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Abstract: Phylogenomic analyses have revolutionized the study of biodiversity, but they have re-
vealed that estimated tree topologies can depend, at least in part, on the subset of the genome that
is analyzed. For example, estimates of trees for avian orders differ if protein coding or non-coding
data are analyzed. The bird tree is a good study system because the historical signal for relationships
among orders is very weak, which should permit subtle non-historical signals to be identified, while
monophyly of orders is strongly corroborated, allowing identification of strong non-historical sig-
nals. Hydrophobic amino acids in mitochondrially-encoded proteins, which are expected to be
found in transmembrane helices, have been hypothesized to be associated with non-historical sig-
nals. We tested this hypothesis by comparing the evolution of transmembrane helices and ex-
tramembrane segments of mitochondrial proteins from 420 bird species, sampled from most avian
orders. We estimated amino acids exchangeabilities for both structural environments and assessed
the performance of phylogenetic analysis using each data type. We compared those relative ex-
changeabilities with values calculated using a substitution dataset for transmembrane helices from
a variety of sampled set of nuclear- and mitochondrially-encoded proteins, allowing us to compare
the bird-specific mitochondrial models with a general model of transmembrane protein evolution.
To complement our amino acid analyses, we examined the impact of protein structure on patterns
of nucleotide evolution. Models of transmembrane and extramembrane sequence evolution for
amino acids and nucleotides exhibited striking differences, but there was no evidence for strong
topological data type effects. However, incorporating protein structure into analyses of mitochon-
drially-encoded proteins improved model fit. Thus, we believe that considering protein structure
will improve analyses of mitogenomic data, both in birds and in other taxa.

Keywords: mitogenome; transmembrane proteins; substitution matrix; JTT matrix; molecular evo-
lution; partitioned models; mixture models; RY coding; cyto-nuclear discordance

1. Introduction

The accumulation of molecular data has revolutionized our ability to understand bi-
odiversity, especially since the dawn of the phylogenomic era approximately 20 years ago
[1,2]. However, phylogenomics has also revealed that many conflicting signals can emerge
when different parts of the genome are analyzed [3]. It had long been appreciated that
there are a variety of processes that can create genuine discordance among gene trees [4,5]
and the ability to collect large amounts of data that can capture the variation among gene
trees has led to a paradigm shift in systematics [6]. In fact, mathematical models that de-
scribe discordance due to the multispecies coalescent, arguably the most prominent
source of genuine conflicts among gene trees, are now quite mature [7,8]. However, efforts
to estimate species trees and to understand the amount of genuine discordance among
gene trees are complicated by two sources of error: stochastic and systematic error [3].
Stochastic error is a simple consequence of the fact that all results of phylogenetic analyses
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are based on a finite number of characters [9]. In principle, it is possible to reduce or even
overcome stochastic error by sequencing complete genomes (or relatively large propor-
tions of the genome). In contrast to stochastic error, systematic error reflects cases where
specific analytical methods are expected to converge on an incorrect estimate of phylog-
eny, typically with increasing certainty, as the number of characters used in analyses is
increased. Ultimately, systematic error can only be addressed by improving the model of
evolution underlying the analytical method or by excluding data that are misleading
given the method of phylogenetic analyses.

Reddy et al. [10] highlighted a type of systematic error in phylogenetic analyses that
they called data type effects, an idea related to the “process partitions” of Bull et al. [11].
Reddy et al. [10] invoked data type effects to explain the observation that phylogenetic
analyses focused on the earliest divergences among avian orders using coding versus non-
coding data yield different trees (compare trees within Jarvis et al. [12] and compare the
non-coding Jarvis et al. [12] trees to the coding tree in Prum et al. [13]). Reddy et al. [10]
controlled for taxon sampling, finding that the important variable was the use of coding
versus non-coding data types (see also Braun and Kimball [14]). Unlike the case of process
partitions, where at least some process partitions might exhibit incongruent topologies
due to genuine discordance among gene trees (e.g., due to the multispecies coalescent [4—
6]), Reddy et al. [10] restricted the definition of data type effects to cases where the spectra
of gene trees for the data types are expected to be similar (since they were describing a
phenomenon that emerges in phylogenomic studies where they expected a mixture of
gene trees). Phylogenomic studies focused on taxa other than birds have also found dif-
ferences among trees estimated using distinct data types [3,15-21], suggesting data type
effects are a general phenomenon that can complicate our ability to use molecular data
to understand the evolutionary relationships that underlie existing biodiversity.

Data type effects differ from the sources of systematic error that have received the
most attention in the phylogenetic literature. Those sources of error include long-branch
attraction [22,23], convergence in nucleotide and/or amino acid composition [24,25], and
biases due to discordance among gene trees [26,27]. Those phenomena represent specific
parts of parameter space for the evolutionary process that can be shown to be misleading
for specific analytical methods using simulations and/or a rigorous mathematical proof.
Reddy et al. [10] defined data type effects using two criteria: 1) phylogenetic analyses of
the data types reveal distinct topological signals; and 2) analyses using multiple inde-
pendent samples of each data type converge on the same parts of treespace. The second
criterion indicates that data type effects are systematic error(s), but the term is agnostic
regarding the source of that error. For example, a case where one data type exhibits strong
base compositional convergence and the other data type does not would be a data type
effect. Alternatively, a case where one data type is subject to long-branch attraction and
the other is not is also a data type effect. The only source of error that cannot be a data
type effect is biases due to discordance among gene trees; Reddy et al. [10] explicitly lim-
ited data type effects to cases where gene tree spectra for both data types are expected to
be similar. The conflict between trees based on coding versus non-coding sequences in
birds is the best-studied example of a data type effect [10,12,14,28]; that data type effect is
likely to reflect, at least in part, model misspecification due to deviations from stationary
base composition in the coding regions [14]. Pandey and Braun [17,20] described another
data type effect involving solvent exposed versus buried residues in globular proteins that
has an impact on the topology for the earliest divergences among metazoa. Although the
basis for that data type effect is unclear, it is clear that the best models of sequence evolu-
tion differ for buried versus exposed residues [17,29-31]. We believe that data type effects
related to protein structure might be especially fertile ground for understanding data type
effects. After all, the extensive information about the biochemical and biophysical basis of
protein structure (reviewed by Kessel and Ben-Tal [32]) opens the door to improved mod-
els of sequence evolution for structurally defined data types.

The mitochondrially-encoded subset of the animal proteome might be a useful
“model system” for the study of protein structure data type effects. A classic study by
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Naylor and Brown [33,34] (hereafter NB) showed that different topological signals are as-
sociated with distinct subsets of amino acids in mitochondrially-encoded proteins. More
specifically, NB found that sites dominated by hydrophobic residues had a poor fit to a
number of strongly corroborated relationships in the vertebrate species tree based on the
maximum parsimony (MP) criterion. This suggests that mitochondrially-encoded pro-
teins will exhibit a structural data type effect because all proteins encoded by vertebrate
mitogenomes are transmembrane proteins [35,36] and hydrophobic amino acids are con-
centrated in transmembrane (TM) helices. Thus, we expect exhibit distinct topological sig-
nals to be evident if we define TM helices and extra-membrane (ExM) loops as the two
data types to consider. The central question is how to detect that data type effect, if it
exists, in other taxonomic groups. The “known phylogeny” approach, used by NB, suffers
from the fact that any phylogeny that can be viewed as “known” is likely to be character-
ized by a strong historical signal After all, it is the existence of a strong historical signal
that provides the corroboration of relationships that causes systematists to view the phy-
logeny as known. Unless the non-historical signal(s) are equally strong they are likely to
be overwhelmed by strong historical signals, rendering weak non-historical signals essen-
tially undetectable. Thus, the ideal datasets to examine for data type effects are those for
which the historical signal is very weak; the relationships among avian orders (Figure 1)
represents such a phylogeny.

