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Abstract: Photovoltaic (PV) generation is potentially uncertain. Probabilistic PV generation forecast-
ing methods have been proposed with prediction intervals (PIs). However, several studies have 
dealt with geographically distributed PVs in a certain area. In this study, a two-step probabilistic 
forecast scheme is proposed for geographically distributed PV generation forecasting. Each step of 
the proposed scheme adopts ensemble forecasting based on three different machine-learning meth-
ods. In this case study, the proposed scheme was compared with conventional non-multistep fore-
casting. The proposed scheme improved the reliability of the PIs and deterministic PV forecasting 
results through 30 days of continuous operation with real data in Japan. 

Keywords: photovoltaic generation forecast; probabilistic forecast; prediction interval; ensemble 
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1. Introduction 
Photovoltaic (PV) generation in a distribution network plays a key role in promoting 

clean energy production. One of the well-recognized problems of PV generation is the 
increased power flow at the substation and in the distribution line under the substation 
[1]. The peak time and amount of power flow depend on the demand and PV generation 
in the network. The peak is mitigated by operations of energy storage systems (ESSs), such 
as fixed batteries reported in [2][3]. The peak time and amount of energy generated from 
the PVs must be forecasted to operate the ESS with the best efficiency. In [3], the proposed 
peak-shaving algorithm is performed based on prediction intervals (PIs), which indicate 
the probability of peak demand at the substation. The PIs are evaluated using two contra-
dictory fundamental ideas: the coverage rate and the width of the intervals [4]. If the PIs 
cover all observations, the coverage rate is the best at 100%. By contrast, the PI widths are 
preferred to be narrower. As the PIs have a high coverage rate of observations and become 
narrower, the performance of the peak mitigation improves [3]. 

PVs are distributed within a certain area connected to the same distribution network. 
Thus, a spatiotemporal model is required to extract and use spatial and temporal data 
from multiple PVs to improve PI reliability [5] [6] [7]. Ref [5] proposed a deep learning 
framework that can generate PV forecasts for multiple regions and horizons with 56 loca-
tions in the US. Ref. [6] proposed a model to forecast six hours based on 136 PV installa-
tions in France. Irradiance forecasting for 11 PVs distributed in a certain region is per-
formed as accumulated generations [8]. The cloud motion vector-based method [9][10] is 
an established approach for covering distributed PVs in a certain area. Numerical weather 
predictions are used for forecasting hours to days ahead [11]. Satellite images, ground 
measurements, and sky imaging were combined to improve deterministic and probabil-
istic forecast reliability [12]. Optical flow [13] deals with non-uniform cloud motion and 
is originally a technique for image processing [15]. The optical flow is a distribution of the 
apparent velocities of the movement of brightness patterns in an image. An optical flow 
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that tracks the amount of distributed PV generation was developed in our laboratory [14]. 
Consequently, the mean absolute percentage error is 4.23% in the case of forecasting 30 
min [14]. However, the error increases when the prediction time is later.  

Another promising approach for forecasting PV generation is the historical data-
driven approach. Data-driven approaches require a large amount of measured past-gen-
eration data for deep learning [16]. However, once the correct dataset with a small number 
of missing records is arranged, the forecasting ability is excellent, especially in day-ahead 
forecasting [17]. Developing PIs with data-driven approaches for various objectives, such 
as not PV forecasting, is proposed based on Delta [18] [19], Bayesian [20], mean-variance 
estimation [21], and bootstrap techniques [22], which are comprehensively compared in 
[23]. Quantile regression was adopted in [7]. The bootstrap technique was proposed in 
[17] to quantify the uncertainty with PIs for PV forecasting. In addition, the performance 
of the bootstrap technique has been proven for wind farm power generation forecasts [24].  

Sky or cloud image-based methods and data-driven approaches have been devel-
oped as aforementioned; however, as the intensive reviews of PV forecasting, as reported 
in [11], studies on regional models for multiple PVs are limited. In addition, the existing 
forecast models are too specific to circumscribe to a particular region [25].  

