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ABSTRACT

Understanding of the molecular mechanisms of prostate cancer has led to development of
therapeutic strategies targeting androgen receptor (AR). These androgen-receptor signaling

inhibitors (ARSI) include androgen synthesis inhibitor- abiraterone and androgen receptor
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antagonists- enzalutamide, apalutamide, and darolutamide. Although these medications provide
significant improvement in survival among men with prostate cancer, drug resistance develops in
nearly all patients with time. This could be through androgen-dependent or androgen-independent
mechanisms. Even weaker signals and non-canonical steroid ligands can activate AR in the
presence of truncated AR-splice variants, AR overexpression, or activating mutations in AR. AR
splice variant, AR-V7 is the most studied among these and is not targeted by available ARSIs.
Non-androgen receptor dependent resistance mechanisms are mediated by activation of an
alternative signaling pathway when AR is inhibited. DNA repair pathway, PISK/AKT/mTOR
pathway, BRAF-MAPK and Wnt signaling pathway and activation by glucocorticoid receptors can
restore downstream signaling in prostate cancer by alternative proteins. Multiple clinical trials are

underway exploring therapeutic strategies to overcome these resistance mechanisms.

INTRODUCTION

Prostate cancer (PCa) is the second most common malignancy among men (1). Based on
Surveillance, Epidemiology and End Results Program-9 data, the age-adjusted incidence and
mortality of PCa for the period 2009 to 2018 showed a downward trend (2). This drift could be
due to a decrease in the utilization of routine prostate specific antigen (PSA) screening and the

development of effective therapeutic strategies which prolong PCa survival.

Androgen Receptor (AR) plays a key role in the pathogenesis of PCa. AR is a ligand-activated
nuclear transcription factor that belongs to the steroid hormone receptor family. As testosterone
(produced by Leydig cells in the testes) or 5-alpha-dihydrotestosterone (DHT) (converted from
testosterone in prostate tissue by 5-alpha-reductase type | and Il) binds to AR, the receptor
dimerizes and translocates into the nucleus to bind to the androgen response element (ARE) (3).
The AR modulates the transcriptional activity of genes involved in escaping apoptosis and
inducing cellular proliferation. Thus, AR signaling results in the growth of PCa. A critical level of
androgens is needed to activate the required number of ARs on androgen-sensitive PCa cells for
cell proliferation, the absence of which by utilizing androgen ablation will result in activation of
programmed cell death (4). Hence, the therapeutic strategy of androgen deprivation therapy
(ADT) is rational and beneficial in PCa. Although early-stage PCa is mostly mediated by
androgen-dependent cancer cells, the metastatic castrate-resistant stage is heterogenous with
the presence of both androgen-dependent and androgen-independent cells. The development of
castration resistance is mainly due to the development of genetic alterations in the AR resulting
in the outgrowth of androgen-independent cells.(5) In addition to the stimulation of AR by

androgen produced from the adrenal gland and testis, intra-tumoral secretion of enzymes involved
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in the synthesis of testosterone like cytochrome P450 17-alpha hydroxysteroid dehydrogenase
(CYP17) support tumor survival and growth (6). The understanding of these molecular
mechanisms has led to the development of newer drugs that act by inhibiting the enzymes for
androgen production or block ARs. The agents include abiraterone which can cause selective
and irreversible inhibition of CYP17 and small molecule AR antagonists like enzalutamide (7).
Although these androgen-receptor signaling inhibitors (ARSI) have been shown to significantly
alter the natural history of castration-resistant PCa (CRPC), drug resistance develops in most
patients with time. In this article, we will discuss the drugs that target AR and the clinically relevant

resistance mechanisms as well as therapeutic strategies to overcome the resistance.

THERAPEUTIC STRATEGIES TARGETED AT ANDROGEN SIGNALING

ANDROGEN SYNTHESIS INHIBITORS

Abiraterone acetate is an androgen synthesis inhibitor derived from pregnenolone and is an
irreversible inhibitor of 17, 20-lyase and 17-alpha hydroxylase which are products of the CYP17
gene. The drug inhibits the production of androgen in the testes, adrenal glands, and tumor cells
(8). The agent requires steroid supplementation to overcome secondary cortisol insufficiency and

prevent overproduction of ACTH and mineralocorticoids.