Takezaki and Gojobori [47] challenged the broader implications of the NB results by
showing that using models of evolution that incorporate among-sites rate variation ame-
liorate the poor fit of the hydrophobic residues to vertebrate phylogeny. Virtually all of
the programs currently used in modern phylogenetic analyses, like the fast maximum
likelihood (ML) program IQ-TREE [48], implement models that incorporate among-sites
rate heterogeneity. Although this suggests that relatively simple model improvements
might eliminate the data type effect implied by the NB results, they do not necessarily
indicate that adding among-sites rate heterogeneity to analytical models in the most
straightforward manner (the discrete approximation to the I' distribution [49]) will be a
panacea for topological errors in analyses of mitogenomic data. Indeed, more recent stud-
ies indicate that the details of the rate-heterogeneity model can have an impact on esti-
mates of phylogeny for mitogenomic data [50,51]. Moreover, many phylogenetic analyses
of metazoan mitogenomes have revealed evidence of systematic biases [46,52-58] and the
sources of those errors is far from clear.

In addition to their potential to improve phylogenetic estimation, models of sequence
evolution can provide insights into the underlying processes of molecular evolution [31].
Examining the evolution of TM and ExM sites in a broadly sampled set of mitogenomes
(in this study, sampled from birds) has the potential to yield a number of insights. Based
on Jones et al. [59] and Lio and Goldman [60], it is a virtual certainty that analyses focused
on mitochondrially-encoded proteins will yield evidence of model differences between
data types. If those model differences result in model misspecification for at least one of
those data types we might find evidence for strong data type effects (strong support for
clades that conflict with the monophyly of the strongly corroborated avian orders), weak
data type effects (strong topological conflicts for the weakly-supported relationships
among orders), or both.
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Consensus Tree of Avian Orders
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Figure 1. Consensus phylogeny of birds based on phylogenomic data. This cladogram reflects a
recent phylogenomic supertree analysis [37] modified based on the results of two more recent phy-
logenomic studies [14,38]; relationships that are highly uncertain are presented as polytomies. Most
terminal taxa correspond to orders as defined in the IOC World Bird List v. 6.1, with the exception
of the IOC Caprimulgiformes (clade V) where we used the ordinal definitions of Chen et al. [39,40].
These ordinal definitions are strongly corroborated so we view their monophyly as “known.” Ro-
man numerals indicate the “magnificent seven” superordinal clades defined by Reddy et al. [10];
the historical signal uniting the magnificent seven is weak, but they are relatively well corroborated.
The dashed line highlights an exception; support for the position of Musophagiformes is especially
weak [14], this is not relevant to the present study given our taxon sample. Three additional clades
are indicated using letters: “N” (within Palaeognathae) indicates Notopalaeognathae (non-ostrich
paleognaths [41]); “D” (within clade V) indicates Daedalornithes (owlet-nightjars, swifts, and hum-
mingbirds [42]); and “E” (within Passeriformes) indicates Eupasseres (all passerines except the New
Zealand wrens [43]). Relationships within two selected orders are also shown;; they were chosen
because they highlight relationships where the positions of taxa in published mitochondrial phy-
logenies differed from the position in nuclear phylogenies [44-46]. Orders and families without a
complete (or nearly complete) mitogenome sequence included in this analysis are presented in gray.

Here, we conducted a study motivated by the classic NB studies and previous work
on models of TM protein evolution [59,60]. We generated an aligned data matrix compris-
ing the 12 proteins encoded by the light strand of the avian mitogenome sampled from
420 bird species, annotated the alignment with structural information, and used those
data to examine three predictions that emerge when the NB studies are considered. First,
we predicted that if we use the 20-state general time reversible (GTR20) model to estimate
the relative exchangeabilities of amino acids in TM versus ExM environments we would
find evidence for very different parameter values. This prediction is already corroborated
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by other studies focused on transmembrane protein evolution [59,60], so it is very likely
to be true. However, we can make a more specific prediction regarding the patterns we
are likely to see in our estimated rate matrices: we predicted that relative exchangeabilities
for pairs of amino acids that are rare in a particular structural environment would be ele-
vated in mitochondrially-encoded proteins because this has already been shown for glob-
ular proteins [31]. Second, we expected phylogenetic analyses of the ExM loops to perform
better than analyses of TM helices. Since the relationships among avian orders are highly
uncertain (Figure 1) we tested this prediction by examining the monophyly of orders
(monophyly of avian orders as they are currently circumscribed is strongly corroborated;
reviewed by Braun et al. [61]). Third, we expected different topological signals to emerge
in phylogenetic analyses of each data type. Even if there were no strong non-historical
signals it seems likely that even very weak biases might perturb the highly uncertain por-
tions of the bird tree (Figure 1). We then used a mixture model framework to determine
whether there were model violations that remained after estimating GTR2o rate matrices
for each data type. To complement our analyses of amino acid data, we analyzed the nu-
cleotide sequences for each data type (with and without coding as purines and pyrim-
idines (RY-coding). These analyses provided insights into the processes of molecular evo-
lution for mitochondrially-encoded proteins and they have the potential to improve phy-
logenetic analyses of mitochondrial sequences, a major tool in the study of biodiversity.

2. Materials and Methods

2.1. Data matrix construction

We started with the alignment used by Nabholz et al. [62], which includes 92 taxa,
identified gene boundaries and began adding annotated coding regions for each of the 12
proteins encoded on the light-strand of the avian mitogenome. We added sequences from
taxa with complete or nearly complete mitogenome sequences and the coding regions
from one study [63] where the sequences for each gene were obtained separately from the
same specimen. We did not construct chimeric sequences from multiple individuals. Ul-
timately, this resulted in a data matrix with 420 species. After translating the sequences
we used the TM helix boundaries annotated for the chicken (Gallus gallus) in UniProt [64]
to create a NEXUS charset [65] for the TM helices. Although the lengths of TM helices can
vary depending on the tilt angle of the helix [66], their lengths are highly constrained by
the width of the lipid bilayer. Thus, we believed that it was reasonable to assume that the
sites were either associated with TM helices or ExM segments across all birds. These da-
tasets are available as Supplementary File S1.

2.1. Analyses of molecular evolution and phylogy

We used IQ-TREE version 2.0.6 [48] for all tree estimation and we assessed support
using the ultrafast bootstrap [67], with 1000 replicates. We used the Bayesian information
criterion (BIC) [68] values calculated by IQ-TREE to identify the best-fitting model.

We analyzed three amino acid datasets (TM sites, ExM sites, and all sites) using the
GTR20 and mtVer [69] models. We accommodated among sites rate heterogeneity using a
combination of invariant sites and I'-distributed rates across sites. We used empirical
amino acid frequencies (+F) for the mtVer. For the partitioned analysis we fixed R matrix
parameters at the values estimated using the separate TM and ExM alignments, which we
call the bird mtTM model and bird mtExM model. The mixture model (bird mtMIX) was
constructed using the bird mtTM and bird mtExM R matrices as the two mixture compo-
nents with the rate of each mixture component set to a value proportional to the tree
lengths (the sum of all ML branch length estimates) for each separate analysis; the relative
rates (rounded to three decimal places) were mtTM = 0.918 and mtExM = 1.082. We as-
sumed I'-distributed rates to accommodate rate heterogeneity beyond that of the mixture
component rates. We estimated mixture weights by ML and calculated the relative contri-
butions to the site likelihoods using the -wslm option. We generated a generalized TM
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helix model to compare with the bird mtTM model; we generated this model (JTTtm) by
using the DCMut method [70] method to convert the data in Jones et al. [59] into an R
matrix. All R matrices (bird mtTM, bird mtExM, and JTTtm) are available in PAML format
in Supplementary File S2 and https://github.com/ebraun68/protmodels. The bird mtMIX
model is also available as a NEXUS models block, which can be read by IQ-TREE (this file
includes unrounded values for the mixture component rates).

