing well for classifying the major class as
shown by the SEN value in Table 1. SVM achieves highest NPV followed by RF, FCNN
and our method respectively. For PPV, ACC, MCC and F1, our methods achieves 3.54%,
20.37%, 33.68%, 12.44% improvement over the second best FCNN method.
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Table 1: 12-fold cross validation performance comparison with classical machine learning
methods such as random forest (RF), support vector machines (SVM) and fully connected
neural network (FCNN). For our method while comparing with classical methods, we used
images with resolution of 380x380 and all 33,153 RNA expression features of autosomal

genes.
Method AUC SPE SEN NPV PPV ACC MCC F1

Our method | 0.917%0.03 | 0.707+011 | 0.947+0.04 | 0.67120.18 | 0.963+0.01 | 0.827:£0.05 | 0.639+0.11 | 0.813%0.06

RF 0.831£0.04 | 0.1552£0.05 | 0.994%0.00 | 0.798£0.19 | 0.906-0.00 | 0.575£0.02 | 0.319:£0.09 | 0.602+0.04

SVM 0.866:£0.05 | 0.083£0.03 | 140 1£0 | 0.899+£0.00 | 0.541£0.01 | 0.270+£0.04 | 0.549£0.02

FCNN | 0.805£0.04 | 04+0.12 | 0.974+0.02 | 0.6920.20 | 0.930+0.01 | 0.687+0.06 | 0.4780.15 | 0.723+0.07

3.4. Case study of classification performance with high count and protein coding genes

In the initial phase of this study, we used expression values of all available 33,153
autosomal genes to train our pipeline with 380x380 image resolutions. We observed that
even though higher resolution of images give better classification performance, it also
increases the computational complexity and run time of the pipeline. So, we chose the
resolution of 350x350 for two case studies to investigate the effectiveness of high expression
genes and protein coding genes.

o High expression genes: Many of the 33,153 autosomal genes only express in very few
samples and carry little information, so we filtered out those genes with low expression
and only included genes with high read count in certain number of samples. For
that purpose, we used a threshold of 10, i.e, at least 10 samples across our training
data have a read count of 10 or higher. By this filtering strategy, we obtained total
of 18,194 high expression genes. RNA expression values of these high read count
genes were converted into 350x350 images and subsequently used in CNN training
for classification.

e Protein coding genes: As including non-protein coding genes in the training data
may only increase the model complexity but bring little benefit to the model, so in
the second case study, We also selected RNA expression data of 19,724 protein coding
genes, converted them into images with resolution of 350x350 and evaluated the
performance of CNN model trained with those images.

Table 2: 12-fold cross validation classification performance with a resolution of 350x350
high expression and protein coding genes RNA features.

RNA features AUC SPE SEN NPV PPV ACC MCC F1
High count genes 0.964+0.04 | 0.7761+0.12 | 0.97840.00 | 0.80940.00 | 0.973+0.01 | 0.8774+0.06 | 0.767+0.10 | 0.882+0.05
Protein coding genes | 0.9104+0.04 | 0.646+0.13 | 0.968+0.02 | 0.72040.12 | 0.957+0.01 | 0.807£0.07 | 0.643+0.13 | 0.81940.06

As shown in Table 2, for all the metrics, RNA features for high expression genes
substantially improve the classification performance as compared to 33,153 autosomal gene
expression results shown in Table 1. Protein coding genes however show a slight decrease
in the classification performance.

3.5. SHAP interpretation

We used SHAP interpretation [24] to investigate the role of each gene in classifying
ALS samples using our developed model. It should be noted that each pixel of the image
may contain one or more gene expression values. It should be noted that for SHAP
interpretation, we used the model obtained with high count gene RNA expression features
with image resolution of 350x350. For each prediction of our model discussed previously,
we identified top 10 pixels having highest SHAP values. We identified 12 genes (Table
S3) which appeared in the top 10 pixels in more than 200 samples. We are currently
investigating 10 of the genes further, however, two genes in our dataset, Survival of motor
neuron-1 (SMN1) and SMNZ2, have been previously classified as associated with disease in
ALS [52]. SMN1 and SMN?2 are paralogous genes as the result of an inverted duplication
[53]. The SMN protein has a myriad of roles in motor neuron function and is critical for
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regulation of transcription and RNA maturation, axonal trafficking of RNA transcripts,
facilitating the binding of RNA-binding proteins to mRNA transcripts, and regulating
cytoskeletal dynamics [54]. In addition, SMN is involved in protein degradation pathways
by its actions in autophagy and the ubiquitin-proteasome system (UPS) and may contribute
to mitochondrial function through regulation of splicing, translation or mRNA transport of
genes crucial for mitochondrial homeostasis [54]. Therefore, the SMN protein encoded by
SMN1 and SMN2 contributes to many distinct pathways implicated in the pathology of
ALS.

In addition, SMN interacts with, and its properties are modulated by, other proteins
known to contribute to ALS pathogenesis, such as FUS, SOD1 and TDP-43 [55]. The interac-
tion between ALS and FUS is enhanced by ALS-associated mutations in FUS, causing these
proteins to form a stable complex [56]. As a result, SMN is mislocalised and sequestered
into cytoplasmic FUS aggregates, leading to a decrease of SMN in the axons of neurons
and subsequent axonal defects [56]. These aberrations also result in loss of small nuclear
bodies, dysregulated small nuclear ribonucleoprotein (snRNP) assembly and defects in
downstream RNA processing [57,58]. Similarly, SOD1 variants cause mislocalisation of
SMN and disrupt the formation of nuclear bodies [59,60]. In vitro overexpression of SMN
enhances chaperone activity and protects cells from mutant SOD1 toxicity [61]. Further-
more, overexpression of SMN in SOD1 or TDP-43 mutant mice ameliorates disease [62,63],
while SOD1 mutant mice exhibit accelerated disease severity when SMN is depleted [64].
Therefore, currently available evidence indicates that, in addition to its function in relevant
biological pathways affected during ALS, the SMN protein may cooperate with other ALS-
associated genes to coordinate and modify the disease phenotype of ALS. Taken together,
our preliminary analysis of the genes identified by SHAP interpretation demonstrate the
value of utilising Machine Learning to perform molecular classification of ALS and uncover
disease-associated genes.

4. Conclusions

In conclusion, we developed a deep learning framework, which took full advantage
of image recognition ability of convolutional neural network by transforming the gene
expression data of ALS into images, then used them for neural network training. We
showed that the model effectively extracted disease associated features and learn the non-
linear gene-disease relationship in highly noisy, heterogenous and imbalanced data, we
also showed its superior performance in disease clarification over other machine learning
algorithms. We interpreted the model with SHAP, and successfully identified known
disease associated genes, and some potential new disease genes, which demonstrated the
potential of our model in new bio-marker and drug target identification in complex disease
research.
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