The drug is currently approved by the US Food and Drug Administration (FDA) for use in newly
diagnosed metastatic CSPC and metastatic CRPC. Clinical trials that led to FDA approval of

individual drugs are shown in Table 1.
ANDROGEN RECEPTOR ANTAGONISTS

Androgen receptor antagonists (ARA) block the androgen binding site of AR and inhibit the
nuclear translocation of AR and subsequent association of AR with nuclear DNA. This results in
attenuation of coactivator mobilization leading to cellular apoptosis and decreased prostate tumor
volume. The first-generation ARAs including bicalutamide, nilutamide, and flutamide do not
completely block AR activity. Enzalutamide, apalutamide, and darolutamide are the currently
utilized second-generation ARAs and have no agonistic activity on AR compared to first-
generation ARAs. Enzalutamide and apalutamide have a similar mechanism of action and side
effect profile (9). Darolutamide has lower blood brain barrier penetration and low binding affinity
for gamma-aminobutyric acid type A receptors which resulted in lower incidence of CNS side

effects (10). Clinical trials relevant to each drug are detailed in Table 1.
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Enzalutamide is currently approved in de-novo mCSPC, non-metastatic CRPC, mCRPC in chemo
naive patients, and mCRPC which progressed after chemotherapy. In addition to overall survival
benefit, the medication also improved health-related quality of life and benefited patients above
75 years of age with mCRPC (11, 12). Apalutamide is approved in de-novo mCSPC and non-
metastatic CRPC. Darolutamide has benefit in improving median metastasis-free survival, overall
survival, time to symptomatic skeletal event, and time to chemotherapy in non-metastatic CRPC
(10). Clinical trial in mCSPC is ongoing (13).

Since abiraterone and apalutamide act by different mechanisms, clinical trials are evaluating
whether the combination provides superior outcomes. Preliminary reports from abiraterone plus
apalutamide combination trial showed improved PSA response while results from abiraterone

plus enzalutamide trial showed no improvement in OS and increased side effects (14, 15).

In the phase IV PLATO ftrial that evaluated 251 patients who were on abiraterone after progression
on enzalutamide, the median time to PSA progression (mPSA-P) was 2.8 months, median rPFS
was 5.7 months, and only 4 patients had PSA decline 250% (16, 17). This was redemonstrated
in the post-hoc analysis of the COU-AA-302 trial where abiraterone after progression on
enzalutamide (n=55) gave mPSA-P of only 3.9 months and a PSA decline 250% was seen in 44%
of the patients (18). The cohort of patients who had enzalutamide after progression on abiraterone
(n=33) had an mPSA-P of 2.8 months and a PSA decline 250% in 67% of patients. These studies
emphasize the development of AR-mediated cross-resistance which limits the clinical benefit for

subsequent use of alternate ARSI.

ACQUIRED CASTRATION RESISTANCE

Despite the efficacy of ARSI, secondary resistance to these agents develops in nearly all the
patients due to molecular changes from selective pressure on AR. The various secondary
resistance mechanisms are discussed below with an emphasis on mechanisms that have

potential therapeutic implications and are compiled in Table 2.

AR SPLICE VARIANTS

De-novo absence of efficacy with ARSI occurs in approximately 5-10% of mCRPC patients and
progression ensues in nearly all the patients who initially respond to these drugs. These failures
can be partly attributed to AR variants (19-21). Truncated AR splice variants (AR-V) contain intact
activating sites including the N-terminal domain (NTD) and the DNA-binding domain but lack the
ligand-binding domain (LBD) where ARAs bind and abiraterone exerts its indirect effect (22).
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Based on the type of splice variant, downstream transcriptional activity or AR expression

abundance may be affected (23).

Androgen receptor isoform splice variant 7 (AR-V7) is the most common variant detected and
is not targeted by available ARSIs (24). AR-V7 is common in metastatic PCa (75%) and is rare in
early-stage disease (<1%), suggesting that the expression adaptively increases in tumors
exposed to ARSI. The PROPHECY trial evaluated baseline circulating tumor cell (CTC) AR-V7
among 118 patients prior to initiation of enzalutamide or abiraterone and found that the presence
of CTC AR-V7 is associated with shorter PFS and OS, and only 0-11% of patients showed a PSA
response compared to 26-28% in AR-V7 negative patients based on the assay used (25, 26). Soft
tissue responses were also limited at 0-6% compared to 21-25% in patients without CTC AR-V7.
Another larger study of 202 men with mCRPC confirmed the shorter OS in patients with the
presence of CTC AR-V7(25).

Detecting these variants previously required serial biopsies but the use of widely available and
validated liquid biopsy has made testing more accessible. Treating physicians should consider
testing for AR-V7 in patients who experience disease progression after ARSI. This approach can
guide further treatment with an alternative ARSI versus chemotherapy. The presence of CTC AR-
V7 is not associated with primary resistance to taxane chemotherapy (27). Taxanes may be more
effective in these patients compared to ARSI while in AR-V7 negative men, both chemotherapy
and ARSI (abiraterone or enzalutamide) have comparable efficacy (25). Combining agents
targeted at suppressing or degrading AR-V7 to increase sensitivity to enzalutamide is only in

preclinical stages and not implemented in clinical trials. (28-30).

