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Abstract: Photovoltaic (PV) generation is potentially uncertain. Probabilistic PV generation forecast-
ing methods have been proposed with prediction intervals (PIs). However, several studies have
dealt with geographically distributed PVs in a certain area. In this study, a two-step probabilistic
forecast scheme is proposed for geographically distributed PV generation forecasting. Each step of
the proposed scheme adopts ensemble forecasting based on three different machine-learning meth-
ods. In this case study, the proposed scheme was compared with conventional non-multistep fore-
casting. The proposed scheme improved the reliability of the PIs and deterministic PV forecasting
results through 30 days of continuous operation with real data in Japan.
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1. Introduction

Photovoltaic (PV) generation in a distribution network plays a key role in promoting
clean energy production. One of the well-recognized problems of PV generation is the
increased power flow at the substation and in the distribution line under the substation
[1]. The peak time and amount of power flow depend on the demand and PV generation
in the network. The peak is mitigated by operations of energy storage systems (ESSs), such
as fixed batteries reported in [2][3]. The peak time and amount of energy generated from
the PVs must be forecasted to operate the ESS with the best efficiency. In [3], the proposed
peak-shaving algorithm is performed based on prediction intervals (PIs), which indicate
the probability of peak demand at the substation. The Pls are evaluated using two contra-
dictory fundamental ideas: the coverage rate and the width of the intervals [4]. If the PIs
cover all observations, the coverage rate is the best at 100%. By contrast, the PI widths are
preferred to be narrower. As the PIs have a high coverage rate of observations and become
narrower, the performance of the peak mitigation improves [3].

PVs are distributed within a certain area connected to the same distribution network.
Thus, a spatiotemporal model is required to extract and use spatial and temporal data
from multiple PVs to improve PI reliability [5] [6] [7]. Ref [5] proposed a deep learning
framework that can generate PV forecasts for multiple regions and horizons with 56 loca-
tions in the US. Ref. [6] proposed a model to forecast six hours based on 136 PV installa-
tions in France. Irradiance forecasting for 11 PVs distributed in a certain region is per-
formed as accumulated generations [8]. The cloud motion vector-based method [9][10] is
an established approach for covering distributed PVs in a certain area. Numerical weather
predictions are used for forecasting hours to days ahead [11]. Satellite images, ground
measurements, and sky imaging were combined to improve deterministic and probabil-
istic forecast reliability [12]. Optical flow [13] deals with non-uniform cloud motion and
is originally a technique for image processing [15]. The optical flow is a distribution of the
apparent velocities of the movement of brightness patterns in an image. An optical flow
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that tracks the amount of distributed PV generation was developed in our laboratory [14].
Consequently, the mean absolute percentage error is 4.23% in the case of forecasting 30
min [14]. However, the error increases when the prediction time is later.

Another promising approach for forecasting PV generation is the historical data-
driven approach. Data-driven approaches require a large amount of measured past-gen-
eration data for deep learning [16]. However, once the correct dataset with a small number
of missing records is arranged, the forecasting ability is excellent, especially in day-ahead
forecasting [17]. Developing PIs with data-driven approaches for various objectives, such
as not PV forecasting, is proposed based on Delta [18] [19], Bayesian [20], mean-variance
estimation [21], and bootstrap techniques [22], which are comprehensively compared in
[23]. Quantile regression was adopted in [7]. The bootstrap technique was proposed in
[17] to quantify the uncertainty with PIs for PV forecasting. In addition, the performance
of the bootstrap technique has been proven for wind farm power generation forecasts [24].

Sky or cloud image-based methods and data-driven approaches have been devel-
oped as aforementioned; however, as the intensive reviews of PV forecasting, as reported
in [11], studies on regional models for multiple PVs are limited. In addition, the existing
forecast models are too specific to circumscribe to a particular region [25].

