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ABSTRACT 

Understanding of the molecular mechanisms of prostate cancer has led to development of 

therapeutic strategies targeting androgen receptor (AR). These androgen-receptor signaling 

inhibitors (ARSI) include androgen synthesis inhibitor- abiraterone and androgen receptor 
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antagonists- enzalutamide, apalutamide, and darolutamide. Although these medications provide 

significant improvement in survival among men with prostate cancer, drug resistance develops in 

nearly all patients with time. This could be through androgen-dependent or androgen-independent 

mechanisms. Even weaker signals and non-canonical steroid ligands can activate AR in the 

presence of truncated AR-splice variants, AR overexpression, or activating mutations in AR. AR 

splice variant, AR-V7 is the most studied among these and is not targeted by available ARSIs. 

Non-androgen receptor dependent resistance mechanisms are mediated by activation of an 

alternative signaling pathway when AR is inhibited. DNA repair pathway, PI3K/AKT/mTOR 

pathway, BRAF-MAPK and Wnt signaling pathway and activation by glucocorticoid receptors can 

restore downstream signaling in prostate cancer by alternative proteins. Multiple clinical trials are 

underway exploring therapeutic strategies to overcome these resistance mechanisms.  

INTRODUCTION 

Prostate cancer (PCa) is the second most common malignancy among men (1). Based on 

Surveillance, Epidemiology and End Results Program-9 data, the age-adjusted incidence and 

mortality of PCa for the period 2009 to 2018 showed a downward trend (2). This drift could be 

due to a decrease in the utilization of routine prostate specific antigen (PSA) screening and the 

development of effective therapeutic strategies which prolong PCa survival. 

Androgen Receptor (AR) plays a key role in the pathogenesis of PCa. AR is a ligand-activated 

nuclear transcription factor that belongs to the steroid hormone receptor family. As testosterone 

(produced by Leydig cells in the testes) or 5-alpha-dihydrotestosterone (DHT) (converted from 

testosterone in prostate tissue by 5-alpha-reductase type I and II) binds to AR, the receptor 

dimerizes and translocates into the nucleus to bind  to the androgen response element (ARE) (3). 

The AR modulates the transcriptional activity of genes involved in escaping apoptosis and 

inducing cellular proliferation. Thus, AR signaling results in the growth of PCa. A critical level of 

androgens is needed to activate the required number of ARs on androgen-sensitive PCa cells for 

cell proliferation, the absence of which by utilizing androgen ablation will result in activation of 

programmed cell death (4). Hence, the therapeutic strategy of androgen deprivation therapy 

(ADT) is rational and beneficial in PCa. Although early-stage PCa is mostly mediated by 

androgen-dependent cancer cells, the metastatic castrate-resistant stage is heterogenous with 

the presence of both androgen-dependent and androgen-independent cells. The development of 

castration resistance is mainly due to the development of genetic alterations in the AR resulting 

in the outgrowth of androgen-independent cells.(5) In addition to the stimulation of AR by 

androgen produced from the adrenal gland and testis, intra-tumoral secretion of enzymes involved 
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in the synthesis of testosterone like cytochrome P450 17-alpha hydroxysteroid dehydrogenase 

(CYP17) support tumor survival and growth (6). The understanding of these molecular 

mechanisms has led to the development of newer drugs that act by inhibiting the enzymes for 

androgen production or block ARs. The agents include abiraterone which can cause selective 

and irreversible inhibition of CYP17 and small molecule AR antagonists like enzalutamide (7). 

Although these androgen-receptor signaling inhibitors (ARSI) have been shown to significantly 

alter the natural history of castration-resistant PCa (CRPC), drug resistance develops in most 

patients with time. In this article, we will discuss the drugs that target AR and the clinically relevant 

resistance mechanisms as well as therapeutic strategies to overcome the resistance. 

 

THERAPEUTIC STRATEGIES TARGETED AT ANDROGEN SIGNALING  

ANDROGEN SYNTHESIS INHIBITORS 

Abiraterone acetate is an androgen synthesis inhibitor derived from pregnenolone and is an 

irreversible inhibitor of 17, 20-lyase and 17-alpha hydroxylase which are products of the CYP17 

gene. The drug inhibits the production of androgen in the testes, adrenal glands, and tumor cells 

(8). The agent requires steroid supplementation to overcome secondary cortisol insufficiency and 

prevent overproduction of ACTH and mineralocorticoids.  

The drug is currently approved by the US Food and Drug Administration (FDA) for use in newly 

diagnosed metastatic CSPC and metastatic CRPC. Clinical trials that led to FDA approval of 

individual drugs are shown in Table 1.  

ANDROGEN RECEPTOR ANTAGONISTS 

Androgen receptor antagonists (ARA) block the androgen binding site of AR and inhibit the 

nuclear translocation of AR and subsequent association of AR with nuclear DNA. This results in 

attenuation of coactivator mobilization leading to cellular apoptosis and decreased prostate tumor 

volume. The first-generation ARAs including bicalutamide, nilutamide, and flutamide do not 

completely block AR activity. Enzalutamide, apalutamide, and darolutamide are the currently 

utilized second-generation ARAs and have no agonistic activity on AR compared to first-

generation ARAs. Enzalutamide and apalutamide have a similar mechanism of action and side 

effect profile (9).  Darolutamide has lower blood brain barrier penetration and low binding affinity 

for gamma-aminobutyric acid type A receptors which resulted in lower incidence of CNS side 

effects (10). Clinical trials relevant to each drug are detailed in Table 1.  
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Enzalutamide is currently approved in de-novo mCSPC, non-metastatic CRPC, mCRPC in chemo 

naïve patients, and mCRPC which progressed after chemotherapy. In addition to overall survival 

benefit, the medication also improved health-related quality of life and benefited patients above 

75 years of age with mCRPC (11, 12). Apalutamide is approved in de-novo mCSPC and non-

metastatic CRPC. Darolutamide has benefit in improving median metastasis-free survival, overall 

survival, time to symptomatic skeletal event, and time to chemotherapy in non-metastatic CRPC 

(10). Clinical trial in mCSPC is ongoing (13).  

Since abiraterone and apalutamide act by different mechanisms, clinical trials are evaluating 

whether the combination provides superior outcomes. Preliminary reports from abiraterone plus 

apalutamide combination trial showed improved PSA response while results from abiraterone 

plus enzalutamide trial showed no improvement in OS and increased side effects (14, 15). 

In the phase IV PLATO trial that evaluated 251 patients who were on abiraterone after progression 

on enzalutamide, the median time to PSA progression (mPSA-P) was 2.8 months, median rPFS 

was 5.7 months, and only 4 patients had PSA decline ≥50% (16, 17). This was redemonstrated 

in the post-hoc analysis of the COU-AA-302 trial where abiraterone after progression on 

enzalutamide (n=55) gave mPSA-P of only 3.9 months and a PSA decline ≥50% was seen in 44% 

of the patients (18). The cohort of patients who had enzalutamide after progression on abiraterone 

(n=33) had an mPSA-P of 2.8 months and a PSA decline ≥50% in 67% of patients. These studies 

emphasize the development of AR-mediated cross-resistance which limits the clinical benefit for 

subsequent use of alternate ARSI. 

ACQUIRED CASTRATION RESISTANCE 

Despite the efficacy of ARSI, secondary resistance to these agents develops in nearly all the 

patients due to molecular changes from selective pressure on AR. The various secondary 

resistance mechanisms are discussed below with an emphasis on mechanisms that have 

potential therapeutic implications and are compiled in Table 2. 

AR SPLICE VARIANTS 

De-novo absence of efficacy with ARSI occurs in approximately 5-10% of mCRPC patients and 

progression ensues in nearly all the patients who initially respond to these drugs. These failures 

can be partly attributed to AR variants (19-21). Truncated AR splice variants (AR-V) contain intact 

activating sites including the N-terminal domain (NTD) and the DNA-binding domain but lack the 

ligand-binding domain (LBD) where ARAs bind and abiraterone exerts its indirect effect (22). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2021                   doi:10.20944/preprints202110.0016.v1

https://doi.org/10.20944/preprints202110.0016.v1


Based on the type of splice variant, downstream transcriptional activity or AR expression 

abundance may be affected (23). 

Androgen receptor isoform splice variant 7 (AR-V7) is the most common variant detected and 

is not targeted by available ARSIs (24). AR-V7 is common in metastatic PCa (75%) and is rare in 

early-stage disease (<1%), suggesting that the expression adaptively increases in tumors 

exposed to ARSI. The PROPHECY trial evaluated baseline circulating tumor cell (CTC) AR-V7 

among 118 patients prior to initiation of enzalutamide or abiraterone and found that the presence 

of CTC AR-V7 is associated with shorter PFS and OS, and only 0-11% of patients showed a PSA 

response compared to 26-28% in AR-V7 negative patients based on the assay used (25, 26). Soft 

tissue responses were also limited at 0-6% compared to 21-25% in patients without CTC AR-V7. 

Another larger study of 202 men with mCRPC confirmed the shorter OS in patients with the 

presence of CTC AR-V7(25). 

Detecting these variants previously required serial biopsies but the use of widely available and 

validated liquid biopsy has made testing more accessible. Treating physicians should consider 

testing for AR-V7 in patients who experience disease progression after ARSI. This approach can 

guide further treatment with an alternative ARSI versus chemotherapy. The presence of CTC AR-

V7 is not associated with primary resistance to taxane chemotherapy (27). Taxanes may be more 

effective in these patients compared to ARSI while in AR-V7 negative men, both chemotherapy 

and ARSI (abiraterone or enzalutamide) have comparable efficacy (25). Combining agents 

targeted at suppressing or degrading AR-V7 to increase sensitivity to enzalutamide is only in 

preclinical stages and not implemented in clinical trials. (28-30).  