Although apalutamide and darolutamide target full-length AR with no effect on AR-V7 activity,
resistance is seen in AR-V7 expressing enzalutamide- and abiraterone-resistant models. This
effect could be mediated by concurrent AKR1C3 enzyme activation in these models which
converts weak androgens to the more potent products: testosterone and DHT. AKR1C3 also
stabilizes AR-V7 and full-length AR (AR-FL), which results in increased c-MYC expression that in
turn activates AR target genes (31, 32). Knockdown of AKR1C3 decreased AR-V7 and c-MYC
expression and reversed the cross-resistance to all four agents. Indomethacin is a potent inhibitor
of AKR1C3 and is being evaluated as a combination treatment with enzalutamide in mCRPC in a
phase I/ll trial (33).

TAS3681 is an oral AR antagonist with full length-AR and AR-V7 downregulatory activity and was
shown to have antitumor efficacy in enzalutamide-resistant models. The open-label phase | trials

among 56 patients refractory to abiraterone (14.2%), enzalutamide (46.4%), or both (39.3%)
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showed PSA response lasting up to 16.3 months with a manageable safety profile (34). The
expansion phase of the study to assess preliminary efficacy is currently ongoing. It also reduced
the expression of c-MYC, an androgen-independent driver of disease progression. The AR-NTD
targeting drug EPI-7386 blocks full-length AR and AR-V7 signaling (35). It is being studied in
combination with enzalutamide in men with mCRPC in a phase | trial while EPI-506, which acts
by a similar mechanism, did not show significant PSA responses. As a result, the trial was
terminated, and the results were attributed to poor pharmacokinetics and considerable pill burden

affecting compliance (32).

AR-V567es is another splice variant identified in xenografts after prolonged ADT exposure and
increased in enzalutamide-resistant PCa cells (36, 37). CTC ARV-567es was more common than
CTC AR-V7 (78% vs. 67%) among 54 patients including 42.6% who received prior ARSI; 54% of
patients expressed double positivity. Although taxane chemotherapy improved median PFS in
CTC ARV-567es+ patients, the result is thought to be mediated predominately by concurrent CTC
AR-V7+ (38).

ACTIVATING MUTATIONS IN AR

AR POINT MUTATIONS

Point mutations in the hinge region or the LBD, which result in reduced ligand specificity and
increased trans-activation, are commonly found in mCRPC (39). CTC DNA studies showed that
mutations L702H, T878A, H875Y, W742C, and W743L are the most prevalent mutations with a
median of 6 alterations per patient (40). In the presence of certain mutations, even weaker signals
and non-canonical steroid ligands can activate AR (41, 42). H875Y and T878A mutations resulted
in activation of the AR pathway promiscuously by estrogens and progesterone while T877A,
H875Y, L701H, and L702H mutations resulted in activation by glucocorticoids (43).

Some mutations convert AR antagonists into potent agonists. CTC DNA studies in mCRPC
patients resistant to apalutamide or enzalutamide, as well as animal studies, have demonstrated
that the F877L mutation converts enzalutamide and apalutamide into agonists (44, 45). F877L
mostly co-occurs with the T878A alteration in the endogenous AR allele of the LNCaP cell line
upon prolonged exposure to enzalutamide (46). While enzalutamide is a weak partial agonist of
AR-F877L, it becomes a strong partial agonist with double mutant AR-F877L/T878A (47).

However, structurally diverse ARSIs like abiraterone and galeterone can completely antagonize

d0i:10.20944/preprints202110.0016.v1
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AR-F877L, as well as the AR-F877L/T878A mutants. F877L, L702H, and T878A mutations
mediate abiraterone resistance (48). In preclinical studies, darolutamide was able to retin
antagonistic properties against many clinically relevant AR mutations (F877L, W742L, T7878A)
thought to confer resistance to antiandrogen therapies (46). In addition, darolutamide is a full
antagonist to the W741L and T877A mutations, which mediate bicalutamide resistance, and to
F876L mutations, which mediate enzalutamide and apalutamide resistance. In an in-vitro study
assessing response of ARAs to 68 AR mutations in men with CRPC, darolutamide retained
efficacy in all gain-of-function AR-FL mutations except A587V (42). In contrast, enzalutamide
caused full or partial activation of 8 mutant types. Nonetheless, it is unclear how this in-vitro
advantage of darolutamide will translate into clinical context with multiple genetic alterations
present in a tumor, poor in-vivo bioavailability of darolutamide, and other studies showing cross-
resistance to the drug by mechanisms involving AKR1C3/ARV-7 pathway (31). Of interest, CTC
DNA analysis showed that three patients treated with apalutamide acquired F876L mutation on
CTC DNA analysis, that was absent prior to treatment. All of these patients had an elevated PSA,
but nearly 50% of patients in the entire study population had =250% PSA reduction (49). The
clinical relevance of the antagonist-agonist switch mechanism has itself been questioned. If point
mutations convert ARSI into potent agonists, withdrawal of the agent should result in improvement
in PSA and clinical status. In a study of 47 patients whose disease progressed after enzalutamide
treatment, only 5 experienced anti-androgen withdrawal syndrome which was of short duration