We conducted four analyses of nucleotide data, all of which were partitioned by co-
don position. As with the amino acid datasets we analyzed three nucleotide datasets: 1)
TM sites; 2) ExM sites; and 3) all sites. We conducted two analyses of the all sites data, one
using three partitions (the codon positions) and a second with six partitions (the three
codon positions for TM sites and the three codon positions in the ExM sites). The same
four analyses were conducted using binary (RY) versions of the three datasets. Since the
IQ-TREE binary model uses 0 and 1 as character states we actually coded the data as pu-
rines = 0 and pyrimidines = 1; we generated the binary data matrix using recodeRY.p],
available from https://github.com/ebraun68/RYcode.

We assessed the topological distances among trees using matching distances [71,72],
calculated in PAUP* 4.0a169 [73]. We used the Kimball et al. [37] supertree (specifically,
the matrix representation of the parsimony supertree from that paper) as our estimate of
the avian species tree. To facilitate comparisons between estimates of the mitogenomic
tree and the Kimball supertree we reduced the trees to a set of 51 taxa, each of which
represent major lineages that were monophyletic in the mitogenomic tree. All trees are
included in Supplementary File S3. Taxa used for the comparison with the Kimball super-
tree are included in that file as a taxset. We visualized distances among trees by clustering
the matching distances using neighbor-joining [74]. The matrix of matching distances is
available in Supplementary File S4.

We used a simple dataset subdivision similar to the Farris et al. [75,76] incongruence
length difference (ILD) test to assess the differences between the TM and ExM data types.
Briefly, we generated 100 randomly subdivided dataset pairs, where one data subset had
the same number of sites as the TM sites and the other had the same number of sites as
the ExM sites. The ILD test uses the sum of the MP treelengths for the optimal trees for
each data subset as the test statistic; we eschewed the use of MP treelengths because they
can confound topology and model. Instead, we used three different test statistics: 1) Eu-
clidean distances between vectors of normalized R matrix parameters; 2) Euclidean dis-
tances between vectors of amino acid frequencies; and 3) topological distances (matching
distances). This separates model differences (captured by two Euclidean distances) from
topological differences. The use of dataset subdivision and model distances might be seen
as yielding results similar to the BIC, but we believe it might have more power when e
not seem distances have the potential to number of free parameters in the GTRao+I+I
model is much larger than fixed matrix model (mtVer+F+I+T'), the GTR20+I+I' model had a
better fit to the data.

3. Results

3.1. Do the mtTM (transmembrane) and mtExM (extramembrane) models differ?

We estimated relative exchangeability (R matrix) and amino acid frequency param-
eters for the TM and ExM sites using the GTR20 and mtVer models (+I+I rate heterogene-
ity, see Methods); GTRx had a better fit to both datasets (ABIC for TM = 677.0478 and ABIC
for ExM = 861.4969). This suggests the relative exchangeability parameters for the two
data types exhibit significant differences. We used a random dataset subdivision to deter-
mine whether that was true; we asked whether the distances between model parameters
estimated using TM versus ExM sites exceeded our null expectation. Our null hypothesis
was that the two data types are best described by very similar models (i.e., the model
distances will be low). The observed distances between models for the TM and ExM sites
fell outside the null distribution for the R matrices and for amino acid frequencies (Figure
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2). These results corroborated our first prediction (that the distances between estimated
model parameters for TM and ExM sites were greater than expected by chance).

(A) R matrix distances (B) Amino acid frequency distances
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Figure 2. Results of the 100 randomly subdivided datasets showing Euclidean distances between (a) relative exchangea-
bilities (R matrix parameters) and (b) amino acid frequencies. The distributions were compared to the observed values for
the TM versus ExM distances (black arrows). Although group boundaries for the histogram are arbitrary, the scale of the
x-axis places the observed distance for the empirical data correctly relative to distances for random subdivisions.

Comparing our novel mtTM and mtExM models to other TM and mitochondrial
models can provide insights into the patterns of molecular evolution for each data type.
The parameters that are most obviously expected to differ between TM and ExM models
are the amino acid frequency parameters and the existence of this difference is strongly
corroborated by our random subdivision test (Figure 2). As stated in the introduction, TM
helices are expected to be enriched for hydrophobic residues whereas ExM segments will
be enriched for polar residues. This is exactly what we observed when the bird mtTM and
mtExM matrices were compared (the blue boxes in Figure 3 indicate cases where the two
TM matrices have a higher amino acid frequency parameter than the bird mtExM matrix).
All nine of the amino acids with an elevated amino acid frequency in bird mtTM that was
elevated relative to mtExM had very low to moderate Grantham [77] polarity values;
seven of those nine amino acids (L, L, F, W, C, M, and V) form a group at the very lowest
end of the Grantham polarity scale (Supplementary File 52). Jones et al. [59] reported data
for a TM helix mutation data matrix based on nuclear- and mitochondrially-encoded
transmembrane proteins from a variety of taxa; we derived the JTTtm matrix (Figure 3a)
using their data. There were a few differences in the set of amino acids enriched in JTTtm
versus those enriched in bird mtTM, but the set of amino acid frequencies in JTTtm that
were elevated relative to bird mtExM (L, I F, C, V, Y, A, and G) was quite similar to the
set enriched in bird mtTM.

Differences in amino acid exchangeability (R matrix) parameters were also evident
(Figure 3). Polar-polar exchangeabilities (e.g., N-K, D-E, and N-D) were elevated relative
to bird mtExM in both TM matrices whereas hydrophobic-hydrophobic exchangeabilities
(e.g., -V, M-V, and F-Y) were elevated in mtExM (Supplementary File 52). However, the
largest relative exchangeability parameters in the mtTM matrix in absolute terms were
not polar-polar; they were I-V and H-Y instead. The largest exchangeability in JTTtm was
a polar-polar exchange (R-K), which also has a relatively high value in the bird mtTM
matrix, albeit not to the same degree (Figure 3). Regardless, it is clear that there are sub-
stantial differences between models of TM helix versus ExM loop evolution, as expected
based on our first prediction.
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Figure 3. Models of sequence evolution for TM and ExM sites, showing amino acid frequencies
(bottom) and R matrices (above). Four models of protein sequence evolution: (A) the JTTtm model,
a general model of TM helix evolution; (B) bird mtTM, our new model of TM helix evolution; (C)
bird mtExM, our new model of ExM loop evolution; and (D) the mtVer model [69], which was
trained using all sites in mitochondrially-encoded proteins from diverse vertebrates. The TM mod-
els are inside the blue box and the mitochondrial models are inside the red box. All matrices were
normalized to have a maximum exchangeability of 100. Progressively darker shades of red are used
for larger relative exchangeability values. Amino acid frequency parameters highlighted in blue in
the TM models have values that are higher than the bird ExM amino acid frequency. These R ma-
trices available in Supplementary File 52 and from https://github.com/ebraun68/protmodels.
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3.2. TM helix and ExM loops tree topologies: Stochastic error, not data type effects

ML analyses of amino acid alignments of both data types yielded trees with similar
treelengths but a large number of differences for the relationships among orders (Figure
4). The TM tree and the ExM tree both exhibited substantial conflict with the best available
estimates of the bird tree (Figure 1). Although this is consistent with the results of pub-
lished broadly sampled mitogenomic trees of birds [62,78] it emphasized the fact that the
additional taxon sampling in this study did not result in increased support.
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Figure 4. Condensed ML trees for 420 taxon mitochondrial data matrix estimated for each data type using the GTRao+I+T"
model. (A) Sites annotated as TM. (B) Sites annotated as ExM. Most tips reflect multiple taxa, with orders collapsed to
yield a single tip whenever they were monophyletic. Cases where taxa in the same order were not recovered as monophy-
letic in at least one of the analyses (e.g., Accipitriformes, Suliformes, and Gruiformes) are presented as two or more tips
with information regarding the subset of the order that the tip represents in parentheses. Boxes to the right of each tree
indicate clades highlighted in the results. Complete trees with branch lengths and ultrafast bootstrap support for all
branches are available as a Nexus format treefile in Supplementary File S3.