Although apalutamide and darolutamide target full-length AR with no effect on AR-V7 activity, 

resistance is seen in AR-V7 expressing enzalutamide- and abiraterone-resistant models. This 

effect could be mediated by concurrent AKR1C3 enzyme activation in these models which 

converts weak androgens to the more potent products: testosterone and DHT. AKR1C3 also 

stabilizes AR-V7 and full-length AR (AR-FL), which results in increased c-MYC expression that in 

turn activates AR target genes (31, 32). Knockdown of AKR1C3 decreased AR-V7 and c-MYC 

expression and reversed the cross-resistance to all four agents. Indomethacin is a potent inhibitor 

of AKR1C3 and is being evaluated as a combination treatment with enzalutamide in mCRPC in a 

phase I/II trial (33). 

TAS3681 is an oral AR antagonist with full length-AR and AR-V7 downregulatory activity and was 

shown to have antitumor efficacy in enzalutamide-resistant models. The open-label phase I trials 

among 56 patients refractory to abiraterone (14.2%), enzalutamide (46.4%), or both (39.3%) 
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showed PSA response lasting up to 16.3 months with a manageable safety profile (34). The 

expansion phase of the study to assess preliminary efficacy is currently ongoing. It also reduced 

the expression of c-MYC, an androgen-independent driver of disease progression. The AR-NTD 

targeting drug EPI-7386 blocks full-length AR and AR-V7 signaling (35). It is being studied in 

combination with enzalutamide in men with mCRPC in a phase I trial while EPI-506, which acts 

by a similar mechanism, did not show significant PSA responses. As a result, the trial was 

terminated, and the results were attributed to poor pharmacokinetics and considerable pill burden 

affecting compliance (32).  

AR-V567es is another splice variant identified in xenografts after prolonged ADT exposure and 

increased in enzalutamide-resistant PCa cells (36, 37). CTC ARV-567es was more common than 

CTC AR-V7 (78% vs. 67%) among 54 patients including 42.6% who received prior ARSI; 54% of 

patients expressed double positivity. Although taxane chemotherapy improved median PFS in 

CTC ARV-567es+ patients, the result is thought to be mediated predominately by concurrent CTC 

AR-V7+ (38). 

 

ACTIVATING MUTATIONS IN AR 

AR POINT MUTATIONS 

Point mutations in the hinge region or the LBD, which result in reduced ligand specificity and 

increased trans-activation, are commonly found in mCRPC (39). CTC DNA studies showed that 

mutations L702H, T878A, H875Y, W742C, and W743L are the most prevalent mutations with a 

median of 6 alterations per patient (40). In the presence of certain mutations, even weaker signals 

and non-canonical steroid ligands can activate AR (41, 42). H875Y and T878A mutations resulted 

in activation of the AR pathway promiscuously by estrogens and progesterone while T877A, 

H875Y, L701H, and L702H mutations resulted in activation by glucocorticoids (43). 

Some mutations convert AR antagonists into potent agonists. CTC DNA studies in mCRPC 

patients resistant to apalutamide or enzalutamide, as well as animal studies, have demonstrated 

that the F877L mutation converts enzalutamide and apalutamide into agonists (44, 45). F877L 

mostly co-occurs with the T878A alteration in the endogenous AR allele of the LNCaP cell line 

upon prolonged exposure to enzalutamide (46). While enzalutamide is a weak partial agonist of 

AR-F877L, it becomes a strong partial agonist with double mutant AR-F877L/T878A (47). 

However, structurally diverse ARSIs like abiraterone and galeterone can completely antagonize 
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AR-F877L, as well as the AR-F877L/T878A mutants. F877L, L702H, and T878A mutations 

mediate abiraterone resistance (48). In preclinical studies, darolutamide was able to retin 

antagonistic properties against many clinically relevant AR mutations (F877L, W742L, T7878A) 

thought to confer resistance to antiandrogen therapies (46). In addition, darolutamide is a full 

antagonist to the W741L and T877A mutations, which mediate bicalutamide resistance, and to 

F876L mutations, which mediate enzalutamide and apalutamide resistance. In an in-vitro study 

assessing response of ARAs to 68 AR mutations in men with CRPC, darolutamide retained 

efficacy in all gain-of-function AR-FL mutations except A587V (42). In contrast, enzalutamide 

caused full or partial activation of 8 mutant types. Nonetheless, it is unclear how this in-vitro 

advantage of darolutamide will translate into clinical context with multiple genetic alterations 

present in a tumor, poor in-vivo bioavailability of darolutamide, and other studies showing cross-

resistance to the drug by mechanisms involving AKR1C3/ARV-7 pathway (31). Of interest, CTC 

DNA analysis showed that three patients treated with apalutamide acquired F876L mutation on 

CTC DNA analysis, that was absent prior to treatment. All of these patients had an elevated PSA, 

but nearly 50% of patients in the entire study population had ≥50% PSA reduction (49). The 

clinical relevance of the antagonist-agonist switch mechanism has itself been questioned. If point 

mutations convert ARSI into potent agonists, withdrawal of the agent should result in improvement 

in PSA and clinical status. In a study of 47 patients whose disease progressed after enzalutamide 

treatment, only 5 experienced anti-androgen withdrawal syndrome which was of short duration 

(50). Hence, the co-existence of other alterations could impact the outcomes. 

TRC253 is a high-affinity competitive binder of wild-type (WT) and mutant AR with proven efficacy 

in F877L mutant mice models. The drug is currently being studied in a phase I trial and is enrolling 

for the dose-expansion phase including patients with an F877L mutation (51, 52).  

PROTACs are protein degrading agents, of which, ARV-110 is currently being evaluated in a 

phase I/II trial in mCRPC. It degrades the AR in PCa cell lines and animal models with high 

potency leading to lower expression of PSA (53, 54). This drug produces efficient ubiquitination 

and degradation of AR by the proteasome and consequent apoptosis in AR-dependent cells. 

AVR-110 also reduced AR-target gene expression in enzalutamide-resistant tumor models, 

targeted wild type AR (WT-AR), and amplified AR with T878A, H875Y, F877L, and M895V 

mutations, but not in tumors with L702H or AR-V7 mutations. Interim results supported a further 

dose escalation with PSA reduction ≥50% in two out of five patients with T877A and H874 

mutations and 2 patients with wildtype AR (55). ARCC-4 is another PROTAC, derived from 

enzalutamide, which was shown to degrade AR in VCaP cell lines which exhibit resistance 
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mechanisms including AR amplification, AR-V7, F876L, W741L, M896V and T877A 

mutations.(56) 

 

AR OVEREXPRESSION 

Approximately 80% of patients with CRPC have marked increase in AR mRNA and protein 

expression (57-60). Increased AR expression through gene amplification is considered the 

mechanism responsible for progression with ADT in about 30% of the patients. AR 

overexpression coexists with AR point mutations in about 18% of the patients (57, 58, 61-63). 

Nearly 80% of the tumors with AR overexpression show elevated AR gene copy numbers and 

30% have high-level amplifications. AR gene amplification is more common in CRPC compared 

to CSPC and has a poor impact on PFS and OS (7, 64).  

Although in most cases (92%), AR amplification in CTC DNA corresponds to amplification in 

matched solid biopsy samples, exceptions do occur. A 10-fold AR amplification was detected on 

CTC DNA analysis in a patient with bone and lymph node metastasis while the same was not 

detected in a corresponding lymph node biopsy. It was postulated that the tumor clones with high 

AR amplification were localized to sites of bony metastasis (65). AR amplification is also more 

common in patients that progressed on enzalutamide compared to abiraterone or other agents 

(53% vs 17% or 21%; p = 0.02) (66). AR amplification is currently being evaluated as a predictive 

biomarker for low 177Lu-PSMA-617 activity (67). Mechanistically, AR inhibition upregulates 

PSMA expression which leads to higher uptake of PSMA-ligand drugs like 177 Lu-PSMA-617 and 

increased PSMA tracer uptake on PET in patients with PCa. (68-73) In contrast, AR amplification 

downregulates the PSMA-encoded FOLH1 gene expression, which reduces transcription of 

PSMA and decreasing PSMA expression (74).  Patients with AR gain were 2.4 times less likely 

to have a PSA response with PSMA-ligand therapy. 80% patients with AR gain had early disease 

progression compared to 20% with normal AR copy levels. PFS was inferior in patients with raised 

AR compared to normal AR (median 4.7 months vs. 9.4 months; p=0.020), and a similar pattern 

was seen with OS (median 7.4 vs. 19.1 months; p=0.020). Another study with 66 patients who 

received radioligand therapies (177Lu-PSMA-617, 177Lu-J591 and 225Ac-J591) showed that 

47% had AR amplification or resistant mutations. These patients were less likely to experience a 

PSA decline ≥30% compared to wild-type; and it was also associated with inferior OS (median 

12.4 vs. 21 months; p=0.043) (75). 
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AR overexpression can also occur without gene amplification by stabilization of the mRNA or 

protein or by increasing transcription rates (76-78). This increase could be mediated by the AR 

gene, expression of c-MYC, or other oncogenes (79-81). AR overexpression results in tumor 

growth despite minimal androgen stimulation (62, 82). In-vitro models demonstrated conversion 

of bicalutamide to an AR agonist in presence of this aberration (83). On the other hand, episodic 

exposure to supraphysiologic doses of testosterone can produce downregulation of AR and 

potential resensitization to ADT.  