In this study, we introduce the idea of optical flow to data-driven methods, such as 
machine-learning-based methods to improve existing probabilistic PV generation fore-
casting methods. Existing machine learning utilizes past data, including generations, tem-
perature, humidity, and precipitation, and the most important predictor is radiation. The 
forecasting model was mainly developed for each PV system. Conversely, the original 
idea of PV generation forecasting with the optical flow developed in our laboratory is that 
the generation of geographically distributed PVs moves as the sun and clouds move [14]. 
Herein, we propose a PV forecasting method for geographically distributed PVs in a cer-
tain area. The PVs are geographically close. Therefore, the past-generation data of one PV 
can be a meaningful predictor of another PV generation forecasting, which is proven in 
Section 3 as a case study. Ensemble forecasting comprising three machine-learning meth-
ods is proposed in this study as an example of probabilistic forecasting. The proposed 
ultimate forecasting scheme comprises a single PV forecast model and multiple PV fore-
cast models. The ensemble forecast was adopted for both single and multiple PV forecast 
models. The proposed ensemble method is enhanced by utilizing the past-generation data 
of multiple PVs. The simulation shows that the reliability of the forecasting is improved 
by both deterministic and probabilistic forecasting. The contributions of this study are as 
follows: 
1) In this study, we propose a method to develop boundaries for PIs based on past fore-

cast errors. The case study shows that the boundaries are stable and useful for multi-
ple PVs based on real PV generation data. 

2) A multi-step PV forecasting scheme for geographically distributed PVs in a certain 
area is proposed. The case study shows that the proposed scheme improves the fore-
casting reliability with real PV generation data. 

3) The performance of the proposed multi-step PV forecasting scheme was evaluated 
with a long-term simulation case as continuous 30 days. The statistical analysis indi-
cates that the proposed scheme improves the root mean square error (RMSE) and 
mean average percentage error (MAPE) for deterministic forecasting. In addition, the 
PI cover rate and the width of PI for probabilistic forecasting are improved compared 
to conventional single PV forecast methods. 
The rest of the paper is organized as follows: Section 2 introduces the methodology 

of the ensemble forecasting model and way to generate the PIs. Section 3 introduces the 
case study to prove that the proposed forecasting algorithms can improve the reliability 
of probabilistic forecasting in terms of the PI cover rate and PI width. Finally, Section 4 
concludes the study. 
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2. Forecast Methodology 
The proposed forecast model consists of two steps: a single-forecast model and a 

multiple forecast model, as shown in Figure 1. The single-forecast model is composed for 
each PV, indicated as 𝑃𝑉ଵ, 𝑃𝑉ଶ, … 𝑃𝑉௜  in Figure 1. Past-generation data and weather 
data are inputs for the ensemble forecast model, as explained in Section 2.1. The forecasted 
PV generation by the single-forecast model for each PV was utilized as inputs to the mul-
tiple forecast model. In Figure 1, 𝑃𝑉௜ାଵ is forecasted based on the forecasted generation 
from 𝑃𝑉ଵ to 𝑃𝑉௜, which were chosen based on the Euclidean distance calculated by the 
latitude and longitude of each PV location. In the case study, the five nearest PVs were 
chosen to compose the multiple forecast models. The multiple forecast model is per-
formed based on the past data of the target PV, weather data, and the results of other PV 
forecasts by the single-forecast models.  

2.1. Ensemble forecasting with prediction intervals 
Both the single and multiple PV forecast models were designed for ensemble fore-

casting. Three data-driven regressions—k-means, neural network (NN), and long short-
term memory (LSTM)—are utilized for ensemble forecasting. In this study, we will handle 
multiple PVs that are geographically distributed in a certain area. The ensemble model is 

 

Figure 1. Configuration of the single and multiple PV forecast model 

 

Figure 2. Configuration of an ensemble forecasting model. 
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arranged for each PV in the proposed method. If we need to forecast five PVs at once, we 
need to build five individual models for each PV based on different training data. The 
configuration of the ensemble model is shown in Figure 2. Each data-driven regression 
model was individually trained to configure the best parameters based on past data. All 
individual models were added with different weights and one ensemble model. The 
weight optimizer in Figure 2 calculates the optimal weight for addition based on the past 
performance of each model. The k-means-based prediction was reported in [26]. The NN 
model was designed using the function-fitting neural network available in MATLAB [27]. 
LSTM was also implemented using the function in MATLAB [28].  
The PV forecast process is assumed to be performed once a day using continuously up-
dated observed data. The forecast result is provided as day-ahead forecasting; hence, the 
forecasted PV generation can be utilized to determine the operations of the ESS charge 
and/or discharge, such as [3]. The process of ensemble forecasting and the development 
of the prediction intervals are shown in Figure 3. The PV forecasting process comprises 
two parts: the training process with past data and the forecasting process with test data. 
The steps from (i) to (vi) in Figure 3 are explained as follows. 
 