In contrast to our second prediction, neither data type appeared to perform substan-
tially better based on the “known clade” criterion. Analysis of TM sites recovered Noto-
palaeognathae, Phasianidae + Odontophoridae, and Eupasseres whereas analysis of ExM
sites recovered monophyly of the order Gruiformes and two magnificent seven clades: V
(Strisores [40]) and VII (Mirandornithes [79]). Although there were cases where analyses
of both data types yielded 100% support for specific clades, support for orders and other
strongly corroborated clades was often surprisingly low (Table 1). Conducting a com-
bined analysis of all sites often increased support relative to analyses of the individual
data types, as expected if the primary reason for differences between the analyses of TM
and ExM sites was increased stochastic error due to the smaller size of the data subsets.
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When there were conflicts between the analyses of the TM and ExM site, the combined
analyses did not appear to agree with one subset more than the other (Table 1). Results
were similar when analyses were conducted using the mtVer model (Supplementary File
S3), although the fit of this model was not as good as the fit of the GTR20+I+I" model (see
above, section 3.1).

Table 1. Support for selected clades' in GTRzo+I+I" analyses of TM, ExM, and All (TM+ExM) sites.

Clade 2 TM sites ExM sites All sites
PALAEOGNATHAE 100 100 100
NOTOPALAEOGNATHAE 72 — 57
(-) “Ratites” - Dinornithiformes 3 — 42 —
Dinornithiformes + Tinamiformes 87 92 98
GALLOANSERES 100 100 100
Galliformes 100 100 100
(-) Numididae + Phasianidae — 74 57
Odontophoridae + Phasianidae 75 — —
Odontophoridae 84 — 71
NEOAVES 95 99 100
VII. MIRANDORNITHES — 78 93
VI. COLUMBIMORPHAE — — —
“ORPHAN ORDERS” # n/a n/a n/a
Charadriiformes 89 76 98
Gruiformes — 90 —
V. STRISORES — 59 75
Daedalornithes 82 35 80
Apodiformes 97 92 99

IV. OTIDIMORPHAE — — _
III. PHAETHONTIMORPHAE — — _
II. AEQUORNITHES — — _

Procellariiformes — 96 96
Suliformes — — 92
Sulidae + Phalacrocoracidae + Anhingidae 99 100 100
Pelecaniformes — — —
(-) Ardeidae + Threskiornithidae — — 64
Balaenicipitidae + Pelecanidae 72 81 95

. TELLURAVES — — —
Accipitriformes — — —
Accipitres (Acciptriformes - Cathartidae) 96 49 93
Strigiformes 99 100 100
Coraciiformes 36 84 79
Passeriformes 94 100 100
Eupasseres 94 — 87

! We present ultrafast bootstrap support for clades present in the optimal tree and we have shaded support values when analyses
of the data subsets disagree, but one agrees with the combined analysis and the combined analysis result agrees with our best esti-
mate of the avian species tree.

2 Clades were included if they met one of these three criteria: 1) they were members of the “magnificent seven”; 2) they had <100%
support in at least one analysis; or 3) that included a subclade that met the second criterion.

3 We have highlighted a small number of groups that are unlikely to be present in the avian species tree. The putative clades that
are unlikely to be correct begin with (-) and are presented in italics.

* Although some studies [12,80] have supported a Charadriiformes+Gruiformes clade we do not view that clade to be sufficiently
corroborated to be scored in this table. Therefore, we designate these orders as “orphans” to indicate that they are not members of
the “magnificent seven” superordinal clades.
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There are two clades that could reflect data type effects based on the support values
in Table 1: Notopalaeognathae and the Odontophoridae + Phasianidae clade. In both cases
there is conflict between the TM and ExM trees and support is higher in the TM tree than
it is in the all sites tree. This suggests that the topological signal in each data type actually
conflicts. This pattern contrasts with Mirandornithes and Strisores; both of those clades
are present in the ExM tree and absent in the TM tree but the all sites tree had substantially
higher support than the ExM tree. This suggests that there is hidden support [81,82] for
both Mirandornithes and Strisores in the TM data). In all of the cases we highlighted, the
TM tree includes a signal congruent with the likely topology (albeit mixed in the case of
Mirandornithes and Strisores) of the true mitogenomic tree. This suggests that ExM sites
might perform slightly worse than TM sites, which is the opposite of our prediction.

Our third prediction was that phylogenetic analyses of TM and ExM sites will yield
significantly different tree topologies. It is possible to exclude the existence of strongly
misleading data type effects because we did not recover strong support for any backbone
relationships (Table 1 and Supplementary File 53). Despite the obvious differences be-
tween the tree topologies we recovered (Figure 4), the low support along the backbone
and for many orders (Table 1 and Supplementary File S3) led us to postulate that the top-
ological differences simply reflect the stochastic error associated with dividing the com-
plete mitochondrial protein alignment into smaller sub-alignments for the TM and ExM
sites. We calculated topological distances for the 100 randomly subdivided datasets used
above. Unlike the case for model distances, the topological distance between the TM and
ExM trees fell within the null distribution (Figure 5), with analyses of nine of the 100 ran-
domly subdivided dataset pairs yielding trees with higher matching distances. Although
we acknowledge that the topological distance between the TM and ExM trees fell at the
upper end of the null distribution and that much of the topological similarity between the
TM and ExM trees appears to reflect nodes closer to the tips (284 out of 417 possible inter-
nal branches were present in a strict consensus of the TM and ExM trees), we believe that
these results are best interpreted as evidence for strong stochastic error due to the reduced
size of the TM and ExM data matrices. Thus, we were unable to corroborate our third
prediction (that topological distances between trees estimated using TM versus ExM sites
would be greater than expected by chance.

Topological distances
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Figure 5. Results of the random subdivision analysis for topological distances based on matching
distances between the TM and ExM trees.

3.3. Is there evidence for heterogeneity within TM and ExM sites?

One type of model misspecification might be the assumption of homogeneity within
each data type implicit in our analyses. If the bird mtTM and bird mtExM matrices are
good approximating models for each data type we would expect them to exhibit a better
fit to the vast majority of sites within the appropriate data type (i.e., bird mtTM would fit
TM sites better than bird mtExM and vice versa). It is straightforward to test this by fitting
a two-component mixture model, with one component corresponding to bird mtTM sites
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and the second component corresponding to bird mtExM sites. Since there are clear dif-
ferences between the models for TM and ExM sites (Figures 2 and 3) we expect the mixture
model, which we call bird mtMIX, to fit the data better than a single matrix. This is pre-
cisely what we found (ABIC for bird mtMIX relative to all sites GTR20+I+I" = 5045.4351).

Table 2. Mixture weights and contribution of each mixture component to site likelihoods.

ML estimate of  Proportion of

Site type ' weight sites
™ 0.5943 0.5103
ExM 0.4057 0.4897
InL mtTM - InL mtExM 2 TM sites ExM sites
Lower Quartile 0.3038 -1.6424
Median 1.2827 0.0894
Upper Quartile 2.16975 1.23255

! The estimated mixture weight is expected to equal the observed proportion of sites.
2 Positive values are expected for TM sites and negative values are expected for ExM sites.