The phase II TRANSFORMER trial compared the efficacy of bipolar androgen therapy (BAT) by 

cycling polar extremes of near-castrate and supraphysiologic testosterone levels with 

enzalutamide in asymptomatic men with CRPC after progression on abiraterone. Differences in 

PFS and OS were not statistically significant with either approach. However, patients who 

underwent BAT followed by enzalutamide had better PFS2 compared to enzalutamide followed 

by BAT (median 28.2 vs. 19.6 months, HR 0.44, 95%CI 0.22-0.88). The OS was also superior in 

the BATenzalutamide group compared to the enzalutamide alone group (median 37.1 vs. 28.6 

months, HR 0.52, 95%CI 0.29-0.96). In this study, 38% of the entire study population 

overexpressed AR and 9% had AR-V7 in CTCs. These aberrations conferred numerically shorter 

PFS and OS on BAT and enzalutamide therapies; however, the study was not powered to 

determine if these aberrations could be used as treatment selection biomarkers (84). It is possible 

that BAT can extend the PFS on enzalutamide after progression with abiraterone; however, 

randomized controlled trials are required to confirm this hypothesis. Another approach to eliminate 

selective pressure on AR from continuous use of one ARSI is by adaptive therapy where patients 

are switched between on- and off-cycles of treatment based on the PSA and tumor volume. An 

interim analysis of adaptive abiraterone therapy among 15 patients with mCRPC demonstrated a 

median rPFS of at least 30 months using only 49% of the conventional continuous abiraterone 

therapy dose (85). 

Bromodomain and extra-terminal chromatin readers (BET) inhibitors including miverbresib and 

ZEN-3694 regulate AR gene transcription to decrease AR expression and AR-V7 signaling, which 

results in tumor suppression (86). Single agent use of miverbresib in a phase I trial did not show 

a trend that was consistent with a clinical response; and hence, trials with combination of BET 

inhibitor and enzalutamide are ongoing (87, 88). Phase Ib/IIa results of combination ZEN-3694 

plus enzalutamide in 75 patients who progressed on abiraterone (40%), enzalutamide (45.3%), 

or both (11%) showed a median composite radiographic and clinical PFS of 5.5 months with a 

3.5 months mean duration of treatment on the combination (89). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2021                   doi:10.20944/preprints202110.0016.v1

https://doi.org/10.20944/preprints202110.0016.v1


 

AR CROSS-TALK WITH OTHER SIGNAL TRANSDUCTION PATHWAYS 

Resistance to AR-targeted agents in PCa can also be mediated by activation of alternate signaling 

pathways that are induced by peptide growth factors, PI3K/AKT/mTOR pathway, glucocorticoid 

receptor (GR) pathway, and through restoration of downstream signaling by alternative proteins.  

DNA repair pathway: Patients with tumor cells harboring pathogenic or likely pathogenic variants 

of BRCA1 or BRCA2 benefit from PARP inhibitors like olaparib or rucaparib. Although data is 

limited, these agents can also be used with other homologous recombinant repair (HRR) gene 

defects like ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, 

RAD51D, or RAD54L (90). PARP-mediated repair pathways are upregulated upon AR inhibition 

by bicalutamide and enzalutamide and act as a mechanism for PCa cell survival. This process 

occurs due to ARA-induced unresolved DNA damage, and the pathway could be effectively 

downregulated by the addition of PARP-inhibitors.(91) In addition to sensitizing PCa cells to DNA 

damage, PARP-inhibitors also sensitize them to androgen depletion (92). Olaparib was combined 

with abiraterone in a phase II trial among 142 patients with mCRPC after progression on prior 

docetaxel. Approximately 15% of the patients had CTC DNA HRR gene defects. The combination 

treatment significantly improved rPFS (median 13.8 vs. 8.2 months, HR 0.65, 95%CI 0.44-0.97). 

As expected, grade 3 and 4 adverse events were common among the combination therapy group 

(54 vs. 28%) (93). A phase II trial evaluating the efficacy of abiraterone with veliparib vs. 

abiraterone with placebo irrespective of HRR gene defect status showed no significant difference 

in PSA response (72% vs. 64%) or PFS (median 11 vs. 10.1 months). Of note, the patients whose 

tumors harbored a defective HRR gene (27%) had higher radiology response rates (88% vs. 38%) 

and PSA response rates (90% vs. 56%) compared to those without HRR defects (94). Other 

ongoing trials evaluating the potential benefits of combined therapy include PROPEL (olaparib 

with abiraterone), MAGNITUDE (niraparib with abiraterone), and TALAPRO-2 trials (talazoparib 

with enzalutamide) (95-97). 

PI3K/AKT/mTOR pathway: The PI3K/AKT/mTOR pathway is commonly altered in PCa and 

signaling can be activated by enzalutamide through stabilization of AKT phosphatase (98-100). 

Loss of function or deletion of the tumor suppressor was found in approximately 60% of the CRPC 

patients while mutations that activate PIK3CA mutations occurred in around 30% (101, 102). In 

preclinical models with PTEN loss, AR and PI3K/AKT pathways maintained tumor survival by 

reciprocal feedback leading to enzalutamide and abiraterone resistance. Dual inhibition of both 
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the pathways is more effective than blocking either of them (101, 102).  A phase III trial with 1101 

patients used an AKT inhibitor, iptasertib. Those who were randomized to ipatesertib-abiraterone 

or ipatesertib-placebo showed that median rPFS was significantly improved in patients with 

tumors showing PTEN-loss by immunohistochemistry (n=521, median 19.1 vs. 14.2 months, HR 

0.65, 95%CI 0.45-0.95) or PIK3CA/AKT1/PTEN-alterations by next generation sequencing 

(n=205, median 19.3 vs. 14.1 months, HR 0.63, 95%CI 0.44-0.88) (103). Another AKT-inhibitor, 

capivasertib, combined with enzalutamide in patients who previously received ARSI showed a 

positive response in 3 of the 15 patients. All three had PTEN loss or activating AKT mutations 

(104, 105). Other chemotherapies have been investigated in mCRPC setting: PI3K inhibitor 

sonolisib (PX-866), AKT/mTOR inhibitor GSK2141795 and combination therapies with PX-866 

plus abiraterone, and PI3K inhibitor BKM120 plus enzalutamide. However, none of these studies 

resulted in meaningful clinical outcomes (106-108). In these combination trials, as well as with 

the use of the mTOR inhibitor everolimus and the dual mTOR inhibitor MLN0128, the rapid rise 

in PSA was reversed when treatment was discontinued, which, further confirms a crosstalk 

between multiple signaling pathways (6, 109, 110). Samotolisib, a dual PI3K/mTOR inhibitor plus 

enzalutamide in a phase Ib/II trial among men with mCRPC showed statistically significant 

improvement in median serological and radiographic PFS compared to enzalutamide alone 

(median 2.9 vs 3.7 months, HR 0.66, 95%CI 0.43-0.99)(111). GSK2636771, a selective PI3Kβ 

inhibitor in a phase I/II trial, demonstrated a durable response in 3 of the 12 mCRPC patients, all, 

of whom had tumors harboring PIK3CB mutations (112). 

BRAF-MAPK pathway: Alternative signaling through the MAPK pathway was identified as a 

potential growth pathway in 2 patients with enzalutamide resistant PCa harboring a BRAF-K601E 

mutation (113, 114). Pharmacologic inhibition of BRAF or downstream components of MAPK 

pathway along with AR inhibition resulted in significant inhibition of cell proliferation. With 90% of 

metastatic PCa harboring alterations in MAPK pathway, larger studies may help us understand if 

this synergism is reproducible in the clinical setting (115). BRAF mutations, on the other hand, 

occur in only about 2% of PCa patients. CXCR7, an atypical chemokine receptor, is one of the 

most upregulated genes in enzalutamide resistant PCa cells. CXCR7 is repressed by AR but 

expression increased upon ADT initiation, leading to activation of MAPK/ERK signaling (116). 

MAPK inhibitors were able to block CXCR7 downstream pathways, however, resistance 

developed rapidly. Similarly, increased ERK1/2 expression was seen in tissue samples of men 

with CRPC. ERK is the immediate downstream target of MEK1/2, and trametinib, a MEK inhibitor, 

elicited biochemical and clinical responses in a heavily pretreated mCRPC patient (117). AR-
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tropomyosin receptor kinase (TRK) crosstalk mediated through nerve growth factor (NGF) also 

promoted tumor growth in ARSI challenged PCa cell lines, and are targetable by NTRK1/TRKA 

inhibitors (118). However, the clinical utility of these inhibitors is limited as NTRK mutations are 

rarely detected in prostate cancer (119). 

Wnt signaling pathway: PCa cells can also gain the ability to synthesize and secrete specific 

ligands and receptors that help sustain survival through the wnt-beta-catenin pathway 

independent of androgen signaling (120). A study among 137 mCRPC patients who developed 

resistance to enzalutamide or abiraterone found that 11% developed activating mutations in 

CTNNB1, APC, or RNF43, which are involved in wnt-beta catenin pathway, and that these 

mutations conferred shorter OS. Interestingly, the CTNNB1 mutations were found only in 

enzalutamide treated patients. Beta-catenin signaling causes downstream upregulation of 

hypoxia inducible factor-1 alpha (HIF1α) and vascular endothelial growth factor (VEGF), which 

promotes angiogenesis. However, targeting mCRPC by tyrosine kinase inhibitors as a 

monotherapy has not resulted in any clinically beneficial outcomes (104, 105). Though, the HIF1α 

inhibitor NLG207 in combination with enzalutamide and CCS1477 (inhibitor of the HIFα-AR 

coactivator CBP-p300) is being evaluated for suppressing the AR-HIFα pathway in patients 

previously treated with enzalutamide (121-123). 

Glucocorticoid receptor (GR) activation: Enzalutamide resistance has been attributed in some 

cases to increased GR expression, which can drive transcription of AR-related genes (124, 125). 