 

Figure 3. Configuration of an ensemble forecasting model. 
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(i) Check if forecast models need to be updated 
In step (i), the ensemble forecast model is inspected to check whether the trained 

parameters are latest. If the trained model with the determined parameters does not in-
clude the latest observed data, the model is re-trained to update the parameters of every 
forecasting method. In the training process, the parameters for the ensemble forecasting 
methods are determined using past data. Once the training process is completed, the 
parameters for the forecasting methods remain fixed until a new training process is per-
formed. Therefore, the model parameters must be updated periodically to catch up with 
the latest observed data. In the case study, the model was updated every 30 days.  

(ii)  Train each forecast model with training data 
In step (ii), the forecasting models k-means, NN, and LSTM are individually trained. 

The data configuration is shown in Figure 4. Two groups are arranged for model building 
and forecasting: long-term past data (training and validation data) and forecast data. 
Long-term data contain predictors (timestamps, temperature, and weather conditions) 
and target (PV generation); forecast data contain only predictors. In the forecast data, 
weather information is obtained from weather forecasts available to the public via the 
web. Training data were utilized as a training dataset to construct the k-means, NN, and 
LSTM models. Long-term past data preferably contain at least one year of collection to 
capture seasonal features. Validation data in the long-term past data were selected in sets 
of arbitrary length from long-term past data. The validation data were utilized to deter-
mine the optimal weight for the ensemble forecast model, as shown in Figure 2. In addi-
tion, the validation data are utilized to compose the error distribution, leading to PIs. 
Based on the validation data, the error distribution can reveal bias errors caused by recent 
facility changes, such as installing new PV farms [29]. This bias error can also be reflected 
in model training with long-term past data, including validation data. However, the sig-
nificance of the error takes more than several weeks to show up because the biased new 
data records are significantly smaller than the existing long-term past data. 

(iii) Find the best weight for each forecast model 
The optimal coefficients for an ensemble model composed of these two trained mod-

els were determined. For the k-means model, an optimal k is determined, which indicates 
how many groups need to be generated. The NN model learns the weights of each neuron. 
An ensemble prediction model was built by combining these two prediction models with 
weights, as shown in Eq. (1):  

 

Figure 4. Data configuration; long-term past data for training and error validation. Forecast data 

for forecasting unknown PV generations. 
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𝑦ො௧
௜ = ෍ 𝑐௧  𝐹෠௧

௜

ே

௜ୀଵ

, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (1) 

Here, 𝑦ො௧
௜  is the ultimate deterministic forecasted value of PV generation for time instance 

t on the i-th day. T is the time instances in a day, which is 48 times in the case study. N is 
defined as the number of days for error validation indicated by N in Figure 4. 𝐹෠௧

௜  is the 
deterministically forecasted PV generation using the individual forecast methods at time 
t. In this case, three methods (N = 3) were adopted: k-means, NN, and LSTM. The coeffi-
cients 𝑐௧ are the weights of each forecasting method. 𝑐௧ is common for all days N. The 
weights are time-consistent, as determined by the particle swarm optimization (PSO) al-
gorithm that minimizes the error between the observed and predicted loads, as shown in 
Eq. (2):  

𝒂𝒓𝒈 𝐦𝐢𝐧
௖೟

 ฮ𝕐௜ − 𝕐෡௜ฮଶ
 (2) 

Here, 

𝕐௜ ≔ ൛𝑦ଵ
௜ , 𝑦ଶ

௜ , … 𝑦୲
௜ … 𝑦்

௜ ൟ 
𝕐෡௜ ≔ ൛𝑦ොଵ

௜ , 𝑦ොଶ
௜ , … 𝑦ො୲

௜ … 𝑦ො்
௜ ൟ (3) 

𝕐௜ is the set of observed data 𝑦௧
௜  corresponding to the predicted PV generation 𝑦ො௧

௜  at time 
𝑡 on the i-th day, and 𝕐෡௜ is the set of predicted PV generation 𝑦ො௧

௜ . For instance, as shown 
in Figure 5, if the observed data comprise 30 min-intervals, 𝑡 comprises 48 instances a 
day. The deterministic prediction by the ensemble model is performed for past data for a 
specific time duration, such as the period of one year (i=1, 2, 3, …, 365).  

 

Figure 5. Forecasted and observed PV generation on the i-th day. 