Estimates of phylogeny generated using partitioned analysis and mixture models
were generally similar to the unpartitioned tree (Table 3). Unsurprisingly, both the parti-
tioned analysis and use of the bird mtMIX model resulted in a better fit to the complete
data matrix than the GTR20+I+I' model with parameters estimated using all sites (ABIC for
partitioned analysis = 2480.0035; ABIC for bird mtMIX = 5045.4351). A strict consensus of
the unpartitioned and partitioned trees had 377 resolved branches (90.4% of the potential
branches) and a strict consensus of the unpartitioned and bird mtMIX tree had 383 re-
solved branches (91.8% of the potential branches). Support for various clades in the parti-
tioned and bird mtMIX trees was generally similar to support in the unpartitioned all sites
tree (compare the values in Table 3 to the all sites column in Table 1).

3.1. Protein structure has an impact on analyses of nucleotide and purine-pyrimidine data

Arguably, mitochondrial sequence data have the greatest potential as sources of in-
formation for biodiversity studies near the tips of the vertebrate tree of life [84-86]. Thus,
it would be desirable to assess the impact of protein structure on analyses of nucleotide
data. For our partitioned analyses of the TM and ExM codons (three partitions, one for
each codon position), the TM and ExM nucleotide trees exhibit a number of differences
from the trees based on amino acid data (Table 4 and Supplementary File 53). We did not
observe a simple pattern of either increased or decreased congruence with the likely spe-
cies tree.

The six-partition analysis of all sites (partitioning by structure and codon position)
improved the fit to the data (ABIC favoring the six-partition analysis = 1811.5226) relative
to three partitions (partitioning by codon position alone). The six-partition tree exhibited
a number of differences from the trees based on separate analyses of TM and ExM sites
and the three partition all sites tree. The most notable difference between the three parti-
tion and six partition trees was the non-monophyly of Charadriiformes and Gruiformes
in the former and the strongly supported monophyly of those orders in the six-partition
analysis (Table 4). That result was surprising because separate nucleotide analysis of TM
and ExM data yielded trees with monophyly of Charadriiformes and Gruiformes. The
estimated nucleotide frequencies for TM sites and ExM sites were very different (Table 5),
suggesting that the three-partitions analysis resulted in model misspecification that, based
on the topological results, had a meaningful impact on phylogenetic estimation.
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Table 3. Support for selected clades in analyses of all amino acid sites using partitioned and mixture models.

Clade Partitioned birdMIX

PALAEOGNATHAE 100 100
NOTOPALAEOGNATHAE 57 —

(-) “Ratites” - Dinornithiformes — 23
Dinornithiformes + Tinamiformes 98 99
GALLOANSERES 100 100
Galliformes 100 100

(-) Numididae + Phasianidae 57 61
Odontophoridae + Phasianidae — —
Odontophoridae 67 71

NEOAVES 97 99
VII. MIRANDORNITHES 94 93

VI. COLUMBIMORPHAE — —
“ORPHAN ORDERS” n/a n/a
Charadriiformes 99 100
Gruiformes — 97

V. STRISORES 71 86
Daedalornithes 77 81
Apodiformes 99 99

IV. OTIDIMORPHAE — —
III. PHAETHONTIMORPHAE — —
II. AEQUORNITHES — —

Procellariiformes 97 97
Suliformes 94 65
Sulidae + Phalacrocoracidae + Anhingidae 100 100
Pelecaniformes — —
(-) Ardeidae + Threskiornithidae — 35
Balaenicipitidae + Pelecanidae 98 98

I. TELLURAVES — —
Accipitriformes — —
Accipitres (Acciptriformes - Cathartidae) 97 96
Strigiformes 100 100
Coraciiformes 80 89
Passeriformes 100 100

Eupasseres 72 80
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Table 4. Support for selected clades in analyses of nucleotide sequences for TM, ExM, and All sites.

Clade TM sites ExM sites All sites (3) All sites (6)
PALAEOGNATHAE 100 100 100 100
NOTOPALAEOGNATHAE — — — —
(-) PALAEOGNATHAE - Rheiformes ! — 62 — 34
(-) “Ratites” - Dinornithiformes ! 59 — — —
(-) “Ratites”? 79 — 48 —
Dinornithiformes + Tinamiformes — 84 — 55
GALLOANSERES 100 100 100 100
Galliformes 100 100 100 100
(-) Numididae + Phasianidae — 64 - -
Odontophoridae + Phasianidae 65 — 69 70
Odontophoridae 99 76 100 100
NEOAVES 100 99 100 100
VII. MIRANDORNITHES 88 98 100 100
VI. COLUMBIMORPHAE — — — —
“ORPHAN ORDERS” n/a n/a n/a n/a
Charadriiformes 99 100 —2 100
Gruiformes 79 97 — 99
V. STRISORES — 84 — —
Daedalornithes 97 79 95 100
Apodiformes 99 99 100 100
IV. OTIDIMORPHAE — 46 — —
III. PHAETHONTIMORPHAE — — — —
II. AEQUORNITHES — 73 — —
Procellariiformes 100 100 100 100
Suliformes 100 86 100 100
Sulidae + Phalacrocoracidae + Anhingidae 100 100 100 100
Pelecaniformes 40 — — —
(-) Ardeidae + Threskiornithidae 60 84 94 97
Balaenicipitidae + Pelecanidae 93 100 100 100
I. TELLURAVES — — — —
Accipitriformes — — — 22
Accipitres (Acciptriformes - Cathartidae) 98 100 100 100
Strigiformes 100 99 100 100
Coraciiformes — — — —
Passeriformes 100 100 100 100
Eupasseres 100 — 76 72

! We have added two groups that are unlikely to be correct because they appeared in the appeared in nucleotide analyses and they
relate to the topology for Palaeognathe (see discussion for additional information).

2 All Charadriiformes except Turnix sylvaticus form a clade with 100% support in the three-partition nucleotide analysis of all sites.
The family Turnicidae (hemipodes) has a long branch in many analyses of molecular data [41,61,63].


https://sciwheel.com/work/citation?ids=11726686,6836979,7523554&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://doi.org/10.20944/preprints202109.0503.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 September 2021 doi:10.20944/preprints202109.0503.v1

Table 5. ML estimates of base frequencies and relative partition rates in the analyses of nucleotide sequences.

Clade Rate A C G T A+G!

All sites (3 partition analysis)

15t codon positions 0.2806 0.292628  0.294518 0.212506  0.200348 0.505134

2nd codon positions 0.1578 0.185234  0.295701 0.121601  0.397464 0.306835

3rd codon positions 2.5616 0.399664 0.422178 0.0456232 0.132535  (0.4452872
TM sites (6 partition analysis)

15t codon positions 0.2730 0.274286  0.284418 0.216439  0.224857 0.490725

2nd codon positions 0.1253 0.0871239 0.280307 0.116706  0.515864  0.2038299

3 codon positions 2.7629 0.386619  0.433748 0.0439558 0.135678  0.4305748
ExM sites (6 partition analysis)

1st codon positions 0.2540 0.311341  0.304823 0.208493  0.175343 0.519834

2nd codon positions 0.1611 0.285325 0.311407 0.126596  0.276672 0.411921

3 codon positions 2.4235 0.412972  0.410375 0.0473243 0.129329  0.4602963

1 Sum of the nucleotide frequency parameters for purines.

Recoding nucleotide data as two-states (purines and pyrimidines; typically called
RY-coding) has been used in a number of studies, especially those using mitochondrial
data. In fact, RY-coding has resulted in very clear improvements to estimates of avian
phylogeny when limited taxon samples are used [52]. When we used RY-coding for the
four analyses conducted using nucleotide data (Table 6), we did observe several differ-
ences. One notable shift relative to four-state data was the support in Notopalaegnathae
in the TM sites; however, other analyses (ExM sites, all sites/three partitions, and all
sites/six partitions) all placed Rheiformes sister to other Palaeognathae, similar to some of
the nucleotide analyses. Although this shift represented greater congruence with the spe-
cies tree, we noticed that analyses of TM sites after RY-coding also resulted in the loss of
Strigiformes monophyly (Table 6). This was surprising given the high support for Strigi-
formes in other analyses (Tables 1, 3, 4, and 6). Similar to the analyses using nucleotide
data, the six-partition model had a better fit to the data than the three-partition model
(ABIC favoring the six-partition RY analysis = 303.0233). This is likely to represent the fact
that the hydrophobic amino acids I, L, M, F, and V, which are enriched in the TM helices
(Figure 3), have codons with T in their second position. These results emphasize that re-
searchers should consider protein structure when conducting analyses of mitochondrial
nucleotide sequences, regardless of whether or not they employed RY-coding.