(50). Hence, the co-existence of other alterations could impact the outcomes.

TRC253 is a high-affinity competitive binder of wild-type (WT) and mutant AR with proven efficacy
in F877L mutant mice models. The drug is currently being studied in a phase | trial and is enrolling

for the dose-expansion phase including patients with an F877L mutation (51, 52).

PROTACSs are protein degrading agents, of which, ARV-110 is currently being evaluated in a
phase l/ll trial in mCRPC. It degrades the AR in PCa cell lines and animal models with high
potency leading to lower expression of PSA (53, 54). This drug produces efficient ubiquitination
and degradation of AR by the proteasome and consequent apoptosis in AR-dependent cells.
AVR-110 also reduced AR-target gene expression in enzalutamide-resistant tumor models,
targeted wild type AR (WT-AR), and amplified AR with T878A, H875Y, F877L, and M895V
mutations, but not in tumors with L702H or AR-V7 mutations. Interim results supported a further
dose escalation with PSA reduction 250% in two out of five patients with T877A and H874
mutations and 2 patients with wildtype AR (55). ARCC-4 is another PROTAC, derived from

enzalutamide, which was shown to degrade AR in VCaP cell lines which exhibit resistance
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mechanisms including AR amplification, AR-V7, F876L, W741L, M896V and T877A

mutations.(56)

AR OVEREXPRESSION

Approximately 80% of patients with CRPC have marked increase in AR mRNA and protein
expression (57-60). Increased AR expression through gene amplification is considered the
mechanism responsible for progression with ADT in about 30% of the patients. AR
overexpression coexists with AR point mutations in about 18% of the patients (57, 58, 61-63).
Nearly 80% of the tumors with AR overexpression show elevated AR gene copy numbers and
30% have high-level amplifications. AR gene amplification is more common in CRPC compared
to CSPC and has a poor impact on PFS and OS (7, 64).

Although in most cases (92%), AR amplification in CTC DNA corresponds to amplification in
matched solid biopsy samples, exceptions do occur. A 10-fold AR amplification was detected on
CTC DNA analysis in a patient with bone and lymph node metastasis while the same was not
detected in a corresponding lymph node biopsy. It was postulated that the tumor clones with high
AR amplification were localized to sites of bony metastasis (65). AR amplification is also more
common in patients that progressed on enzalutamide compared to abiraterone or other agents
(53% vs 17% or 21%; p = 0.02) (66). AR amplification is currently being evaluated as a predictive
biomarker for low 177Lu-PSMA-617 activity (67). Mechanistically, AR inhibition upregulates
PSMA expression which leads to higher uptake of PSMA-ligand drugs like 177 Lu-PSMA-617 and
increased PSMA tracer uptake on PET in patients with PCa. (68-73) In contrast, AR amplification
downregulates the PSMA-encoded FOLH1 gene expression, which reduces transcription of
PSMA and decreasing PSMA expression (74). Patients with AR gain were 2.4 times less likely
to have a PSA response with PSMA-ligand therapy. 80% patients with AR gain had early disease
progression compared to 20% with normal AR copy levels. PFS was inferior in patients with raised
AR compared to normal AR (median 4.7 months vs. 9.4 months; p=0.020), and a similar pattern
was seen with OS (median 7.4 vs. 19.1 months; p=0.020). Another study with 66 patients who
received radioligand therapies (177Lu-PSMA-617, 177Lu-J591 and 225Ac-J591) showed that
47% had AR amplification or resistant mutations. These patients were less likely to experience a
PSA decline 230% compared to wild-type; and it was also associated with inferior OS (median
12.4 vs. 21 months; p=0.043) (75).
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AR overexpression can also occur without gene amplification by stabilization of the mRNA or
protein or by increasing transcription rates (76-78). This increase could be mediated by the AR
gene, expression of c-MYC, or other oncogenes (79-81). AR overexpression results in tumor
growth despite minimal androgen stimulation (62, 82). In-vitro models demonstrated conversion
of bicalutamide to an AR agonist in presence of this aberration (83). On the other hand, episodic
exposure to supraphysiologic doses of testosterone can produce downregulation of AR and

potential resensitization to ADT.