(iv) Get error distribution from the ensemble model 
Once the optimal coefficients are obtained, future PV generation is forecasted using 

the trained ensemble model. The boundaries of the PIs were subsequently calculated. The 
absolute error set 𝔼௧ for a specific time 𝑡 is derived by comparing the predicted and ob-
served data throughout the short-term past data. A series of errors are indicated in Figure 
5, and the error set is expressed as follows: 

𝑒௧
௜ = 𝑦௧

௜ − 𝑦ො௧
௜ (4) 

𝔼௧ ≔ ൛𝑒௧
ଵ, 𝑒௧

ଶ, 𝑒௧
ଷ … 𝑒௧

௜ … 𝑒௧
ேൟ, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (5) 

Here, 𝑒௧
௜ is the forecasting error for the ith day at time 𝑡. N indicates the number of 

days included in the validation dataset. Each time 𝑡 has an error record for several days. 
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The set 𝔼௧ forms the histogram for each time 𝑡 and is referred to as the error distribution 
in this document.  

(v) Forecast deterministic PV generation by the ensemble model 
After the error distribution is formulated in the model training process, deterministic 

PV generation is forecasted for the next 24 h. The deterministic forecast and error distri-
bution were added into a set 𝔻௧. The set 𝔻௧ for time t is defined as follows: 

𝔻௧ ≔ {𝑦ො௧ + 𝑒௧
ଵ, 𝑦ො௧ + 𝑒௧

ଶ, 𝑦ො௧ + 𝑒௧
ଷ … 𝑦ො௧ + 𝑒௧

ே} (6) 

(vi) Make prediction interval from error distribution and deterministic forecasting 
The PIs comprise upper and lower boundaries. In this study, these boundaries are 

obtained by taking confidence intervals from set 𝔻௧ in (6). The set 𝔻௧ is not guaranteed 
to be distributed as a normal distribution; thus, how to make PIs should be investigated 
further in future work. In the following case study, the confidence interval level is 95% as 
an example, which can change as the application requires.  

2.1. Multiple forecast model 
The multiple forecast models have the same ensemble model as the single-forecast 

models. The operation flow of the multiple forecast model is also similar to that of the 
single PV forecast model, as shown in Figure 3. The difference between the multiple and 
single-forecast models is the input data into the ensemble models, as shown in Figure 1. 
First, the target PV was chosen as the output of the multiple PV forecast model. Second, 
the PVs forecasted by the single PV forecast models were selected based on the geograph-
ical distance from the target PV. In the case study, four PVs were selected for the single-
forecast model as an example. The criteria that choose PVs for the single-forecast model 
are still open to discussion, which can consider the ground form, the direction of the PV 
panels, obstacle conditions (sometimes the building makes shade for PV panels at a spe-
cific time), and others. The correlation coefficient between the generation data from the 
target PV and PVs for the single PV forecast model is a promising candidate for choosing 
PVs for a single PV forecast model. 

3. Case Study 

3.1. Given data set and premises 
The data were collected around the Kanto region in Japan. The observed points were 

distributed as shown in Figure 6. PV generation is forecasted for five PVs named PV (i), 
(ii), (iii), (iv), and (v) to validate that the proposed multiple PV forecast model improves 
the reliability of the forecasting for each PV generation. The rated power of PVs are (i) 4.80 
kW, (ii) 2.88 kW, (iii) 3.42 kW, (iv) 20.09 kW, and (v) 3.00 kW, respectively. PV generation 

 

Figure 6. Location of the PV systems to be forecasted in Japan 
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was observed every 30 min from 6:30 AM to 5:00 PM daily. The observed generation data 
are recorded with year, month, day, hour, minutes, temperature, precipitation, and 
weather (sunny, cloud, or rain). The location of each PV is also given by latitude and lon-
gitude. These five PVs are chosen to be close to each other in terms of distance. The dis-
tances between each PV are shown in Figure 6. The area PVs are almost flat, therefore, the 
altitude is assumed to be the same in the case study. 

The observed data for the case study are from August 15, 2013 to July 31, 2014. The 
observed data from 10:30 PM to 6:00 AM are not available; therefore, the data from 5:30 
PM to 10:00 PM are not utilized for model training and forecasting. Some missing records 
from 10:30 PM to 6:00 AM were interpolated by taking the average before and after the 
missing records. The PV generation for each PV is forecasted using a single PV forecast 
model and a multiple PV forecast model. The one-day-ahead forecasting is continuously 
performed for 30 days from July 2, 2014 to July 31, 2014. 