3.1. Multiple factors shape the treespace for analyses of mitochondrial proteins

We assessed the topological distances among our estimates of the mitogenomic tree
for birds and between those trees and the likely species tree (represented by the Kimball
et al. [37] supertree). It was necessary to reduce the taxon sample to compare our mitoge-
nomic trees to the Kimball supertree. This limited the comparisons major clades, although
we did capture all of the topological variation highlighted in the tables along with all re-
lationships among orders. The matching distances between the mitogenomic trees and the
Kimball supertree ranged from 131 to 200 (Figure 5), much lower than expected for
matches among random trees (the median matching distances for a sample of 1000 ran-
dom trees was 428; 95% of comparisons fell in the range of 369 to 496). Thus, the topolog-
ical distances between the Kimball supertree and the mitogenomic trees was between 31%
and 47% of the expected distance for pairs of random trees. The ExM amino acid data
clustered with the Kimball supertree, but the distance to the TM amino acid trees was only
slightly higher in absolute terms (Figure 6 and Supplementary File S4). The nucleotide
trees clustered in treespace and the trees estimated using the same datasets (TM, ExM,
and all sites) clustered regardless of whether they were two-state (RY) or four-state (unal-
tered nucleotide data) trees. The most striking pattern was the large distances among all
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estimates of the mitogenomic tree and between estimates of the mitogenomic tree and the
Kimball supertree.

Table 6. Support for selected clades in analyses of purine-pyrimidine (RY) data for TM, ExM, and All sites.

Clade TM sites ExM sites All sites (3) All sites (6)

PALAEOGNATHAE 100 100 100 100
NOTOPALAEOGNATHAE 83 — — —

(-) PALAEOGNATHAE - Rheiformes — 56 42 60
Dinornithiformes + Tinamiformes 75 95 95 94
GALLOANSERES 100 100 100 100
Galliformes 100 100 100 100

(-) Numididae + Phasianidae — 77 — —
Odontophoridae + Phasianidae 57 — 50 54
Odontophoridae 97 81 89 99
NEOAVES 100 100 100 100
VII. MIRANDORNITHES 100 98 100 100

VI. COLUMBIMORPHAE — — — 58
“ORPHAN ORDERS” n/a n/a n/a n/a
Charadriiformes 100 98 100 100
Gruiformes 92 98 100 100

V. STRISORES — 72 — —
Daedalornithes 95 80 100 99
Apodiformes 100 98 100 100

IV. OTIDIMORPHAE — — — _
III. PHAETHONTIMORPHAE — — — _
II. AEQUORNITHES — — — _

Procellariiformes 100 97 100 100
Suliformes 99 35 100 100
Sulidae + Phalacrocoracidae + Anhingidae 100 100 100 100
Pelecaniformes 54 — — —
(-) Ardeidae + Threskiornithidae 71 — 75 78
Balaenicipitidae + Pelecanidae 93 100 100 100
I. TELLURAVES — — — —
Accipitriformes — — — —
Accipitres (Acciptriformes - Cathartidae) 100 100 100 100
Strigiformes — 94 98 97
Coraciiformes — — — —
Passeriformes 100 100 100 100

Eupasseres 79 — 70 69
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Kimball et al. 2019 supertree

Figure 6. Dendrogram generated by clustering topological distances for the major lineages. We
viewed the Kimball et al. [37] supertree, which is a summary of phylogenomic studies, as an esti-
mate of the species tree and included for comparison to the mitogenomic trees. The parenthetical
number that follows each mitochondrial tree is the matching distance to the Kimball supertree. To
facilitate visualization the root of the tree has been placed at the midpoint. The complete distance
matrix is available in Supplementary File 54.

4. Discussion

We addressed three hypotheses related to the potential relationship between the
structure of mitochondrially-encoded proteins and the behavior of phylogenetic analyses,
using a dataset comprising all 12 light-strand encoded proteins from 420 bird species.
First, we corroborated our hypothesis that the relative exchangeabilities and equilibrium
frequencies of amino acids would differ between TM and ExM environments. We also
found evidence that the bird mtTM model exhibited similarities to a general model of TM
helix evolution (JTTtm). Moreover, the observed similarities between the bird mtTM and
JTTtm models conformed to our expectations based on the analyses of buried versus sol-
vent exposed residues in globular proteins [31]. We did not corroborate our second hy-
pothesis, that phylogenetic analyses of ExM loops would exhibit better performance in
terms of topological estimation than analyses of TM helices (based on the NB observa-
tions). We found that some a priori expected clades emerged only in analyses of ExM sites
and that others emerged only in analyses of TM sites. The overall support for many clades
was also quite low. Third, we hypothesized that distinct topological signals would emerge
in phylogenetic analyses of each data type. Although the trees based on each data type
differed (Figure 4), it seems reasonable to postulate that stochastic error can explain the
observed incongruence between the data types. The broad distribution of topological dis-
tances in the data subdivision test (Figure 5) suggests that stochastic error played a large
role in shaping the differences among trees. Overall, we concluded that the best models
for TM and ExM sites were very different but found little or no evidence for topological
data type effects in the mitochondrially-encoded proteins of birds.

4.1. Data type effects and process partitions

It has long been appreciated that patterns of evolution are heterogeneous, with dis-
tinct subsets of the genome and suites of morphological characters having the potential to
exhibit different patterns of evolution. Bull et al. [11] defined process partitions as subsets
of characters in a larger phylogenetic data matrix that evolved according to rules that dif-
fer from the other subset(s) in some demonstrable way. They provided a number of ex-
amples, such as: 1) codon positions; 2) coding versus non-coding regions; 3) different
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genes and different regions within genes (including regions defined by the three-dimen-
sional protein structure); 4) stems versus loops in ribosomal RNAs; and 5) nuclear versus
organellar genes. As described in the introduction, the data type effects idea modifies this
in two ways. The first is that data type effects exclude cases where discordance among
gene trees can provide a simple explanation for any observed incongruence. Reddy et al.
[10] explicitly excluded sex chromosome versus autosome comparisons from data type
effects because different gene tree spectra are expected in such a comparison. Thus, it
would certainly be inappropriate to view differences between a tree based on analyses of
multiple nuclear loci and a tree based on a large non-recombining region like the avian
mitogenome [87,88] as a data type effect. On the other hand, it is reasonable to describe
incongruence among estimates of phylogeny obtained using different subsets of sites in
organelle genomes (or sex chromosomes) as data type effects.