In this study, we introduce the idea of optical flow to data-driven methods, such as
machine-learning-based methods to improve existing probabilistic PV generation fore-
casting methods. Existing machine learning utilizes past data, including generations, tem-
perature, humidity, and precipitation, and the most important predictor is radiation. The
forecasting model was mainly developed for each PV system. Conversely, the original
idea of PV generation forecasting with the optical flow developed in our laboratory is that
the generation of geographically distributed PVs moves as the sun and clouds move [14].
Herein, we propose a PV forecasting method for geographically distributed PVs in a cer-
tain area. The PVs are geographically close. Therefore, the past-generation data of one PV
can be a meaningful predictor of another PV generation forecasting, which is proven in
Section 3 as a case study. Ensemble forecasting comprising three machine-learning meth-
ods is proposed in this study as an example of probabilistic forecasting. The proposed
ultimate forecasting scheme comprises a single PV forecast model and multiple PV fore-
cast models. The ensemble forecast was adopted for both single and multiple PV forecast
models. The proposed ensemble method is enhanced by utilizing the past-generation data
of multiple PVs. The simulation shows that the reliability of the forecasting is improved
by both deterministic and probabilistic forecasting. The contributions of this study are as
follows:

1) In this study, we propose a method to develop boundaries for PIs based on past fore-
cast errors. The case study shows that the boundaries are stable and useful for multi-
ple PVs based on real PV generation data.

2) A multi-step PV forecasting scheme for geographically distributed PVs in a certain
area is proposed. The case study shows that the proposed scheme improves the fore-
casting reliability with real PV generation data.

3) The performance of the proposed multi-step PV forecasting scheme was evaluated
with a long-term simulation case as continuous 30 days. The statistical analysis indi-
cates that the proposed scheme improves the root mean square error (RMSE) and
mean average percentage error (MAPE) for deterministic forecasting. In addition, the
PI cover rate and the width of PI for probabilistic forecasting are improved compared
to conventional single PV forecast methods.

The rest of the paper is organized as follows: Section 2 introduces the methodology
of the ensemble forecasting model and way to generate the PIs. Section 3 introduces the
case study to prove that the proposed forecasting algorithms can improve the reliability
of probabilistic forecasting in terms of the PI cover rate and PI width. Finally, Section 4
concludes the study.
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Figure 1. Configuration of the single and multiple PV forecast model

2. Forecast Methodology

The proposed forecast model consists of two steps: a single-forecast model and a
multiple forecast model, as shown in Figure 1. The single-forecast model is composed for
each PV, indicated as PV;, PV,, ... PV; in Figure 1. Past-generation data and weather
data are inputs for the ensemble forecast model, as explained in Section 2.1. The forecasted
PV generation by the single-forecast model for each PV was utilized as inputs to the mul-
tiple forecast model. In Figure 1, PV;,, is forecasted based on the forecasted generation
from PV; to PV;, which were chosen based on the Euclidean distance calculated by the
latitude and longitude of each PV location. In the case study, the five nearest PVs were
chosen to compose the multiple forecast models. The multiple forecast model is per-
formed based on the past data of the target PV, weather data, and the results of other PV
forecasts by the single-forecast models.

2.1. Ensemble forecasting with prediction intervals

Both the single and multiple PV forecast models were designed for ensemble fore-
casting. Three data-driven regressions —k-means, neural network (NN), and long short-
term memory (LSTM)—are utilized for ensemble forecasting. In this study, we will handle
multiple PVs that are geographically distributed in a certain area. The ensemble model is
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Figure 2. Configuration of an ensemble forecasting model.
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arranged for each PV in the proposed method. If we need to forecast five PVs at once, we
need to build five individual models for each PV based on different training data. The
configuration of the ensemble model is shown in Figure 2. Each data-driven regression
model was individually trained to configure the best parameters based on past data. All
individual models were added with different weights and one ensemble model. The
weight optimizer in Figure 2 calculates the optimal weight for addition based on the past
performance of each model. The k-means-based prediction was reported in [26]. The NN
model was designed using the function-fitting neural network available in MATLAB [27].
LSTM was also implemented using the function in MATLAB [28].

The PV forecast process is assumed to be performed once a day using continuously up-
dated observed data. The forecast result is provided as day-ahead forecasting; hence, the
forecasted PV generation can be utilized to determine the operations of the ESS charge
and/or discharge, such as [3]. The process of ensemble forecasting and the development
of the prediction intervals are shown in Figure 3. The PV forecasting process comprises
two parts: the training process with past data and the forecasting process with test data.
The steps from (i) to (vi) in Figure 3 are explained as follows.