The phase Il TRANSFORMER trial compared the efficacy of bipolar androgen therapy (BAT) by
cycling polar extremes of near-castrate and supraphysiologic testosterone levels with
enzalutamide in asymptomatic men with CRPC after progression on abiraterone. Differences in
PFS and OS were not statistically significant with either approach. However, patients who
underwent BAT followed by enzalutamide had better PFS2 compared to enzalutamide followed
by BAT (median 28.2 vs. 19.6 months, HR 0.44, 95%CI 0.22-0.88). The OS was also superior in
the BAT Lenzalutamide group compared to the enzalutamide alone group (median 37.1 vs. 28.6
months, HR 0.52, 95%CI 0.29-0.96). In this study, 38% of the entire study population
overexpressed AR and 9% had AR-V7 in CTCs. These aberrations conferred numerically shorter
PFS and OS on BAT and enzalutamide therapies; however, the study was not powered to
determine if these aberrations could be used as treatment selection biomarkers (84). It is possible
that BAT can extend the PFS on enzalutamide after progression with abiraterone; however,
randomized controlled trials are required to confirm this hypothesis. Another approach to eliminate
selective pressure on AR from continuous use of one ARSI is by adaptive therapy where patients
are switched between on- and off-cycles of treatment based on the PSA and tumor volume. An
interim analysis of adaptive abiraterone therapy among 15 patients with mCRPC demonstrated a
median rPFS of at least 30 months using only 49% of the conventional continuous abiraterone

therapy dose (85).

Bromodomain and extra-terminal chromatin readers (BET) inhibitors including miverbresib and
ZEN-3694 regulate AR gene transcription to decrease AR expression and AR-V7 signaling, which
results in tumor suppression (86). Single agent use of miverbresib in a phase | trial did not show
a trend that was consistent with a clinical response; and hence, trials with combination of BET
inhibitor and enzalutamide are ongoing (87, 88). Phase Ib/lla results of combination ZEN-3694
plus enzalutamide in 75 patients who progressed on abiraterone (40%), enzalutamide (45.3%),
or both (11%) showed a median composite radiographic and clinical PFS of 5.5 months with a

3.5 months mean duration of treatment on the combination (89).
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AR CROSS-TALK WITH OTHER SIGNAL TRANSDUCTION PATHWAYS

Resistance to AR-targeted agents in PCa can also be mediated by activation of alternate signaling
pathways that are induced by peptide growth factors, PIBK/AKT/mTOR pathway, glucocorticoid

receptor (GR) pathway, and through restoration of downstream signaling by alternative proteins.

DNA repair pathway: Patients with tumor cells harboring pathogenic or likely pathogenic variants
of BRCA1 or BRCA2 benefit from PARP inhibitors like olaparib or rucaparib. Although data is
limited, these agents can also be used with other homologous recombinant repair (HRR) gene
defects like ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C,
RAD51D, or RAD54L (90). PARP-mediated repair pathways are upregulated upon AR inhibition
by bicalutamide and enzalutamide and act as a mechanism for PCa cell survival. This process
occurs due to ARA-induced unresolved DNA damage, and the pathway could be effectively
downregulated by the addition of PARP-inhibitors.(91) In addition to sensitizing PCa cells to DNA
damage, PARP-inhibitors also sensitize them to androgen depletion (92). Olaparib was combined
with abiraterone in a phase Il trial among 142 patients with mCRPC after progression on prior
docetaxel. Approximately 15% of the patients had CTC DNA HRR gene defects. The combination
treatment significantly improved rPFS (median 13.8 vs. 8.2 months, HR 0.65, 95%CI 0.44-0.97).
As expected, grade 3 and 4 adverse events were common among the combination therapy group
(54 vs. 28%) (93). A phase Il trial evaluating the efficacy of abiraterone with veliparib vs.
abiraterone with placebo irrespective of HRR gene defect status showed no significant difference
in PSA response (72% vs. 64%) or PFS (median 11 vs. 10.1 months). Of note, the patients whose
tumors harbored a defective HRR gene (27%) had higher radiology response rates (88% vs. 38%)
and PSA response rates (90% vs. 56%) compared to those without HRR defects (94). Other
ongoing trials evaluating the potential benefits of combined therapy include PROPEL (olaparib
with abiraterone), MAGNITUDE (niraparib with abiraterone), and TALAPRO-2 trials (talazoparib
with enzalutamide) (95-97).