GR expression was found in only 30% of CSPC but, expression increased after ADT (126). Of 

note, AR and GR share the same chromatin binding sites and GR can regulate genes in the AR-

pathway (127). Interestingly, mechanistic studies showed that resistance to enzalutamide can be 

mediated by increased GR (or other nuclear steroid receptor expression) after exposure to the 

drug (124). By overcoming the ligand deficiency conferred by ADT, and regulating AR target 

genes, the GR-bypass model is a potential resistance mechanism. Loss of TLE3, a transcriptional 

corepressor, leads to increased GR expression and is implicated in apalutamide and 

enzalutamide resistance (124). However, the phase I/II open-label trial of enzalutamide combined 

with mifepristone, a GR antagonist, in patients with mCRPC showed no benefit in delaying time 

to PSA-P compared to enzalutamide alone (HR=1.34, p=0.395)(128, 129). Another phase I/II trial 

that assessed a selective GR antagonist, CORT125281, plus enzalutamide in mCRPC patients 

whose cancer progressed on abiraterone is ongoing (130). In patients who developed progressive 

disease on abiraterone-prednisone, switching the steroid from prednisone to dexamethasone 

resulted in PSA decline ≥50% in 34.6% of patients with a median rPFS of 11.8 months (131). The 
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lower equivalent GR and mineralocorticoid receptor activity of dexamethasone compared to 

prednisone is postulated as a possible mechanism. Patients with AR gain detected in plasma 

CTC, however, did not respond to the switch. 

Neuroendocrine differentiation: Treatment-related neuroendocrine differentiation is quite 

prevalent in mCRPC. Studies showed that 16.9% of patients who had disease progression after 

ADT demonstrated small cell histology on biopsies of metastases (132). Development of small 

cell PCa confers a poor prognosis with an OS of 36.6 months compared to 44.5 months in patients 

with adenocarcinoma (HR 2.02, 95%CI 1.07-3.82). TP53 and RB1 loss can occur as adaptative 

mechanisms to selective pressures on AR and result in AR independence in the tissue. 

Overexpression of n-myc and cell-cycle kinase Aurora kinase-A, which drive AR-independent 

progression by lineage plasticity, was identified in metastatic neuroendocrine PCa (133). A phase 

II trial of Alisertib, an inhibitor of ARORA kinase-A and n-myc, in neuroendocrine PCa included 

34% of patients who progressed on prior ARSI therapy. Although exceptional responders were 

identified among patients with genomic amplification of MYCN and AURKA; overall, the study did 

not meet the primary end-points of 6-month PFS (13.4%) or OS benefit (9.5 months). Inhibition of 

epigenetic modifiers like EZH2 were evaluated for their ability to potentially restore sensitivity to 

ARSIs. Tazemetostat, an EZH2 inhibitor currently used in epithelioid sarcoma and follicular 

lymphoma, and CPI-1205 are being evaluated in phase I/II trials (13, 134). A phase I trial of a 

combination of CPI-1205 plus cobicistat (a CYP3A4 blocker) with enzalutamide (after progression 

on abiraterone) or abiraterone (after progression on enzalutamide) Showed a PSA decline of 

≥80% in 14.7% of patients. This PSA decline was mainly confined to the AR-V7 negative group. 

The phase II part of the trial comparing CPI-1205 with or without enzalutamide has begun. 

PD-1/PDL-1 immunoinhibitory pathway: Higher expression of PDL-1 in patients with 

enzalutamide-resistant PCa prompted the phase III IMbassador250 trial that combined 

enzalutamide with the PDL-1 blocker atezolizumab in mCRPC after progression on abiraterone 

or chemotherapy (135). However, the trial was discontinued due to high toxicity and no 

improvement in OS (136). Another trial evaluating a combination of enzalutamide with 

pembrolizumab in untreated mCRPC patients is ongoing (137). 

CONCLUSION 

Significant advantages have been made in the management of CRPC with second-generation 

androgen receptor antagonists and androgen synthesis inhibitors. However, the benefits are often 

short-lived due to the rapid development of resistance to these drugs. Extensive studies on the 
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resistance mechanisms have opened the way to new drug developments which are aimed at 

reducing the emergence of resistant clones as well as targeting them. These drugs are still in the 

pipeline with clinical utility being evaluated in numerous clinical trials. Although preclinical data 

have been promising, many agents were not clinically beneficial. This result is possible because 

of the interaction of multiple cross-talk pathways and genetic aberrations occurring concurrently, 

which makes targeted monotherapies less effective. Further understanding of the nuances of 

resistance mechanisms and wider utilization of clinical trials can help in development of these 

agents. 
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Tables  

Table 1: Clinical trials that led to FDA approval of ARSIs. 

Trial Name Pha

se 

Study arm Comparator 

arm 

Tota

l 

pati

ents 

Patient 

population 

Median OS 

(months) 

HR (95%CI or 

p-value) 

Refer

ence 
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COU-AA-

301 

III Abiraterone + ADT Placebo + 

ADT 

1195 mCRPC 

post-

docetaxel 

15.8 vs. 10.9 0.65 (0.54-

0.77) 

(138) 

COU-AA-

302 

III Abiraterone + ADT Placebo + 

ADT 

1088 Chemo-

naïve 

mCRPC 

34.7 vs. 30.3  0.81 (0.70-

0.93) 

(18) 

LATITUDE III Abiraterone + ADT Placebo + 

ADT 

1199 De-novo 

mCSPC 

53.3 vs. 36.5  0.66 (0.51-

0.76) 

(139) 

AFFIRM III Enzalutamide + 

ADT 

Placebo + 

ADT 

1199 mCRPC 

post-

docetaxel 

18.4 vs. 13.6  0.63 (0.53-

0.75) 

(140) 

PREVAIL III Enzalutamide 

+ADT 

Placebo + 

ADT 

1717 Chemo-

naïve 

mCRPC 

32.4 vs. 30.2 0.71 (0.60-

0.84) 

(141) 

PROSPER III Enzalutamide + 

ADT 

Placebo + 

ADT 

933 nmCRPC 67 vs. 56.3  0.73 (0.61-

0.89) 

(142) 

ENZAMET III Enzalutamide + 

ADT 

Placebo + 

ADT 

1125 Denovo 

mCSPC 

62% vs. 34% 

(3-year 

survival) 

0.67 (0.52-

0.86) 

(143) 

SPARTAN III Apalutamide + ADT Placebo + 

ADT 

1207 nMCRPC 73.9 vs. 59.9  0.78 (0.016) (144) 

TITAN III Apalutamide + ADT Placebo + 

ADT 

1052 Denovo 

mCSPC 

NR vs. 52.2 0.65 (0.53-

0.79) 

(145) 

ARAMIS III Darolutamide + 

ADT 

Placebo + 

ADT 

1509 nmCRPC 83% vs. 77% 

(3-year 

survival) 

0.69 (0.53-

0.88) 

(146) 

Abbreviations: CSPC- castration sensitive prostate cancer, mCRPC- metastatic castration resistant prostate cancer, nmCRPC- 

non-metastatic castration resistant prostate cancer 

 

Table 2: AR-mediated ARSI resistance mechanisms and drugs with potential action 

Aberration Mechanism Treatments potentially 

resistant 

Drugs with potential action and active 

clinical trials 

AR variants Lack of ligand binding 

domain 
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       AR-V7  Abiraterone, Enzalutamide, 

Apalutamide, Darolutamide* 

(25, 26) 

 

Bipolar androgen therapy (84) 

Taxane chemotherapy* (27) 

 

TAS3681 (34)  

 

EPI-7386 (35) 

 

Miverbresib + enzalutamide (87, 88) 

 

ZEN-3694 + enzalutamide (89) 

       AR-

V567es 

 Enzalutamide (36, 37) Taxane chemotherapy (38) 

AR 

overexpression 

Gene amplification, 

stabilization of 

mRNA/protein, 

increasing 

transcription rates 

Enzalutamide, Abiraterone (65, 

66, 83) 

 

177Lu-PSMA-617, 177Lu-J591, 

225Ac-J591  (67, 75) 

Bipolar androgen therapy pretreatment (84) 

 

Adaptive abiraterone therapy (85)  

 

Miverbresib + enzalutamide (87, 88) 

 

ZEN-3694 + enzalutamide (89) 

AR point 

mutations 

Low ligand specificity, 

activation by weaker 

signals and non-

canonical steroid 

ligands, conversion of 

ARA into agonists. 

Enzalutamide, Apalutamide 

(A587V, F876L, F877L, G684A, 

K631T, L595M, Q920R, R630Q, 

T576A, T878A) (44, 45) 

 

Darolutamide (A587V) (42) 

Darolutamide (F876L, F877L, W742L, T787A, 

W741L, T878A, L702H, H875Y) (42) 

 

Galaterone (F877L, T878A) (47) 

 

TRC253 (F877L) (51, 52). 

 

ARV-110 (53, 54) 

 

ARCC-4 (56) 

 

*Clinical benefit/resistance proven in clinical trials. 

 

 

REFERENCES 

1. Barry MJ, Nelson JB. Patients Present with More Advanced Prostate Cancer since the 
USPSTF Screening Recommendations. J Urol. 2015;194(6):1534-6. 

2. Howlader N NA, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, 
Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975-2018, 
National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/csr/1975_2018/, based on 
November 2020 SEER data submission, posted to the SEER web site. April 2021. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2021                   doi:10.20944/preprints202110.0016.v1

https://doi.org/10.20944/preprints202110.0016.v1


3. Dehm SM, Tindall DJ. Molecular regulation of androgen action in prostate cancer. J Cell 
Biochem. 2006;99(2):333-44. 

4. Denmeade SR, Lin XS, Isaacs JT. Role of programmed (apoptotic) cell death during the 
progression and therapy for prostate cancer. Prostate. 1996;28(4):251-65. 

5. Pienta KJ, Bradley D. Mechanisms Underlying the Development of Androgen-
Independent Prostate Cancer. Clinical Cancer Research. 2006;12(6):1665-71. 

6. Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, et al. 
Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for 
castration-resistant tumor growth. Cancer Res. 2008;68(11):4447-54. 