(i) Forecast models
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Figure 3. Configuration of an ensemble forecasting model.
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(i) Check if forecast models need to be updated

In step (i), the ensemble forecast model is inspected to check whether the trained
parameters are latest. If the trained model with the determined parameters does not in-
clude the latest observed data, the model is re-trained to update the parameters of every
forecasting method. In the training process, the parameters for the ensemble forecasting
methods are determined using past data. Once the training process is completed, the
parameters for the forecasting methods remain fixed until a new training process is per-
formed. Therefore, the model parameters must be updated periodically to catch up with
the latest observed data. In the case study, the model was updated every 30 days.

(if) Train each forecast model with training data

In step (ii), the forecasting models k-means, NN, and LSTM are individually trained.
The data configuration is shown in Figure 4. Two groups are arranged for model building
and forecasting: long-term past data (training and validation data) and forecast data.
Long-term data contain predictors (timestamps, temperature, and weather conditions)
and target (PV generation); forecast data contain only predictors. In the forecast data,
weather information is obtained from weather forecasts available to the public via the
web. Training data were utilized as a training dataset to construct the k-means, NN, and
LSTM models. Long-term past data preferably contain at least one year of collection to
capture seasonal features. Validation data in the long-term past data were selected in sets
of arbitrary length from long-term past data. The validation data were utilized to deter-
mine the optimal weight for the ensemble forecast model, as shown in Figure 2. In addi-
tion, the validation data are utilized to compose the error distribution, leading to PIs.
Based on the validation data, the error distribution can reveal bias errors caused by recent
facility changes, such as installing new PV farms [29]. This bias error can also be reflected
in model training with long-term past data, including validation data. However, the sig-
nificance of the error takes more than several weeks to show up because the biased new
data records are significantly smaller than the existing long-term past data.
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Figure 4. Data configuration; long-term past data for training and error validation. Forecast data

for forecasting unknown PV generations.

(iii) Find the best weight for each forecast model

The optimal coefficients for an ensemble model composed of these two trained mod-
els were determined. For the k-means model, an optimal k is determined, which indicates
how many groups need to be generated. The NN model learns the weights of each neuron.
An ensemble prediction model was built by combining these two prediction models with
weights, as shown in Eq. (1):
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Here, 9} is the ultimate deterministic forecasted value of PV generation for time instance
t on the i-th day. T is the time instances in a day, which is 48 times in the case study. N is
defined as the number of days for error validation indicated by N in Figure 4. F} is the
deterministically forecasted PV generation using the individual forecast methods at time
t. In this case, three methods (N = 3) were adopted: k-means, NN, and LSTM. The coeffi-
cients ¢, are the weights of each forecasting method. ¢, is common for all days N. The
weights are time-consistent, as determined by the particle swarm optimization (PSO) al-
gorithm that minimizes the error between the observed and predicted loads, as shown in

Eq. (2):
arg min ¥, - ¥, ?
Here,
Y, = {}:{'}:5' J:tl }A/%} 3)
Y, = (9L 9%, .98 9L}

Y; is the set of observed data y} corresponding to the predicted PV generation 9} attime
t on the i-th day, and Y; is the set of predicted PV generation $;. For instance, as shown
in Figure 5, if the observed data comprise 30 min-intervals, t comprises 48 instances a
day. The deterministic prediction by the ensemble model is performed for past data for a
specific time duration, such as the period of one year (i=1, 2, 3, ..., 365).
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Figure 5. Forecasted and observed PV generation on the i-th day.

(iv) Get error distribution from the ensemble model

Once the optimal coefficients are obtained, future PV generation is forecasted using
the trained ensemble model. The boundaries of the PIs were subsequently calculated. The
absolute error set E, for a specific time t is derived by comparing the predicted and ob-
served data throughout the short-term past data. A series of errors are indicated in Figure
5, and the error set is expressed as follows:

-’ @
E, = {ef, ef, el ..ef ..el'},iEN,t €T ©)

Here, e} is the forecasting error for the ith day at time t. N indicates the number of
days included in the validation dataset. Each time t has an error record for several days.
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The set E, forms the histogram for each time t and is referred to as the error distribution
in this document.