PI3BK/AKT/mTOR pathway: The PI3K/AKT/mTOR pathway is commonly altered in PCa and
signaling can be activated by enzalutamide through stabilization of AKT phosphatase (98-100).
Loss of function or deletion of the tumor suppressor was found in approximately 60% of the CRPC
patients while mutations that activate PIK3CA mutations occurred in around 30% (101, 102). In
preclinical models with PTEN loss, AR and PI3K/AKT pathways maintained tumor survival by

reciprocal feedback leading to enzalutamide and abiraterone resistance. Dual inhibition of both
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the pathways is more effective than blocking either of them (101, 102). A phase III trial with 1101
patients used an AKT inhibitor, iptasertib. Those who were randomized to ipatesertib-abiraterone
or ipatesertib-placebo showed that median rPFS was significantly improved in patients with
tumors showing PTEN-loss by immunohistochemistry (n=521, median 19.1 vs. 14.2 months, HR
0.65, 95%CI 0.45-0.95) or PIK3CA/AKT1/PTEN-alterations by next generation sequencing
(n=205, median 19.3 vs. 14.1 months, HR 0.63, 95%CI 0.44-0.88) (103). Another AKT-inhibitor,
capivasertib, combined with enzalutamide in patients who previously received ARSI showed a
positive response in 3 of the 15 patients. All three had PTEN loss or activating AKT mutations
(104, 105). Other chemotherapies have been investigated in mMCRPC setting: PI3K inhibitor
sonolisib (PX-866), AKT/mTOR inhibitor GSK2141795 and combination therapies with PX-866
plus abiraterone, and PI3K inhibitor BKM120 plus enzalutamide. However, none of these studies
resulted in meaningful clinical outcomes (106-108). In these combination ftrials, as well as with
the use of the mTOR inhibitor everolimus and the dual mTOR inhibitor MLN0128, the rapid rise
in PSA was reversed when treatment was discontinued, which, further confirms a crosstalk
between multiple signaling pathways (6, 109, 110). Samotolisib, a dual PI3K/mTOR inhibitor plus
enzalutamide in a phase Ib/ll trial among men with mCRPC showed statistically significant
improvement in median serological and radiographic PFS compared to enzalutamide alone
(median 2.9 vs 3.7 months, HR 0.66, 95%CI 0.43-0.99)(111). GSK2636771, a selective PI3K[
inhibitor in a phase I/l trial, demonstrated a durable response in 3 of the 12 mCRPC patients, all,

of whom had tumors harboring PIK3CB mutations (112).

BRAF-MAPK pathway: Alternative signaling through the MAPK pathway was identified as a
potential growth pathway in 2 patients with enzalutamide resistant PCa harboring a BRAF-KG601E
mutation (113, 114). Pharmacologic inhibition of BRAF or downstream components of MAPK
pathway along with AR inhibition resulted in significant inhibition of cell proliferation. With 90% of
metastatic PCa harboring alterations in MAPK pathway, larger studies may help us understand if
this synergism is reproducible in the clinical setting (115). BRAF mutations, on the other hand,
occur in only about 2% of PCa patients. CXCR7, an atypical chemokine receptor, is one of the
most upregulated genes in enzalutamide resistant PCa cells. CXCR7 is repressed by AR but
expression increased upon ADT initiation, leading to activation of MAPK/ERK signaling (116).
MAPK inhibitors were able to block CXCR7 downstream pathways, however, resistance
developed rapidly. Similarly, increased ERK1/2 expression was seen in tissue samples of men
with CRPC. ERK is the immediate downstream target of MEK1/2, and trametinib, a MEK inhibitor,

elicited biochemical and clinical responses in a heavily pretreated mCRPC patient (117). AR-
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tropomyosin receptor kinase (TRK) crosstalk mediated through nerve growth factor (NGF) also
promoted tumor growth in ARSI challenged PCa cell lines, and are targetable by NTRK1/TRKA
inhibitors (118). However, the clinical utility of these inhibitors is limited as NTRK mutations are

rarely detected in prostate cancer (119).