7. Attard G, Reid AH, A'Hern R, Parker C, Oommen NB, Folkerd E, et al. Selective 
inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-
resistant prostate cancer. J Clin Oncol. 2009;27(23):3742-8. 

8. Rehman Y, Rosenberg JE. Abiraterone acetate: oral androgen biosynthesis inhibitor for 
treatment of castration-resistant prostate cancer. Drug Des Devel Ther. 2012;6:13-8. 

9. Azad AA, Eigl BJ, Murray RN, Kollmannsberger C, Chi KN. Efficacy of enzalutamide 
following abiraterone acetate in chemotherapy-naive metastatic castration-resistant prostate 
cancer patients. Eur Urol. 2015;67(1):23-9. 

10. Smith MR, Saad F, Chowdhury S, Oudard S, Hadaschik BA, Graff JN, et al. Apalutamide 
and Overall Survival in Prostate Cancer. Eur Urol. 2021;79(1):150-8. 

11. Sternberg CN, de Bono JS, Chi KN, Fizazi K, Mulders P, Cerbone L, et al. Improved 
outcomes in elderly patients with metastatic castration-resistant prostate cancer treated with the 
androgen receptor inhibitor enzalutamide: results from the phase III AFFIRM trial. Ann Oncol. 
2014;25(2):429-34. 

12. Fizazi K, Scher HI, Miller K, Basch E, Sternberg CN, Cella D, et al. Effect of 
enzalutamide on time to first skeletal-related event, pain, and quality of life in men with 
castration-resistant prostate cancer: results from the randomised, phase 3 AFFIRM trial. Lancet 
Oncol. 2014;15(10):1147-56. 

13. ClinicalTrials.gov UNLoM. ODM-201 in Addition to Standard ADT and Docetaxel in 
Metastatic Castration Sensitive Prostate Cancer (ARASENS). 
https://ClinicalTrials.gov/show/NCT02799602. 

14. Rathkopf DE, Efstathiou E, Attard G, Flaig TW, Franke FA, Goodman OB, et al. Final 
results from ACIS, a randomized, placebo (PBO)-controlled double-blind phase 3 study of 
apalutamide (APA) and abiraterone acetate plus prednisone (AAP) versus AAP in patients (pts) 
with chemo-naive metastatic castration-resistant prostate cancer (mCRPC). Journal of Clinical 
Oncology. 2021;39(6_suppl):9-. 

15. Morris MJ, Heller G, Bryce AH, Armstrong AJ, Beltran H, Hahn OM, et al. Alliance 
A031201: A phase III trial of enzalutamide (ENZ) versus enzalutamide, abiraterone, and 
prednisone (ENZ/AAP) for metastatic castration resistant prostate cancer (mCRPC). Journal of 
Clinical Oncology. 2019;37(15_suppl):5008-. 

16. Attard G, Borre M, Gurney H, Loriot Y, Andresen-Daniil C, Kalleda R, et al. Abiraterone 
Alone or in Combination With Enzalutamide in Metastatic Castration-Resistant Prostate Cancer 
With Rising Prostate-Specific Antigen During Enzalutamide Treatment. J Clin Oncol. 
2018;36(25):2639-46. 

17. Fizazi K, Massard C, Bono P, Jones R, Kataja V, James N, et al. Activity and safety of 
ODM-201 in patients with progressive metastatic castration-resistant prostate cancer 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2021                   doi:10.20944/preprints202110.0016.v1

https://doi.org/10.20944/preprints202110.0016.v1


(ARADES): an open-label phase 1 dose-escalation and randomised phase 2 dose expansion 
trial. Lancet Oncol. 2014;15(9):975-85. 

18. Smith MR, Saad F, Rathkopf DE, Mulders PFA, de Bono JS, Small EJ, et al. Clinical 
Outcomes from Androgen Signaling-directed Therapy after Treatment with Abiraterone Acetate 
and Prednisone in Patients with Metastatic Castration-resistant Prostate Cancer: Post Hoc 
Analysis of COU-AA-302. Eur Urol. 2017;72(1):10-3. 

19. McKay RR, Kwak L, Crowdis JP, Sperger JM, Zhao SG, Xie W, et al. Phase II 
Multicenter Study of Enzalutamide in Metastatic Castration-Resistant Prostate Cancer to Identify 
Mechanisms Driving Resistance. Clin Cancer Res. 2021;27(13):3610-9. 

20. Sperger JM, Emamekhoo H, McKay RR, Stahlfeld CN, Singh A, Chen XE, et al. 
Prospective Evaluation of Clinical Outcomes Using a Multiplex Liquid Biopsy Targeting Diverse 
Resistance Mechanisms in Metastatic Prostate Cancer. J Clin Oncol. 2021:Jco2100169. 

21. Armstrong AJ, Lin P, Higano CS, Sternberg CN, Sonpavde G, Tombal B, et al. 
Development and validation of a prognostic model for overall survival in chemotherapy-naïve 
men with metastatic castration-resistant prostate cancer. Ann Oncol. 2018;29(11):2200-7. 

22. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ. Splicing of a novel 
androgen receptor exon generates a constitutively active androgen receptor that mediates 
prostate cancer therapy resistance. Cancer Res. 2008;68(13):5469-77. 

23. Luo J, Pienta KJ. Words of wisdom: re: androgen receptor splice variants mediate 
enzalutamide resistance in castration-resistant prostate cancer cell lines. Eur Urol. 
2013;64(2):339-40. 

24. Hu R, Lu C, Mostaghel EA, Yegnasubramanian S, Gurel M, Tannahill C, et al. Distinct 
transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its 
splice variants in castration-resistant prostate cancer. Cancer Res. 2012;72(14):3457-62. 

25. Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Zhu Y, et al. Clinical Significance of 
Androgen Receptor Splice Variant-7 mRNA Detection in Circulating Tumor Cells of Men With 
Metastatic Castration-Resistant Prostate Cancer Treated With First- and Second-Line 
Abiraterone and Enzalutamide. J Clin Oncol. 2017;35(19):2149-56. 

26. Armstrong AJ, Halabi S, Luo J, Nanus DM, Giannakakou P, Szmulewitz RZ, et al. 
Prospective Multicenter Validation of Androgen Receptor Splice Variant 7 and Hormone 
Therapy Resistance in High-Risk Castration-Resistant Prostate Cancer: The PROPHECY 
Study. J Clin Oncol. 2019;37(13):1120-9. 

27. Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Nakazawa M, et al. Androgen 
Receptor Splice Variant 7 and Efficacy of Taxane Chemotherapy in Patients With Metastatic 
Castration-Resistant Prostate Cancer. JAMA Oncol. 2015;1(5):582-91. 

28. Li Y, Chan SC, Brand LJ, Hwang TH, Silverstein KA, Dehm SM. Androgen receptor 
splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell 
lines. Cancer Res. 2013;73(2):483-9. 

29. Liu B, Sun Y, Tang M, Liang C, Huang C-P, Niu Y, et al. The miR-361-3p increases 
enzalutamide (Enz) sensitivity via targeting the ARv7 and MKNK2 to better suppress the Enz-
resistant prostate cancer. Cell Death & Disease. 2020;11(9):807. 

30. Liu C, Armstrong CM, Ning S, Yang JC, Lou W, Lombard AP, et al. ARVib suppresses 
growth of advanced prostate cancer via inhibition of androgen receptor signaling. Oncogene. 
2021. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2021                   doi:10.20944/preprints202110.0016.v1

https://doi.org/10.20944/preprints202110.0016.v1


31. Zhao J, Ning S, Lou W, Yang JC, Armstrong CM, Lombard AP, et al. Cross-Resistance 
Among Next-Generation Antiandrogen Drugs Through the AKR1C3/AR-V7 Axis in Advanced 
Prostate Cancer. Mol Cancer Ther. 2020;19(8):1708-18. 

32. Liu C, Yang JC, Armstrong CM, Lou W, Liu L, Qiu X, et al. AKR1C3 Promotes AR-V7 
Protein Stabilization and Confers Resistance to AR-Targeted Therapies in Advanced Prostate 
Cancer. Mol Cancer Ther. 2019;18(10):1875-86. 

33. Parikh M, Institute NC, University of California D. Enzalutamide and Indomethacin in 
Treating Patients With Recurrent or Metastatic Hormone-Resistant Prostate Cancer. 
https://ClinicalTrials.gov/show/NCT02935205; 2017. 

34. Bono JSD, Cook N, Yu EY, Lara PLN, Wang JS, Yamasaki Y, et al. First-in-human study 
of TAS3681, an oral androgen receptor (AR) antagonist with AR and AR splice variant (AR-SV) 
downregulation activity, in patients (pts) with metastatic castration-resistant prostate cancer 
(mCRPC) refractory to abiraterone (ABI) and/or enzalutamide (ENZ) and chemotherapy (CT). 
Journal of Clinical Oncology. 2021;39(15_suppl):5031-. 

35. Medicine UNLo. Oral EPI-7386 in Patients With Metastatic Castration-Resistant Prostate 
Cancer (EPI-7386). 

36. Sun S, Sprenger CC, Vessella RL, Haugk K, Soriano K, Mostaghel EA, et al. Castration 
resistance in human prostate cancer is conferred by a frequently occurring androgen receptor 
splice variant. J Clin Invest. 2010;120(8):2715-30. 

37. Cao B, Qi Y, Zhang G, Xu D, Zhan Y, Alvarez X, et al. Androgen receptor splice variants 
activating the full-length receptor in mediating resistance to androgen-directed therapy. 
Oncotarget. 2014;5(6):1646-56. 

38. Tagawa ST, Antonarakis ES, Gjyrezi A, Galletti G, Kim S, Worroll D, et al. Expression of 
AR-V7 and ARv(567es) in Circulating Tumor Cells Correlates with Outcomes to Taxane 
Therapy in Men with Metastatic Prostate Cancer Treated in TAXYNERGY. Clin Cancer Res. 
2019;25(6):1880-8. 