3.2. Simulation results 
The simulation result is evaluated based on four criteria: the cover rate of the predic-

tion interval, the width of the prediction interval, MAPE, and RMSE. The forecasted result 
is calculated daily with a 30-min interval because the ESSs in distribution networks are 
assumed to operate following the predetermined schedule daily. 

3.2.1 Forecast result on the best and worst day 

 

(a) Single PV forecast model for PV (iii) (Cover rate = 72%) (b) Multiple PV forecast model for PV (iii) (Cover rate = 100%) 

Figure 7. Improvement of forecasted PV generation for PV (iii) on 11th July, 2014. The day has the worst PI coverage rate by the 

single PV forecast model among 30 days. 

 

(a) Single PV forecast model for PV (iii) (Cover rate = 90%) (b) Multiple PV forecast model for PV (iii) (Cover rate = 77%) 

Figure 8. Deteriorating of forecasted PV generation for PV (iii) on 15th July 2014. The day has the worst PI coverage rate by the 

multiple PV forecast model among 30 days. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 October 2021                   doi:10.20944/preprints202110.0037.v1

https://doi.org/10.20944/preprints202110.0037.v1


 9 of 14 
 

 

Figure 7 shows the improvement in the forecasted results for PV (iii) on July 11, 2014. 
The rated power of PV (iii) is 3.42 kW. Figure 7 (a) presents the day with the worst cover-
age rate among the 30 days using the single PV forecast model. Figure 7 (b) was obtained 
using the multiple PV forecast model. The cover rate was improved from 72% to 100% 
using the multiple PV forecast model. In addition, the RMSE was reduced from 0.517 to 
0.117 kW. However, in some cases, the PI cover rate is deteriorated by the multiple PV 
forecast model. Figure 8 shows the deteriorating of the forecasted results for PV (iii) on 
July 15, 2014. Figure 8 (b) presents the day with the worst coverage rate among the 30 days 
using the multiple PV forecast model. Figure 8 (a) was obtained using the single PV fore-
cast model. Using the multiple PV forecast model, the cover rate deteriorated from 90 to 
77%. However, the RMSE was reduced (improved) from 0.475 kW to 0.347 kW. The reason 
for the PI cover rate is that the PI width generated by the multiple PV forecast model is 
not narrower than that of the single PV forecast model. 

As with the PI cover rate above, the RMSE calculated based on the single PV forecast 
model is also improved by the multiple PV forecast model. Figure 9 shows the improve-
ment in the forecasted results for PV (iii) on July 10, 2014. Figure 9 (a) shows the day with  
the worst RMSE among the 30 days using the single PV forecast model. Figure 9 (b) is 
obtained using the multiple PV forecast model for the same day. The average of the RMSE 
in a day was improved from 0.667 to 0.165 kW by the multiple PV forecast model. Figure 
10 shows the deteriorating of the forecasted results for PV (iii) on July 25, 2014. Figure 8 

  

(a) Single PV forecast model for PV (iii) (RMSE = 0.667 kw) (b) Multiple PV forecast model for PV (iii) (RMSE = 0.165 kw) 

Figure 9. Improvement of forecasted PV generation for PV (iii) on 10th July, 2014; the worst RMSE by the single PV forecast model 

among 30 days performances. 

 

(a) Single PV forecast model for PV (iii) (RMSE = 0.372 kw) (b) Multiple PV forecast model for PV (iii) (RMSE = 0.382 kw) 

Figure 10. Deteriorating of forecasted PV generation for PV (iii) on 25th July, 2014; the worst RMSE by the multiple PV forecast 

model among 30 days performances.  
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(b) presents the day with the worst RMSE among the 30 days using the multiple PV fore-
cast model. Figure 10 (a) was obtained using the single PV forecast model. The RMSE 
slightly worsened from 0.372 to 0.382 kW using the multiple PV forecast model. 

According to Figure 8 and Figure 10, the multiple PV forecast model is not always 
superior to the single PV forecast model for any case. Therefore, in the next subsection, 
we statistically analyze the forecast results to verify if the multiple PV forecast model is 
superior to the single PV forecast model for most cases. 