Wnt signaling pathway: PCa cells can also gain the ability to synthesize and secrete specific
ligands and receptors that help sustain survival through the wnt-beta-catenin pathway
independent of androgen signaling (120). A study among 137 mCRPC patients who developed
resistance to enzalutamide or abiraterone found that 11% developed activating mutations in
CTNNB1, APC, or RNF43, which are involved in wnt-beta catenin pathway, and that these
mutations conferred shorter OS. Interestingly, the CTNNB1 mutations were found only in
enzalutamide treated patients. Beta-catenin signaling causes downstream upregulation of
hypoxia inducible factor-1 alpha (HIF1a) and vascular endothelial growth factor (VEGF), which
promotes angiogenesis. However, targeting mCRPC by tyrosine kinase inhibitors as a
monotherapy has not resulted in any clinically beneficial outcomes (104, 105). Though, the HIF1a
inhibitor NLG207 in combination with enzalutamide and CCS1477 (inhibitor of the HIFa-AR
coactivator CBP-p300) is being evaluated for suppressing the AR-HIFa pathway in patients

previously treated with enzalutamide (121-123).

Glucocorticoid receptor (GR) activation: Enzalutamide resistance has been attributed in some
cases to increased GR expression, which can drive transcription of AR-related genes (124, 125).
GR expression was found in only 30% of CSPC but, expression increased after ADT (126). Of
note, AR and GR share the same chromatin binding sites and GR can regulate genes in the AR-
pathway (127). Interestingly, mechanistic studies showed that resistance to enzalutamide can be
mediated by increased GR (or other nuclear steroid receptor expression) after exposure to the
drug (124). By overcoming the ligand deficiency conferred by ADT, and regulating AR target
genes, the GR-bypass model is a potential resistance mechanism. Loss of TLE3, a transcriptional
corepressor, leads to increased GR expression and is implicated in apalutamide and
enzalutamide resistance (124). However, the phase I/ll open-label trial of enzalutamide combined
with mifepristone, a GR antagonist, in patients with mCRPC showed no benefit in delaying time
to PSA-P compared to enzalutamide alone (HR=1.34, p=0.395)(128, 129). Another phase /Il trial
that assessed a selective GR antagonist, CORT125281, plus enzalutamide in mCRPC patients
whose cancer progressed on abiraterone is ongoing (130). In patients who developed progressive
disease on abiraterone-prednisone, switching the steroid from prednisone to dexamethasone
resulted in PSA decline 250% in 34.6% of patients with a median rPFS of 11.8 months (131). The
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lower equivalent GR and mineralocorticoid receptor activity of dexamethasone compared to
prednisone is postulated as a possible mechanism. Patients with AR gain detected in plasma

CTC, however, did not respond to the switch.

Neuroendocrine differentiation: Treatment-related neuroendocrine differentiation is quite
prevalent in mCRPC. Studies showed that 16.9% of patients who had disease progression after
ADT demonstrated small cell histology on biopsies of metastases (132). Development of small
cell PCa confers a poor prognosis with an OS of 36.6 months compared to 44.5 months in patients
with adenocarcinoma (HR 2.02, 95%CI 1.07-3.82). TP53 and RB1 loss can occur as adaptative
mechanisms to selective pressures on AR and result in AR independence in the tissue.
Overexpression of n-myc and cell-cycle kinase Aurora kinase-A, which drive AR-independent
progression by lineage plasticity, was identified in metastatic neuroendocrine PCa (133). A phase
II trial of Alisertib, an inhibitor of ARORA kinase-A and n-myc, in neuroendocrine PCa included
34% of patients who progressed on prior ARSI therapy. Although exceptional responders were
identified among patients with genomic amplification of MYCN and AURKA,; overall, the study did
not meet the primary end-points of 6-month PFS (13.4%) or OS benefit (9.5 months). Inhibition of
epigenetic modifiers like EZH2 were evaluated for their ability to potentially restore sensitivity to
ARSIs. Tazemetostat, an EZH2 inhibitor currently used in epithelioid sarcoma and follicular
lymphoma, and CPI-1205 are being evaluated in phase l/ll trials (13, 134). A phase | trial of a
combination of CPI-1205 plus cobicistat (a CYP3A4 blocker) with enzalutamide (after progression
on abiraterone) or abiraterone (after progression on enzalutamide) Showed a PSA decline of
280% in 14.7% of patients. This PSA decline was mainly confined to the AR-V7 negative group.

The phase Il part of the trial comparing CPI-1205 with or without enzalutamide has begun.

PD-1/PDL-1 immunoinhibitory pathway: Higher expression of PDL-1 in patients with
enzalutamide-resistant PCa prompted the phase Il IMbassador250 trial that combined
enzalutamide with the PDL-1 blocker atezolizumab in mCRPC after progression on abiraterone
or chemotherapy (135). However, the ftrial was discontinued due to high toxicity and no
improvement in OS (136). Another ftrial evaluating a combination of enzalutamide with

pembrolizumab in untreated mMCRPC patients is ongoing (137).