39. Brooke GN, Bevan CL. The role of androgen receptor mutations in prostate cancer 
progression. Curr Genomics. 2009;10(1):18-25. 

40. Ledet EM, Lilly MB, Sonpavde G, Lin E, Nussenzveig RH, Barata PC, et al. 
Comprehensive Analysis of AR Alterations in Circulating Tumor DNA from Patients with 
Advanced Prostate Cancer. Oncologist. 2020;25(4):327-33. 

41. Jernberg E, Bergh A, Wikström P. Clinical relevance of androgen receptor alterations in 
prostate cancer. Endocr Connect. 2017;6(8):R146-r61. 

42. Lallous N, Snow O, Sanchez C, Parra Nunez AK, Sun B, Hussain A, et al. Evaluation of 
Darolutamide (ODM201) Efficiency on Androgen Receptor Mutants Reported to Date in 
Prostate Cancer Patients. Cancers (Basel). 2021;13(12). 

43. Jernberg E, Bergh A, Wikstrom P. Clinical relevance of androgen receptor alterations in 
prostate cancer. Endocr Connect. 2017;6(8):R146-R61. 

44. Joseph JD, Lu N, Qian J, Sensintaffar J, Shao G, Brigham D, et al. A clinically relevant 
androgen receptor mutation confers resistance to second-generation antiandrogens 
enzalutamide and ARN-509. Cancer Discov. 2013;3(9):1020-9. 

45. Korpal M, Korn JM, Gao X, Rakiec DP, Ruddy DA, Doshi S, et al. An F876L mutation in 
androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). 
Cancer Discov. 2013;3(9):1030-43. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2021                   doi:10.20944/preprints202110.0016.v1

https://doi.org/10.20944/preprints202110.0016.v1


46. Moilanen AM, Riikonen R, Oksala R, Ravanti L, Aho E, Wohlfahrt G, et al. Discovery of 
ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to 
androgen signaling-directed prostate cancer therapies. Scientific reports. 2015;5:12007. 

47. Prekovic S, van Royen ME, Voet AR, Geverts B, Houtman R, Melchers D, et al. The 
Effect of F877L and T878A Mutations on Androgen Receptor Response to Enzalutamide. Mol 
Cancer Ther. 2016;15(7):1702-12. 

48. Antonarakis ES. Current understanding of resistance to abiraterone and enzalutamide in 
advanced prostate cancer. Clin Adv Hematol Oncol. 2016;14(5):316-9. 

49. Rathkopf DE, Efstathiou E, Attard G, Flaig TW, Franke FA, Goodman OB, et al. Final 
results from ACIS, a randomized, placebo (PBO)-controlled double-blind phase 3 study of 
apalutamide (APA) and abiraterone acetate plus prednisone (AAP) versus AAP in patients (pts) 
with chemo-naive metastatic castration-resistant prostate cancer (mCRPC). Journal of Clinical 
Oncology. 2021;39(6_suppl):9-. 

50. Poole A, Gill D, Hahn AW, Johnson E, Carroll E, Boucher K, et al. Incidence and 
Characterization of Antiandrogen Withdrawal Syndrome After Discontinuation of Treatment With 
Enzalutamide in Castration-resistant Prostate Cancer. Clin Genitourin Cancer. 2017. 

51. ClinicalTrials.gov UNLoM. Phase 1/2A Study of TRC253, an Androgen Receptor 
Antagonist, in Metastatic Castration-resistant Prostate Cancer Patients. 
https://ClinicalTrials.gov/show/NCT02987829. 

52. Rathkopf DE, Saleh MN, Tsai FY-C, Bilen MA, Rosen LS, Gottardis M, et al. An open 
label phase 1/2A study to evaluate the safety, pharmacokinetics, pharmacodynamics, and 
preliminary efficacy of TRC253, an androgen receptor antagonist, in patients with metastatic 
castration-resistant prostate cancer. Journal of Clinical Oncology. 2019;37(15_suppl):e16542-e. 

53. ClinicalTrials.gov UNLoM. Trial of ARV-110 in Patients With Metastatic Castration 
Resistant Prostate Cancer. https://ClinicalTrials.gov/show/NCT03888612. 

54. Jin M, Winkler JD, Coleman K, Crew AP, Rossi AK, Willard RR, et al. Abstract LB-097: 
Targeted degradation of the androgen receptor in prostate cancer. Cancer Research. 
2015;75(15 Supplement):LB-097-LB-. 

55. Petrylak DP, Gao X, Vogelzang NJ, Garfield MH, Taylor I, Moore MD, et al. First-in-
human phase I study of ARV-110, an androgen receptor (AR) PROTAC degrader in patients 
(pts) with metastatic castrate-resistant prostate cancer (mCRPC) following enzalutamide (ENZ) 
and/or abiraterone (ABI). Journal of Clinical Oncology. 2020;38(15_suppl):3500-. 

56. Kregel S, Wang C, Han X, Xiao L, Fernandez-Salas E, Bawa P, et al. Androgen receptor 
degraders overcome common resistance mechanisms developed during prostate cancer 
treatment. Neoplasia. 2020;22(2):111-9. 

57. Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC, et al. Survey of 
gene amplifications during prostate cancer progression by high-throughout fluorescence in situ 
hybridization on tissue microarrays. Cancer Res. 1999;59(4):803-6. 

58. Haapala K, Kuukasjärvi T, Hyytinen E, Rantala I, Helin HJ, Koivisto PA. Androgen 
receptor amplification is associated with increased cell proliferation in prostate cancer. Hum 
Pathol. 2007;38(3):474-8. 

59. Linja MJ, Savinainen KJ, Saramäki OR, Tammela TL, Vessella RL, Visakorpi T. 
Amplification and overexpression of androgen receptor gene in hormone-refractory prostate 
cancer. Cancer Res. 2001;61(9):3550-5. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2021                   doi:10.20944/preprints202110.0016.v1

https://doi.org/10.20944/preprints202110.0016.v1


60. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative 
genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11-22. 

61. Koivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J, et al. Androgen 
receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy 
failure in prostate cancer. Cancer Res. 1997;57(2):314-9. 

62. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinänen R, Palmberg C, et al. In vivo 
amplification of the androgen receptor gene and progression of human prostate cancer. Nat 
Genet. 1995;9(4):401-6. 

63. Miyoshi Y, Uemura H, Fujinami K, Mikata K, Harada M, Kitamura H, et al. Fluorescence 
in situ hybridization evaluation of c-myc and androgen receptor gene amplification and 
chromosomal anomalies in prostate cancer in Japanese patients. Prostate. 2000;43(3):225-32. 

64. Leversha MA, Han J, Asgari Z, Danila DC, Lin O, Gonzalez-Espinoza R, et al. 
Fluorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate 
cancer. Clin Cancer Res. 2009;15(6):2091-7. 

65. Wyatt AW, Annala M, Aggarwal R, Beja K, Feng F, Youngren J, et al. Concordance of 
Circulating Tumor DNA and Matched Metastatic Tissue Biopsy in Prostate Cancer. J Natl 
Cancer Inst. 2017;109(12). 

66. Azad AA, Volik SV, Wyatt AW, Haegert A, Le Bihan S, Bell RH, et al. Androgen 
Receptor Gene Aberrations in Circulating Cell-Free DNA: Biomarkers of Therapeutic Resistance 
in Castration-Resistant Prostate Cancer. Clin Cancer Res. 2015;21(10):2315-24. 

67. Emmett L, Willowson K, Violet J, Shin J, Blanksby A, Lee J. Lutetium (177) PSMA 
radionuclide therapy for men with prostate cancer: a review of the current literature and 
discussion of practical aspects of therapy. J Med Radiat Sci. 2017;64(1):52-60. 

68. Lückerath K, Wei L, Fendler WP, Evans-Axelsson S, Stuparu AD, Slavik R, et al. 
Preclinical evaluation of PSMA expression in response to androgen receptor blockade for 
theranostics in prostate cancer. EJNMMI Res. 2018;8(1):96. 

69. Evans MJ, Smith-Jones PM, Wongvipat J, Navarro V, Kim S, Bander NH, et al. 
Noninvasive measurement of androgen receptor signaling with a positron-emitting 
radiopharmaceutical that targets prostate-specific membrane antigen. Proc Natl Acad Sci U S A. 
2011;108(23):9578-82. 

70. Hope TA, Aggarwal R, Chee B, Tao D, Greene KL, Cooperberg MR, et al. Impact of 
(68)Ga-PSMA-11 PET on Management in Patients with Biochemically Recurrent Prostate 
Cancer. J Nucl Med. 2017;58(12):1956-61. 

71. Aggarwal R, Wei X, Kim W, Small EJ, Ryan CJ, Carroll P, et al. Heterogeneous Flare in 
Prostate-specific Membrane Antigen Positron Emission Tomography Tracer Uptake with 
Initiation of Androgen Pathway Blockade in Metastatic Prostate Cancer. Eur Urol Oncol. 
2018;1(1):78-82. 

72. Emmett L, Yin C, Crumbaker M, Hruby G, Kneebone A, Epstein R, et al. Rapid 
Modulation of PSMA Expression by Androgen Deprivation: Serial (68)Ga-PSMA-11 PET in Men 
with Hormone-Sensitive and Castrate-Resistant Prostate Cancer Commencing Androgen 
Blockade. J Nucl Med. 2019;60(7):950-4. 