(v) Forecast deterministic PV generation by the ensemble model

After the error distribution is formulated in the model training process, deterministic
PV generation is forecasted for the next 24 h. The deterministic forecast and error distri-
bution were added into a set D,. The set D, for time ¢ is defined as follows:

D, = {J, + e}, P +el, 9 +el .9 +el'} (6)

(vi) Make prediction interval from error distribution and deterministic forecasting

The PIs comprise upper and lower boundaries. In this study, these boundaries are
obtained by taking confidence intervals from set D, in (6). The set D, is not guaranteed
to be distributed as a normal distribution; thus, how to make PIs should be investigated
further in future work. In the following case study, the confidence interval level is 95% as
an example, which can change as the application requires.

2.1. Multiple forecast model

The multiple forecast models have the same ensemble model as the single-forecast
models. The operation flow of the multiple forecast model is also similar to that of the
single PV forecast model, as shown in Figure 3. The difference between the multiple and
single-forecast models is the input data into the ensemble models, as shown in Figure 1.
First, the target PV was chosen as the output of the multiple PV forecast model. Second,
the PVs forecasted by the single PV forecast models were selected based on the geograph-
ical distance from the target PV. In the case study, four PVs were selected for the single-
forecast model as an example. The criteria that choose PVs for the single-forecast model
are still open to discussion, which can consider the ground form, the direction of the PV
panels, obstacle conditions (sometimes the building makes shade for PV panels at a spe-
cific time), and others. The correlation coefficient between the generation data from the
target PV and PVs for the single PV forecast model is a promising candidate for choosing
PVs for a single PV forecast model.

3. Case Study

3.1. Given data set and premises

The data were collected around the Kanto region in Japan. The observed points were
distributed as shown in Figure 6. PV generation is forecasted for five PVs named PV (i),
(i), (iii), (iv), and (v) to validate that the proposed multiple PV forecast model improves
the reliability of the forecasting for each PV generation. The rated power of PVs are (i) 4.80
kW, (ii) 2.88 kW, (iii) 3.42 kW, (iv) 20.09 kW, and (v) 3.00 kW, respectively. PV generation

R
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”””” 9{_%\\A PV (iii)
A
,,,, 3% Y A A

SOy > e
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“« €, S PEgRY:
9 £ gt

Figure 6. Location of the PV systems to be forecasted in Japan
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was observed every 30 min from 6:30 AM to 5:00 PM daily. The observed generation data
are recorded with year, month, day, hour, minutes, temperature, precipitation, and
weather (sunny, cloud, or rain). The location of each PV is also given by latitude and lon-
gitude. These five PVs are chosen to be close to each other in terms of distance. The dis-
tances between each PV are shown in Figure 6. The area PVs are almost flat, therefore, the
altitude is assumed to be the same in the case study.

The observed data for the case study are from August 15, 2013 to July 31, 2014. The
observed data from 10:30 PM to 6:00 AM are not available; therefore, the data from 5:30
PM to 10:00 PM are not utilized for model training and forecasting. Some missing records
from 10:30 PM to 6:00 AM were interpolated by taking the average before and after the
missing records. The PV generation for each PV is forecasted using a single PV forecast
model and a multiple PV forecast model. The one-day-ahead forecasting is continuously
performed for 30 days from July 2, 2014 to July 31, 2014.

3.2. Simulation results

The simulation result is evaluated based on four criteria: the cover rate of the predic-
tion interval, the width of the prediction interval, MAPE, and RMSE. The forecasted result
is calculated daily with a 30-min interval because the ESSs in distribution networks are
assumed to operate following the predetermined schedule daily.