The second criterion for data type effects is that multiple independent samples of
each data type converge on trees in similar parts of treespace. It difficult to test this crite-
rion in the same way as Reddy et al. [10] given the size of vertebrate mitogenomes, alt-
hough observing similar topologies in jackknifed subsets of the TM and ExM sites would
corroborate the hypothesis that different signals are associated with TM versus ExM sites.
However, a prerequisite for such a test would be finding that the trees estimated using
the TM and ExM sites are different enough to define two distinct parts of treespace. For
that to be true the distance between the TM and ExM trees should exceed the expected
distances between pairs of trees estimated using random subsets of the complete data ma-
trix identical in size to the TM and ExM subsets; we did not meet that criterion.

A similar criterion can be used to judge distances between models, although such a
test might not appear to yield information beyond the information available from stand-
ard model selection criteria like the BIC. However, a random subdivision test might have
an advantage relative to criteria like the BIC for protein models. Most models of protein
sequence evolution, like the Dayhoff/PAM [89], JTT [90], LG [91], and mtVer [69] models,
are fixed R matrices estimated based large training dataset, so they have no free R matrix
parameters. In contrast, the GTR20 model is very parameter-rich (it has 189 free R matrix
parameters). However, many R matrix parameters are highly constrained (e.g., amino
acid substitutions that require multiple nucleotide changes will have R matrix parameters
equal to or close to zero). However, fixing those parameters at a value of zero is not a good
solution; Kosiol et al. [92] and Pandey and Braun [31] used very different analytical frame-
works but both showed that some amino acid substitutions that require multiple nucleo-
tide changes are associated with values much larger than zero. Thus, when faced with the
question of whether a potentially heterogeneous protein dataset is best described by a
single R matrix or multiple R matrices one may find conditions where optimizing all
GTR20 model parameters, including those constrained to be close to zero, cannot be justi-
fied using the BIC. However, a few important parameters might have very different val-
ues; dataset subdivision provides a simple method to determine whether this is the case.
In this study, both the BIC and random subdivision corroborated the hypothesis that the
best models for TM and ExM sites were significantly different whereas random subdivi-
sion revealed that topological data type effects are either very weak or non-existent.

4.2. Models of transmembrane protein evolution and the NB hypothesis

The new models of mitochondrial protein evolution we developed exhibit patterns
consistent with the “rule of opposites,” described by Pandey and Braun [31] for buried
versus solvent exposed residues in globular proteins. The rule of opposites is a statement
that the most exchangeable amino acids in a specific structural environment are the less
common amino acids in that environment. In this study, polar-polar exchanges were as-
sociated with the most elevated relative exchangeabilities in both of our new TM models
(bird mtTM and JTTtm) and hydrophobic-hydrophobic exchangeabilities were the most
elevated in mtExM. The rule of opposites applies to relative exchangeabilities (R matrix
parameters) and not to instantaneous rates (Q matrix parameters). Therefore, the rule of
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opposites could reflect, at least in part, the time reversibility constraint. Pairs of rare amino
acids require large exchangeabilities to explain even modest instantaneous rates of change
between those amino acids. Pandey and Braun [31] proposed two mutually-exclusive ver-
bal models regarding protein evolution relevant to the rule of opposites: 1) amino acids
that are rare in a specific environment would not be exchangeable because they are nec-
essary for specific functions; and 2) exchanges between pairs of amino acids that are rare
in a specific environment are actually common (relative to their frequency) as long as the
physicochemical nature of the amino acid is conserved. If the first model was correct it is
necessary to invoke the high variance of R matrix parameters for pairs of low frequency
amino acids. But that would predict that models some datasets would not show evidence
of the rule of opposites, at least for some exchangeabilities. Pandey and Braun [31] argued
that their results for globular proteins, where they estimated parameters from seven dif-
ferent training datasets, favored the second model. This study shows that a similar pattern
emerges in the bird mtTM model and in the more general JTTtm models, further corrob-
orating the second verbal model.

Although we were able to improve the fit of evolutionary models to mitochondri-
ally-encoded proteins by considering TM and ExM sites separately, we interpret the re-
sults of the mixture model analyses as evidence that there is substantial heterogeneity
within each data type. All of the mitochondrially-encoded proteins of vertebrates are sub-
units within large multiprotein complexes that include nuclear-encoded, mitochondrially-
localized proteins. This could cause some sites in the ExM loops to evolve under rules
similar to those for buried sites in globular proteins, reflecting their contacts with other
subunits. Since buried sites in globular proteins are enriched for hydrophobic amino acids
[17,93] the existence of these sites could explain both the elevated estimate of the mtTM
component mixture weight and the large contribution of the bird mtTM mixture compo-
nent to the site likelihoods for some ExM sites (Table 2). Regardless, that heterogeneity
suggests further improvements to models of sequence evolution have the potential to be
useful, both for efforts to understand patterns of molecular evolution and for improving
estimates of phylogenetic trees.

The topological distances between our estimates of the avian mitogenomic tree and
the likely species tree (represented by the Kimball supertree; see Figure 6) were very high,
ranging from 31% to 47% of the expected distance between pairs of random trees. The
largest distance among estimated mitochondrial trees was even higher (the distance be-
tween the ExM amino acid tree and the three-partition RY tree for all sites was 250, 58%
of the median distance between pairs of random trees). The simplest interpretation of
these results is that they further emphasize the role of stochastic error in our estimates of
the mitogenomic tree of birds. The clustering of nucleotide trees in treespace is likely due
to the influence of information from synonymous substitutions on topology. The observa-
tion that there were three clusters (TM, ExM, and all sites) within the nucleotide trees
suggests that deviations from stationarity in base composition did not lead to a strong
topological signal. The hypothesis that the shifts base composition led to a strong topo-
logical signal would predict two clusters, one for four state data and one for two state6,
because RY-coding reduces deviations from stationarity [54,94,95] under most conditions.
Although we believe that our “tree-of-trees” is useful, we emphasize that it is simply a
tool to reduce high-dimensional data (topological distances among trees) to facilitate vis-
ualization. Thus, the clustering of the ExM trees with the Kimball supertree in the den-
drogram should not be overinterpreted. Although it could indicate that analyses of ExM
sites perform better than those of TM sites (which would be consistent with the prediction
based on NB), the long terminal branches provide evidence that any such effect is weak.
Overall, the structure of the tree-of-tres supports two conclusions: 1) analyses of all da-
tasets are very sensitive to the details of analytical methods (compare the distances be-
tween trees estimated using mtVer versus the optimized mtTM and mtExM models in
Figure 6); and 2) stochastic error plays a large role in our estimates of the mitogenomic
tree.
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Using non-historical topological signals to study molecular evolution has one poten-
tial advantage over methods that focus on parameter estimation (e.g., the rate matrices in
this study). If we assume model misspecification leads to non-historical signals, then it
becomes possible to identify sites with a poor fit to the model used for the analysis finding
sites associated with the unexpected topological signal. It is challenging to identify sites
with poor fit to a model of sequence evolution in absolute (rather than relative) terms
[96,97], making approaches that are able to highlight sites characterized by model viola-
tions useful. This was our goal when we searched for a topological data type effect asso-
ciated with structural environments in mitochondrially-encoded proteins.