73. Rosar F, Dewes S, Ries M, Schaefer A, Khreish F, Maus S, et al. New insights in the 
paradigm of upregulation of tumoral PSMA expression by androgen receptor blockade: 
Enzalutamide induces PSMA upregulation in castration-resistant prostate cancer even in 
patients having previously progressed on enzalutamide. Eur J Nucl Med Mol Imaging. 
2020;47(3):687-94. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2021                   doi:10.20944/preprints202110.0016.v1

https://doi.org/10.20944/preprints202110.0016.v1


74. U.S. Cancer Statistics Working Group. U.S. Cancer Statistics Data Visualizations Tool, 
based on 2019 submission data (1999-2017) [Internet]. U.S. Department of Health and Human 
Services, Centers for Disease Control and Prevention and National Cancer Institute 

2020. Available from: www.cdc.gov/cancer/dataviz. 

75. Sun M, Niaz M, Thomas C, Schaap A, Lacuna K, Vlachostergios P, et al. Abstract 6511: 
Androgen receptor (AR) genomic alterations and clinical outcome with prostate-specific 
membrane antigen (PSMA)-targeted radionuclide therapy. Cancer Research. 2020;80(16 
Supplement):6511-. 

76. Zhang L, Altuwaijri S, Deng F, Chen L, Lal P, Bhanot UK, et al. NF-kappaB regulates 
androgen receptor expression and prostate cancer growth. Am J Pathol. 2009;175(2):489-99. 

77. Sharma A, Yeow WS, Ertel A, Coleman I, Clegg N, Thangavel C, et al. The 
retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer 
progression. J Clin Invest. 2010;120(12):4478-92. 

78. Lin PC, Chiu YL, Banerjee S, Park K, Mosquera JM, Giannopoulou E, et al. Epigenetic 
repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate 
cancer progression. Cancer Res. 2013;73(3):1232-44. 

79. Wiren KM, Zhang X, Chang C, Keenan E, Orwoll ES. Transcriptional up-regulation of the 
human androgen receptor by androgen in bone cells. Endocrinology. 1997;138(6):2291-300. 

80. Wolf DA, Herzinger T, Hermeking H, Blaschke D, Hörz W. Transcriptional and 
posttranscriptional regulation of human androgen receptor expression by androgen. Mol 
Endocrinol. 1993;7(7):924-36. 

81. Grad JM, Lyons LS, Robins DM, Burnstein KL. The androgen receptor (AR) amino-
terminus imposes androgen-specific regulation of AR gene expression via an exonic enhancer. 
Endocrinology. 2001;142(3):1107-16. 

82. Waltering KK, Helenius MA, Sahu B, Manni V, Linja MJ, Jänne OA, et al. Increased 
expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. 
Cancer Res. 2009;69(20):8141-9. 

83. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Molecular 
determinants of resistance to antiandrogen therapy. Nat Med. 2004;10(1):33-9. 

84. Denmeade SR, Wang H, Agarwal N, Smith DC, Schweizer MT, Stein MN, et al. 
TRANSFORMER: A Randomized Phase II Study Comparing Bipolar Androgen Therapy Versus 
Enzalutamide in Asymptomatic Men With Castration-Resistant Metastatic Prostate Cancer. J 
Clin Oncol. 2021;39(12):1371-82. 

85. Zhang J, Fishman MN, Brown J, Gatenby RA. Integrating evolutionary dynamics into 
treatment of metastatic castrate-resistant prostate cancer (mCRPC): Updated analysis of the 
adaptive abiraterone (abi) study (NCT02415621). Journal of Clinical Oncology. 
2019;37(15_suppl):5041-. 

86. Welti J, Sharp A, Yuan W, Dolling D, Nava Rodrigues D, Figueiredo I, et al. Targeting 
Bromodomain and Extra-Terminal (BET) Family Proteins in Castration-Resistant Prostate 
Cancer (CRPC). Clin Cancer Res. 2018;24(13):3149-62. 

87. ClinicalTrials.gov UNLoM. Safety, Tolerability, Pharmacokinetics, and 
Pharmacodynamics of GS-5829 (Alobresib) as a Single Agent and In Combination With 
Enzalutamide in Participants With Metastatic Castrate-Resistant Prostate Cancer. 
https://ClinicalTrials.gov/show/NCT02607228. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2021                   doi:10.20944/preprints202110.0016.v1

https://doi.org/10.20944/preprints202110.0016.v1


88. Piha-Paul SA, Sachdev JC, Barve M, LoRusso P, Szmulewitz R, Patel SP, et al. First-in-
Human Study of Mivebresib (ABBV-075), an Oral Pan-Inhibitor of Bromodomain and Extra 
Terminal Proteins, in Patients with Relapsed/Refractory Solid Tumors. Clin Cancer Res. 
2019;25(21):6309-19. 

89. Aggarwal RR, Schweizer MT, Nanus DM, Pantuck AJ, Heath EI, Campeau E, et al. A 
Phase Ib/IIa Study of the Pan-BET Inhibitor ZEN-3694 in Combination with Enzalutamide in 
Patients with Metastatic Castration-resistant Prostate Cancer. Clin Cancer Res. 
2020;26(20):5338-47. 

90. Administration USFD. FDA approves olaparib for HRR gene-mutated metastatic 
castration-resistant prostate cancer 2020 [Available from: https://www.fda.gov/drugs/resources-
information-approved-drugs/fda-approves-olaparib-hrr-gene-mutated-metastatic-castration-
resistant-prostate-cancer. 

91. Asim M, Tarish F, Zecchini HI, Sanjiv K, Gelali E, Massie CE, et al. Synthetic lethality 
between androgen receptor signalling and the PARP pathway in prostate cancer. Nature 
Communications. 2017;8(1):374. 

92. Schiewer MJ, Goodwin JF, Han S, Brenner JC, Augello MA, Dean JL, et al. Dual roles of 
PARP-1 promote cancer growth and progression. Cancer Discov. 2012;2(12):1134-49. 

93. Clarke N, Wiechno P, Alekseev B, Sala N, Jones R, Kocak I, et al. Olaparib combined 
with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, 
double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2018;19(7):975-86. 

94. Hussain M, Daignault-Newton S, Twardowski PW, Albany C, Stein MN, Kunju LP, et al. 
Targeting Androgen Receptor and DNA Repair in Metastatic Castration-Resistant Prostate 
Cancer: Results From NCI 9012. J Clin Oncol. 2018;36(10):991-9. 

95. ClinicalTrials.gov UNLoM. Study on Olaparib Plus Abiraterone as First-line Therapy in 
Men With Metastatic Castration-resistant Prostate Cancer. 
https://ClinicalTrials.gov/show/NCT03732820. 

96. ClinicalTrials.gov UNLoM. A Study of Niraparib in Combination With Abiraterone Acetate 
and Prednisone Versus Abiraterone Acetate and Prednisone for Treatment of Participants With 
Metastatic Prostate Cancer. https://ClinicalTrials.gov/show/NCT03748641. 

97. Medicine.ClinicalTrials.gov UNLo. Talazoparib + Enzalutamide vs. Enzalutamide 
Monotherapy in mCRPC. https://ClinicalTrials.gov/show/NCT03395197. 

98. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The 
mutational landscape of lethal castration-resistant prostate cancer. Nature. 
2012;487(7406):239-43. 

99. Reid AH, Attard G, Ambroisine L, Fisher G, Kovacs G, Brewer D, et al. Molecular 
characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of 
death from prostate cancer. Br J Cancer. 2010;102(4):678-84. 

100. Robbins CM, Tembe WA, Baker A, Sinari S, Moses TY, Beckstrom-Sternberg S, et al. 
Copy number and targeted mutational analysis reveals novel somatic events in metastatic 
prostate tumors. Genome Res. 2011;21(1):47-55. 

101. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, et al. 
Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient 
prostate cancer. Cancer Cell. 2011;19(5):575-86. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2021                   doi:10.20944/preprints202110.0016.v1

https://doi.org/10.20944/preprints202110.0016.v1


102. Thomas C, Lamoureux F, Crafter C, Davies BR, Beraldi E, Fazli L, et al. Synergistic 
targeting of PI3K/AKT pathway and androgen receptor axis significantly delays castration-
resistant prostate cancer progression in vivo. Mol Cancer Ther. 2013;12(11):2342-55. 

103. Sweeney C, Bracarda S, Sternberg CN, Chi KN, Olmos D, Sandhu S, et al. Ipatasertib 
plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer 
(IPATential150): a multicentre, randomised, double-blind, phase 3 trial. Lancet. 
2021;398(10295):131-42. 

104. George DJ, Dionne CA, Jani J, Angeles T, Murakata C, Lamb J, et al. Sustained in vivo 
regression of Dunning H rat prostate cancers treated with combinations of androgen ablation 
and Trk tyrosine kinase inhibitors, CEP-751 (KT-6587) or CEP-701 (KT-5555). Cancer Res. 
1999;59(10):2395-401. 

105. Dionne CA, Camoratto AM, Jani JP, Emerson E, Neff N, Vaught JL, et al. Cell cycle-
independent death of prostate adenocarcinoma is induced by the trk tyrosine kinase inhibitor 
CEP-751 (KT6587). Clin Cancer Res. 1998;4(8):1887-98. 

106. Burris HA, Siu LL, Infante JR, Wheler JJ, Kurkjian C, Opalinska J, et al. Safety, 
pharmacokinetics (PK), pharmacodynamics (PD), and clinical activity of the oral AKT inhibitor 
GSK2141795 (GSK795) in a phase I first-in-human study. Journal of Clinical Oncology. 
2011;29(15_suppl):3003-. 

107. Bendell JC, Rodon J, Burris HA, de Jonge M, Verweij J, Birle D, et al. Phase I, dose-
escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid 
tumors. J Clin Oncol. 2012;30(3):282-90. 

108. Armstrong AJ, Halabi S, Healy P, Alumkal JJ, Winters C, Kephart J, et al. Phase II trial 
of the PI3 kinase inhibitor buparlisib (BKM-120) with or without enzalutamide in men with 
metastatic castration resistant prostate cancer. Eur J Cancer. 2017;81:228-36. 

109. Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, et al. Increased 
expression of genes converting adrenal androgens to testosterone in androgen-independent 
prostate cancer. Cancer Res. 2006;66(5):2815-25. 

110. Mitsiades N, Sung CC, Schultz N, Danila DC, He B, Eedunuri VK, et al. Distinct patterns 
of dysregulated expression of enzymes involved in androgen synthesis and metabolism in 
metastatic prostate cancer tumors. Cancer Res. 2012;72(23):6142-52. 

111. Sweeney C, Percent IJ, Babu S, Cultrera J, Mehlhaff BA, Goodman OB, et al. Phase 
1b/2 study of enzalutamide (ENZ) with LY3023414 (LY) or placebo (PL) in patients (pts) with 
metastatic castration-resistant prostate cancer (mCRPC) after progression on abiraterone. 
Journal of Clinical Oncology. 2019;37(15_suppl):5009-. 

112. Mateo J, Ganji G, Lemech C, Burris HA, Han S-W, Swales K, et al. A First-Time-in-
Human Study of GSK2636771, a Phosphoinositide 3 Kinase Beta-Selective Inhibitor, in Patients 
with Advanced Solid Tumors. Clinical Cancer Research. 2017;23(19):5981-92. 

113. Uemura M, Tamura K, Chung S, Honma S, Okuyama A, Nakamura Y, et al. Novel 5 
alpha-steroid reductase (SRD5A3, type-3) is overexpressed in hormone-refractory prostate 
cancer. Cancer Sci. 2008;99(1):81-6. 

114. Godoy A, Kawinski E, Li Y, Oka D, Alexiev B, Azzouni F, et al. 5α-reductase type 3 
expression in human benign and malignant tissues: a comparative analysis during prostate 
cancer progression. Prostate. 2011;71(10):1033-46. 

115. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative 
analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 
2013;6(269):pl1. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2021                   doi:10.20944/preprints202110.0016.v1

https://doi.org/10.20944/preprints202110.0016.v1


116. Li S, Fong K-w, Gritsina G, Zhang A, Zhao JC, Kim J, et al. Activation of MAPK 
Signaling by CXCR7 Leads to Enzalutamide Resistance in Prostate Cancer. Cancer Research. 
2019;79(10):2580-92. 

117. Nickols NG, Nazarian R, Zhao SG, Tan V, Uzunangelov V, Xia Z, et al. MEK-ERK 
signaling is a therapeutic target in metastatic castration resistant prostate cancer. Prostate 
Cancer and Prostatic Diseases. 2019;22(4):531-8. 

118. Di Donato M, Cernera G, Auricchio F, Migliaccio A, Castoria G. Cross-talk between 
androgen receptor and nerve growth factor receptor in prostate cancer cells: implications for a 
new therapeutic approach. Cell Death Discovery. 2018;4(1):5. 

119. Rosen EY, Goldman DA, Hechtman JF, Benayed R, Schram AM, Cocco E, et al. TRK 
Fusions Are Enriched in Cancers with Uncommon Histologies and the Absence of Canonical 
Driver Mutations. Clin Cancer Res. 2020;26(7):1624-32. 

120. Isaacs JT. Apoptosis: translating theory to therapy for prostate cancer. J Natl Cancer 
Inst. 2000;92(17):1367-9. 

121. Welti J, Sharp A, Brooks N, Yuan W, McNair C, Chand SN, et al. Targeting the 
p300/CBP Axis in Lethal Prostate Cancer. Cancer Discov. 2021;11(5):1118-37. 

122. ClinicalTrials.gov UNLoM. Combining CRLX101, a Nanoparticle Camptothecin, With 
Enzalutamide in People With Progressive Metastatic Castration Resistant Prostate Cancer 
Following Prior Enzalutamide Treatment. https://ClinicalTrials.gov/show/NCT03531827. 

123. ClinicalTrials.gov UNLoM. Study to Evaluate CCS1477 in Advanced Tumours. 
https://ClinicalTrials.gov/show/NCT03568656. 

124. Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J, Balbas MD, et al. 
Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor 
blockade. Cell. 2013;155(6):1309-22. 

125. Li J, Alyamani M, Zhang A, Chang KH, Berk M, Li Z, et al. Aberrant corticosteroid 
metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer. Elife. 
2017;6. 

126. Szmulewitz RZ, Chung E, Al-Ahmadie H, Daniel S, Kocherginsky M, Razmaria A, et al. 
Serum/glucocorticoid-regulated kinase 1 expression in primary human prostate cancers. 
Prostate. 2012;72(2):157-64. 

127. Sahu B, Laakso M, Pihlajamaa P, Ovaska K, Sinielnikov I, Hautaniemi S, et al. FoxA1 
specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells. 
Cancer Res. 2013;73(5):1570-80. 

128. Serritella A, Shevrin DH, Heath EI, Wade JL, Martinez E, Karrison T, et al. Phase I/II trial 
of enzalutamide (Enz) plus mifepristone (Mif) for metastatic castration-resistant prostate cancer 
(mCRPC). Journal of Clinical Oncology. 2020;38(6_suppl):91-. 

129. ClinicalTrials.gov UNLoM. Enzalutamide and Mifepristone in Treating Patients With 
Metastatic Hormone Resistant Prostate Cancer. https://ClinicalTrials.gov/show/NCT02012296. 

130. ClinicalTrials.gov UNLoM. Study to Evaluate CORT125281 in Combination With 
Enzalutamide in Patients With mCRPC. https://ClinicalTrials.gov/show/NCT03437941. 

131. Romero-Laorden N, Lozano R, Jayaram A, López-Campos F, Saez MI, Montesa A, et al. 
Phase II pilot study of the prednisone to dexamethasone switch in metastatic castration-
resistant prostate cancer (mCRPC) patients with limited progression on abiraterone plus 
prednisone (SWITCH study). British Journal of Cancer. 2018;119(9):1052-9. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2021                   doi:10.20944/preprints202110.0016.v1

https://doi.org/10.20944/preprints202110.0016.v1


132. Aggarwal R, Huang J, Alumkal JJ, Zhang L, Feng FY, Thomas GV, et al. Clinical and 
Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: 
A Multi-institutional Prospective Study. J Clin Oncol. 2018;36(24):2492-503. 

133. Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, Puca L, et al. N-Myc Induces an 
EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer. Cancer Cell. 
2016;30(4):563-77. 

134. ClinicalTrials.gov UNLoM. Tazemetostat in Combination With Doxorubicin as Frontline 
Therapy for Advanced Epithelioid Sarcoma. https://ClinicalTrials.gov/show/NCT04204941. 

135. Bishop JL, Sio A, Angeles A, Roberts ME, Azad AA, Chi KN, et al. PD-L1 is highly 
expressed in Enzalutamide resistant prostate cancer. Oncotarget. 2015;6(1):234-42. 

136. Sweeney CJ, Gillessen S, Rathkopf D, Matsubara N, Drake C, Fizazi K, et al. Abstract 
CT014: IMbassador250: A phase III trial comparing atezolizumab with enzalutamide vs 
enzalutamide alone in patients with metastatic castration-resistant prostate cancer (mCRPC). 
Cancer Research. 2020;80(16 Supplement):CT014. 

137. ClinicalTrials.gov UNLoM. Study of Pembrolizumab (MK-3475) Plus Enzalutamide 
Versus Placebo Plus Enzalutamide in Participants With Metastatic Castration-resistant Prostate 
Cancer (mCRPC) (MK-3475-641/KEYNOTE-641). 
https://ClinicalTrials.gov/show/NCT03834493. 

138. de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, et al. Abiraterone and 
increased survival in metastatic prostate cancer. N Engl J Med. 2011;364(21):1995-2005. 

139. Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY, et al. 
Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic 
castration-sensitive prostate cancer (LATITUDE): final overall survival analysis of a randomised, 
double-blind, phase 3 trial. The Lancet Oncology. 2019;20(5):686-700. 

140. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Increased survival 
with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367(13):1187-97. 

141. Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, et al. 
Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 
2014;371(5):424-33. 

142. Sternberg CN, Fizazi K, Saad F, Shore ND, De Giorgi U, Penson DF, et al. 
Enzalutamide and Survival in Nonmetastatic, Castration-Resistant Prostate Cancer. New 
England Journal of Medicine. 2020;382(23):2197-206. 

143. Sweeney C, Martin AJ, Zielinski RR, Thomson A, Tan TH, Sandhu SK, et al. Overall 
survival (OS) results of a phase III randomized trial of standard-of-care therapy with or without 
enzalutamide for metastatic hormone-sensitive prostate cancer (mHSPC): ENZAMET (ANZUP 
1304), an ANZUP-led international cooperative group trial. Journal of Clinical Oncology. 
2019;37(18_suppl):LBA2-LBA. 

144. Small EJ, Saad F, Chowdhury S, Oudard S, Hadaschik BA, Graff JN, et al. Final survival 
results from SPARTAN, a phase III study of apalutamide (APA) versus placebo (PBO) in 
patients (pts) with nonmetastatic castration-resistant prostate cancer (nmCRPC). Journal of 
Clinical Oncology. 2020;38(15_suppl):5516-. 

145. Chi KN, Chowdhury S, Bjartell A, Chung BH, Gomes AJPdS, Given R, et al. 
Apalutamide in Patients With Metastatic Castration-Sensitive Prostate Cancer: Final Survival 
Analysis of the Randomized, Double-Blind, Phase III TITAN Study. Journal of Clinical Oncology. 
2021;39(20):2294-303. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2021                   doi:10.20944/preprints202110.0016.v1

https://doi.org/10.20944/preprints202110.0016.v1


146. Fizazi K, Shore N, Tammela TL, Ulys A, Vjaters E, Polyakov S, et al. Darolutamide in 
Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl J Med. 2019;380(13):1235-46. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2021                   doi:10.20944/preprints202110.0016.v1

https://doi.org/10.20944/preprints202110.0016.v1