3.2.1 Forecast result on the best and worst day
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Figure 7. Improvement of forecasted PV generation for PV (iii) on 11th July, 2014. The day has the worst PI coverage rate by the

single PV forecast model among 30 days.
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Figure 8. Deteriorating of forecasted PV generation for PV (iii) on 15th July 2014. The day has the worst PI coverage rate by the

multiple PV forecast model among 30 days.
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Figure 7 shows the improvement in the forecasted results for PV (iii) on July 11, 2014.
The rated power of PV (iii) is 3.42 kW. Figure 7 (a) presents the day with the worst cover-
age rate among the 30 days using the single PV forecast model. Figure 7 (b) was obtained
using the multiple PV forecast model. The cover rate was improved from 72% to 100%
using the multiple PV forecast model. In addition, the RMSE was reduced from 0.517 to
0.117 kW. However, in some cases, the PI cover rate is deteriorated by the multiple PV
forecast model. Figure 8 shows the deteriorating of the forecasted results for PV (iii) on
July 15, 2014. Figure 8 (b) presents the day with the worst coverage rate among the 30 days
using the multiple PV forecast model. Figure 8 (a) was obtained using the single PV fore-
cast model. Using the multiple PV forecast model, the cover rate deteriorated from 90 to
77%. However, the RMSE was reduced (improved) from 0.475 kW to 0.347 kW. The reason
for the PI cover rate is that the PI width generated by the multiple PV forecast model is
not narrower than that of the single PV forecast model.

As with the PI cover rate above, the RMSE calculated based on the single PV forecast
model is also improved by the multiple PV forecast model. Figure 9 shows the improve-
ment in the forecasted results for PV (iii) on July 10, 2014. Figure 9 (a) shows the day with
the worst RMSE among the 30 days using the single PV forecast model. Figure 9 (b) is
obtained using the multiple PV forecast model for the same day. The average of the RMSE
in a day was improved from 0.667 to 0.165 kW by the multiple PV forecast model. Figure
10 shows the deteriorating of the forecasted results for PV (iii) on July 25, 2014. Figure 8
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Figure 9. Improvement of forecasted PV generation for PV (iii) on 10th July, 2014; the worst RMSE by the single PV forecast model

among 30 days performances.
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Figure 10. Deteriorating of forecasted PV generation for PV (iii) on 25th July, 2014; the worst RMSE by the multiple PV forecast

model among 30 days performances.
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(b) presents the day with the worst RMSE among the 30 days using the multiple PV fore-
cast model. Figure 10 (a) was obtained using the single PV forecast model. The RMSE
slightly worsened from 0.372 to 0.382 kW using the multiple PV forecast model.

According to Figure 8 and Figure 10, the multiple PV forecast model is not always
superior to the single PV forecast model for any case. Therefore, in the next subsection,
we statistically analyze the forecast results to verify if the multiple PV forecast model is
superior to the single PV forecast model for most cases.

3.2.1 Statistical analysis of forecast result in the whole forecast duration

Figure 11 shows a box plot of the cover rate of the prediction interval. In each box
plot in Figure 11, the median of 30 days forecasted result is represented by a red line. The
edge of the box represents the 75th and 25th percentiles. Notches display the variability
of the median between samples as confidence intervals. The width of a notch is computed
such that boxes whose notches do not overlap have different medians at the 5% signifi-
cance level. The significance level is based on a normal distribution assumption, but com-
parisons of medians are reasonably robust for other distributions [30]. Table I shows a
summary of the boxplots from Figure 11 to Figure 14. In Table I, the indicators that have
improved compared to the single PV forecast model are highlighted.

Regarding the mean value of the PI cover rate, which is represented by the red line
in Figure 11, the multiple PV forecast model outperforms the single PV forecast model in
cases PV (ii), (iii), and (iv). PV (i) does not show significant differences between single and
multiple PV forecast models. The weather in this season changes from west to east. The
PV (i) does not change the result because the PV (i) is located on the west side among the
five PVs and cannot obtain any information from the other PVs to improve the forecasting
accuracy. PV (v) shows that the median of the PI cover rate decreases from 90.9 to 86.4%
in the multiple PV forecast model, as shown in Table I. Nevertheless, the minimum cover
rate of the multiple PV forecast model is improved from the single PV forecast model, as
indicated in the edge of the boxplot in Figure 11. PV (v) is located on the west side among
the five PVs; therefore, the information from the far PVs such as PV (i) and PV (ii) is not
variable to improve the forecast accuracy. Figure 12 shows the box plots of the PI width
for the five PVs forecasted by the single PV and multiple PV forecast models. The PI width
generated by multiple PV models was narrower in all PVs than in the single PV forecast
model. As the PI width becomes narrower, the scheduling of the energy management sys-
tems becomes easier, and the scheduled operation can be realized with more probability.
As shown in Figure 11, the PI cover rate was also improved or remained by the multiple
PV forecast model. Regarding PV (ii), PV (iii), and PV (iv), Figure 11 and Figure 12 lead to
an ideal result that the multiple PV forecast model simultaneously improves both the
cover rate and PI width. The PV (ii), PV (iii), and PV (iv) are located in the middle of the
five PVs; therefore, they retrieve variable information from the surrounding PVs to im-
prove forecast accuracy. With respect to PV (i) and PV (v), the PI width was improved. By
contrast, the PI cover rate remains, which is also a useful result for energy management
using ESSs or electric vehicle scheduling.