CONCLUSION

Significant advantages have been made in the management of CRPC with second-generation
androgen receptor antagonists and androgen synthesis inhibitors. However, the benefits are often

short-lived due to the rapid development of resistance to these drugs. Extensive studies on the
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resistance mechanisms have opened the way to new drug developments which are aimed at
reducing the emergence of resistant clones as well as targeting them. These drugs are still in the
pipeline with clinical utility being evaluated in numerous clinical trials. Although preclinical data
have been promising, many agents were not clinically beneficial. This result is possible because
of the interaction of multiple cross-talk pathways and genetic aberrations occurring concurrently,
which makes targeted monotherapies less effective. Further understanding of the nuances of
resistance mechanisms and wider utilization of clinical trials can help in development of these

agents.

AUTHOR CONTRIBUTIONS

Authors AJ, RR were involved in study conception, manuscript preparation and revision. Author
DA was involved in manuscript revision and ZM was involved in study conception, manuscript

revision and submission.

CONFLICTS OF INTERESTS

The authors declare no conflict of interest with regards to this manuscript.

ACKNOWLEDMENTS

The University of Kentucky Markey Cancer Center's Research Communications Office assisted
with manuscript preparation supported by NCI Cancer Center Support Grant (P30 CA177558).

Tables

Table 1: Clinical trials that led to FDA approval of ARSIs.

Trial Name | Pha | Study arm Comparator | Tota | Patient Median OS HR (95%Cl or | Refer
se arm | population | (months) p-value) ence
pati

ents
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COU-AA- 1l Abiraterone + ADT | Placebo + 1195 | mCRPC 15.8 vs. 10.9 0.65 (0.54- (138)
301 ADT post- 0.77)
docetaxel
COU-AA- 1l Abiraterone + ADT | Placebo + 1088 | Chemo- 34.7 vs. 30.3 0.81 (0.70- (18)
302 ADT naive 0.93)
mCRPC
LATITUDE | Il Abiraterone + ADT | Placebo + 1199 | De-novo 53.3 vs. 36.5 0.66 (0.51- (139)
ADT mCSPC 0.76)
AFFIRM Il Enzalutamide + Placebo + 1199 | mCRPC 18.4 vs. 13.6 0.63 (0.53- (140)
ADT ADT post- 0.75)
docetaxel
PREVAIL Il Enzalutamide Placebo + 1717 | Chemo- 32.4vs.30.2 0.71 (0.60- (141)
+ADT ADT naive 0.84)
mCRPC
PROSPER | llI Enzalutamide + Placebo + 933 nmCRPC 67 vs. 56.3 0.73 (0.61- (142)
ADT ADT 0.89)
ENZAMET | Il Enzalutamide + Placebo + 1125 | Denovo 62% vs. 34% 0.67 (0.52- (143)
ADT ADT mCSPC (3-year 0.86)
survival)
SPARTAN I} Apalutamide + ADT | Placebo + 1207 | nMCRPC 73.9vs. 59.9 0.78 (0.016) (144)
ADT
TITAN 1 Apalutamide + ADT | Placebo + 1052 | Denovo NRvs. 52.2 0.65 (0.53- (145)
ADT mCSPC 0.79)
ARAMIS ] Darolutamide + Placebo + 1509 | nmCRPC 83% vs. 77% 0.69 (0.53- (146)
ADT ADT (3-year 0.88)
survival)
Abbreviations: CSPC- castration sensitive prostate cancer, mCRPC- metastatic castration resistant prostate cancer, nmCRPC-
non-metastatic castration resistant prostate cancer

Table 2: AR-mediated ARSI resistance mechanisms and drugs with potential action
Aberration Mechanism Treatments potentially Drugs with potential action and active
resistant clinical trials
AR variants Lack of ligand binding

domain
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AR-V7

AR-
VV567es
AR

overexpression

AR point

mutations

Gene amplification,
stabilization of
mRNA/protein,
increasing

transcription rates

Low ligand specificity,
activation by weaker
signals and non-
canonical steroid
ligands, conversion of

ARA into agonists.

Abiraterone, Enzalutamide,
Apalutamide, Darolutamide*
(25, 26)

Bipolar androgen therapy (84)

Enzalutamide (36, 37)

Enzalutamide, Abiraterone (65,
66, 83)

177Lu-PSMA-617, 177Lu-J591,
225Ac-J591 (67, 75)

Enzalutamide, Apalutamide
(A587V, F876L, F877L, G684A,
K631T, L595M, Q920R, R630Q,
T576A, T878A) (44, 45)

Darolutamide (A587V) (42)

*Clinical benefit/resistance proven in clinical trials.
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