3.2.1 Statistical analysis of forecast result in the whole forecast duration 
Figure 11 shows a box plot of the cover rate of the prediction interval. In each box 

plot in Figure 11, the median of 30 days forecasted result is represented by a red line. The 
edge of the box represents the 75th and 25th percentiles. Notches display the variability 
of the median between samples as confidence intervals. The width of a notch is computed 
such that boxes whose notches do not overlap have different medians at the 5% signifi-
cance level. The significance level is based on a normal distribution assumption, but com-
parisons of medians are reasonably robust for other distributions [30]. Table I shows a 
summary of the boxplots from Figure 11 to Figure 14. In Table I, the indicators that have 
improved compared to the single PV forecast model are highlighted.  

Regarding the mean value of the PI cover rate, which is represented by the red line 
in Figure 11, the multiple PV forecast model outperforms the single PV forecast model in 
cases PV (ii), (iii), and (iv). PV (i) does not show significant differences between single and 
multiple PV forecast models. The weather in this season changes from west to east. The 
PV (i) does not change the result because the PV (i) is located on the west side among the 
five PVs and cannot obtain any information from the other PVs to improve the forecasting 
accuracy. PV (v) shows that the median of the PI cover rate decreases from 90.9 to 86.4% 
in the multiple PV forecast model, as shown in Table I. Nevertheless, the minimum cover 
rate of the multiple PV forecast model is improved from the single PV forecast model, as 
indicated in the edge of the boxplot in Figure 11. PV (v) is located on the west side among 
the five PVs; therefore, the information from the far PVs such as PV (i) and PV (ii) is not 
variable to improve the forecast accuracy. Figure 12 shows the box plots of the PI width 
for the five PVs forecasted by the single PV and multiple PV forecast models. The PI width 
generated by multiple PV models was narrower in all PVs than in the single PV forecast 
model. As the PI width becomes narrower, the scheduling of the energy management sys-
tems becomes easier, and the scheduled operation can be realized with more probability. 
As shown in Figure 11, the PI cover rate was also improved or remained by the multiple 
PV forecast model. Regarding PV (ii), PV (iii), and PV (iv), Figure 11 and Figure 12 lead to 
an ideal result that the multiple PV forecast model simultaneously improves both the 
cover rate and PI width. The PV (ii), PV (iii), and PV (iv) are located in the middle of the 
five PVs; therefore, they retrieve variable information from the surrounding PVs to im-
prove forecast accuracy. With respect to PV (i) and PV (v), the PI width was improved. By 
contrast, the PI cover rate remains, which is also a useful result for energy management 
using ESSs or electric vehicle scheduling. 

Figure 13 shows the boxplot of mean MAPE for five PV generations forecasted by the 
single and multiple PV forecast models, respectively. In all cases, the multiple PV forecast 
model shows a smaller MAPE than the single PV forecast model in terms of the mean. 
Figure 14 shows the boxplot of RMSE for five PV generations forecasted by the single and 
multiple PV forecast models, respectively. In all cases, the multiple PV forecast model 
showed a smaller RMSE than the single PV forecast model with respect to the mean. The 
results are shown in Figure 13 and Error! Reference source not found. The multiple PV 
forecast model improved the deterministic forecast accuracy in both MAPE and RMSE. 
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Figure 11. Box plot for prediction interval cover rate; Single PV 

vs Multiple PV forecast model at five locations 

Figure 12. Box plot of prediction interval width; Single PV vs 

Multiple PV forecast model at five locations 

 

Figure 13. Box plot for mean absolute percentage error (MAPE); 

Single PV vs Multiple PV forecast model at five locations 

Figure 14. Box plot for root mean square error (RMSE); Single PV 

vs Multiple PV forecast model at five locations 
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4. Conclusions 

In this study, we proposed a multiple PV forecast model based on ensemble forecast-
ing for distributed PV in a certain area. The ensemble forecasting comprises k-means, NN, 
and LSTM with optimized weights using the PSO algorithm. In addition, error-based PI 
construction has also been proposed to convert deterministic forecasting into probabilistic 
forecasting. The proposed multiple PV forecast model utilizes the result of the neighbor-
ing PV forecast result based on the proposed ensemble forecast method. The proposed 
multiple PV forecast model is designed to provide more reliable PIs for probabilistic fore-
casting and smaller errors for deterministic forecasting. The proposed multiple PV fore-
casting model is verified using five real PV generation data and climate data in the case 
study. As a result of continuous simulations with 30 days data, the RMSE, MAPE, PI cover 
rate, and PI width were improved by the multiple PV forecast model compared with the 
conventional single PV forecast model for all five PV cases. In future work, the multiple 
PV forecast model outperforms the single PV forecast model, but the effective way of se-
lecting neighboring PVs should be investigated theoretically. 
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