Figure 13 shows the boxplot of mean MAPE for five PV generations forecasted by the
single and multiple PV forecast models, respectively. In all cases, the multiple PV forecast
model shows a smaller MAPE than the single PV forecast model in terms of the mean.
Figure 14 shows the boxplot of RMSE for five PV generations forecasted by the single and
multiple PV forecast models, respectively. In all cases, the multiple PV forecast model
showed a smaller RMSE than the single PV forecast model with respect to the mean. The
results are shown in Figure 13 and Error! Reference source not found. The multiple PV
forecast model improved the deterministic forecast accuracy in both MAPE and RMSE.
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Table I Summary of the multiple PVs forecast for 30 days
Cover Rate [%] PI width [kW] MAPE [%] RMSE [kW]

Single Multi Single Multi Single Multi Single Multi

M+20 89.0 91.6 2.659 1.624 92.7 81.6 0.755 0.566

PV (i) Median (M) 86.4 86.4 2.578 1.581 67.1 60.9 0.684 0.479
M-20 83.8 81.2 2.497 1.537 41.5 40.3 0.614 0.392

M+2o 87.0 94.8 1.442 0.797 69.5 24.8 0.386 0.196

PV (ii) Median (M) 81.8 90.9 1.403 0.788 447 19.4 0.355 0.166
M-20 76.6 87.0 1.364 0.780 20.0 14.1 0.324 0.136

M+2o 94.8 98.1 1.622 0.906 47.7 18.0 0.415 0.192

PV (iii) Median (M) 90.9 95.5 1.574 0.887 36.6 15.1 0.377 0.153
M-20 87.0 92.8 1.525 0.867 25.6 12.1 0.339 0.113

M+2o 90.3 93.5 7.196 4.086 53.1 28.2 1.794 0.939

PV (iv) Median (M) 86.4 90.9 7.073 4.051 424 21.3 1.613 0.845
M-20 82.5 88.3 6.950 4.015 31.7 14.4 1.432 0.751

M+20 96.1 90.3 1.232 0.897 63.6 39.3 0.365 0.216

PV (v) Median (M) 90.9 86.4 1.218 0.894 46.2 33.0 0.335 0.188
M-20 85.7 82.5 1.205 0.890 28.7 26.8 0.304 0.160

4. Conclusions

In this study, we proposed a multiple PV forecast model based on ensemble forecast-
ing for distributed PV in a certain area. The ensemble forecasting comprises k-means, NN,
and LSTM with optimized weights using the PSO algorithm. In addition, error-based PI
construction has also been proposed to convert deterministic forecasting into probabilistic
forecasting. The proposed multiple PV forecast model utilizes the result of the neighbor-
ing PV forecast result based on the proposed ensemble forecast method. The proposed
multiple PV forecast model is designed to provide more reliable Pls for probabilistic fore-
casting and smaller errors for deterministic forecasting. The proposed multiple PV fore-
casting model is verified using five real PV generation data and climate data in the case
study. As a result of continuous simulations with 30 days data, the RMSE, MAPE, PI cover
rate, and PI width were improved by the multiple PV forecast model compared with the
conventional single PV forecast model for all five PV cases. In future work, the multiple
PV forecast model outperforms the single PV forecast model, but the effective way of se-
lecting neighboring PVs should be investigated theoretically.
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