There are also challenges associated with using non-historical topological signals to
study molecular evolution. First, there is always some uncertainty in empirical phyloge-
nies, making it difficult to identify the true historical signal. Discordance among gene trees
further complicates this issue because a tree that conflicts with a “known” species tree can
also be explained by gene tree-species tree discordance. Second, the best method to reveal
non-historical signals is unclear. NB used the MP criterion, a computationally efficient
method [98] with a simple biological interpretation (MP treelength is the minimum num-
ber of changes for a character given a specific tree topology). However, the model implicit
in MP has troubling mathematical properties when it is used with molecular data; (Holder
et al. [99] describes the problems associated with branch lengths in MP-equivalent mod-
els). This motivated us to use a standard ML framework. Third, misleading signals, like
those identified by NB, might emerge only at certain depths in the tree of life. Our taxon
sampling largely limited our topological assessments to clades that diversified in the
lower Paleogene or upper Cretaceous (see Field et al. [100]); biases that might appear at
other depths in the tree would not be detectable. Finally, substitutions responsible for
misleading signals accumulate in a stochastic manner, just like substitutions responsible
for historical signals. Even if one knew that a specific tree topology and evolutionary
model is misleading in expectation (given a specific analytical method), analysis of a finite
sample of sites generated under that model might not show evidence of the misleading
topological signal (Figure 13 in Kim [101] presents an example of a topology+model that
exhibits this behavior). However, that scenario would be expected to yield a dataset with
very weak non-historical signals. Since it is impossible to distinguish a weak misleading
signal from simple stochastic error this could be the case for the avian mitogenomic tree,
although that scenario requires more assumptions than a scenario involving stochastic
error alone.

4.3. Implications for avian systematics and evolution

Two additional questions emerge if we shift our focus from molecular evolution to
the study of avian biodiversity: 1) what information about avian evolution does an accu-
rate estimate of the mitogenomic tree of birds provide?; and 2) have our analyses gener-
ated an accurate estimate of the avian mitogenomic tree? The first question is especially
important in the era of genomics; whole genome sequences for birds are now accumulat-
ing at an ever accelerating pace [102,103] and those data are being used to revolutionize
phylogenetics [61]. Ultimately, the mitogenomic tree is a single gene tree and discordance
among gene trees is known to be ubiquitous [6]. This is especially true for the diversifica-
tion of avian orders at the base of Neoaves [12,104,105] . However, the mitogenomic tree
is also an unusual gene tree because it is expected to be more congruent with the species
tree than the average nuclear gene tree [106] and, when it differs from the species tree,
that discordance can have important biological implications.

The unusual nature of the mitochondrial gene tree is likely to reflect, in large part,
the maternal inheritance of the mitogenome. Maternal inheritance is expected to reduce
the effective population size of the mitogenome relative to nuclear genes under many cir-
cumstances [107]. The ZW sex chromosome system of birds probably has an additional
impact on avian mitochondrial population biology; Berlin et al. [108] suggested that Hill-
Robertson interference [109] between the W chromosome and mitogenome can explain
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the low intraspecific variation observed in avian mitogenomes. Hickey [110] and Lane
[111] suggested the opposite pattern (that selection on mitogenome leads to low W chro-
mosome variation) is more likely; however, the locus of selection is actually irrelevant for
birds because both scenarios reduce the effective population size of the mitogenome and
therefore increase the likelihood of congruence with the species tree. In fact, both scenarios
could be true in that selection on either the mitogenome or the W chromosome is expected
to lead to selective sweeps that reduce variation on both genetic elements (obviously, the
locus of selection would be relevant in taxa with different sex determination systems). On
the other hand, some analyses support instances of genuine discordance between the mi-
togenomic tree and the species tree [112-114]. Although incomplete lineage sorting is
likely to explain some instances of mitochondrial incongruence, mitochondrial capture
probably explains many instances of discordance between the mitogenomic tree and the
species tree [115]. Mitochondrial capture is likely to have a functional basis; introgression
of a mitochondrial genotype is favored if it is better adapted to the local environment than
the genotype of the recipient and/or when the mitochondrial genotype of the recipient
taxon has a high mutational load. This creates two situations: 1) the true mitogenomic tree
typically matches the species tree more closely than the true gene tree for a typical nuclear
locus; and 2) genuine discordance between the species tree and mitogenomic tree can in-
dicate interesting biological processes. Thus, an accurate estimate of the mitogenomic tree
is likely to provide interesting information.

The second question was whether the evidence suggested that we were able to gen-
erate an accurate estimate of the mitogenomic tree; obviously, we were unable to do so.
Although the incongruence among our estimates of mitochondrial phylogeny speak vol-
umes, an even bigger problem is that concordance with the likely avian species tree is
approximately evenly split between TM and ExM sites. This evaluation of the perfor-
mance of analyses using a specific data type is predicated on the assumption that congru-
ence between the estimated mitochondrial tree and the likely species tree indicates better
performance. Although it is possible that any specific example of congruence is coinci-
dental it is a virtual certainty that this will be true on average, especially in cases where
the branch uniting a group is long in terms of the multispecies coalescent. For example,
the branch uniting Notopalaeognathae is known to be long based on retroelement inser-
tion data [116] (also note the high estimate of the concordance factor in Smith et al. [117]).
Thus, one can place a very high prior probability that the true mitogenomic tree includes
that clade and further leads us to the conclusion that analyses of the TM sites are correct
(and those of ExM sites are incorrect) in this case. On the other hand, Mirandornithes is
also recovered in a large number of individual gene trees [12,118], indicating that the
branch uniting it is long in coalescent units. However, in this case it is the ExM sites that
yield a tree with Mirandornithes and TM amino that fail to do so (although analyses of
TM nucleotides do yield the clade). We chose these examples because both are clades that
appear in many nuclear gene trees and therefore it is very likely that the relevant clades
are in the true mitogenomic tree. Indeed, it is likely that many of the clades that are present
in at least some estimates of the mitogenomic tree as well as the likely species tree are
present in the true mitogenomic tree. However, there is no clear pattern relating the top-
ological signal in different structural environments to clades that are present in the species
tree. This makes it impossible to assess the evidence for clades without reference to the
species tree; this makes it impossible to identify genuine discordance between the true
mitogenomic tree and the species tree.
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5. Conclusions

The central conclusion of this study is that the best-fitting models of sequence evolu-
tion for TM versus ExM sites differ substantially but the tree topologies for those two data
types exhibit few, if any, significant differences. Thus, we did not corroborate the NB hy-
pothesis for the bird tree, at least for the parts of the tree we could examine given our
taxon sample. Nevertheless, the conclusion that there are significant differences between
the best-fitting models for TM and ExM sites suggest that it would be wise to incorporate
information about these model differences into analyses of mitochondrial data. In general,
better-fitting models will yield more accurate estimates of phylogeny and it seems reason-
able to assert that better models of mitochondrial protein evolution will be useful in at
least some parts of the tree. Even if the direct improvements to estimates of the topology
for the mitogenomic tree are limited, incorporating differences related to protein structure
into models of mitochondrial sequence evolution likely to improve studies focused on
shifts in the strength of purifying selection [62] or those focused on positive selection and
convergence in mitochondrial proteins [119-121].

Despite our focus on a single gene tree, we believe our results have implications for
the theory and practice of phylogenomics. Most modern phylogenomic studies combine
gene trees estimated using many different loci to generate the species tree using summary
coalescent methods, such as the method in the program ASTRAL [122] (although most
studies also present trees estimated using other methods). Summary coalescent methods
are unbiased when two conditions are met: 1) conflicts among gene trees reflect the mul-
tispecies coalescent; and 2) true gene trees are used as input [123]. However, they can be
sensitive to gene tree estimation error [124-127]. Even when the species tree generated by
a summary coalescent method has the correct topology, low quality input gene trees lead
to the underestimation of coalescent branch lengths [128]. This raises a profound question:
how accurate are our estimates of gene trees? Although simulations provide some guid-
ance, it seems likely that trees estimated from empirical data are often less accurate than
trees based on simulated data. This study suggests that most estimates of the avian mito-
genomic tree are inaccurate but many of these conflicts were uncovered because we in-
corporated information about mitochondrial protein structure. However, we have much
less information about most loci used to generate gene trees. This study suggests that it
would be valuable to incorporate more detailed information to better assess the accuracy
of typical nuclear gene trees; structure is one such source of information for gene trees
estimated using protein coding regions.
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