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Abstract: Phylogenomic analyses have revolutionized the study of biodiversity, but they have re-

vealed that estimated tree topologies can depend, at least in part, on the subset of the genome that 

is analyzed. For example, estimates of trees for avian orders differ if protein coding or non-coding 

data are analyzed. The bird tree is a good study system because the historical signal for relationships 

among orders is very weak, which should permit subtle non-historical signals to be identified, while 

monophyly of orders is strongly corroborated, allowing identification of strong non-historical sig-

nals. Hydrophobic amino acids in mitochondrially-encoded proteins, which are expected to be 

found in transmembrane helices, have been hypothesized to be associated with non-historical sig-

nals. We tested this hypothesis by comparing the evolution of transmembrane helices and ex-

tramembrane segments of mitochondrial proteins from 420 bird species, sampled from most avian 

orders. We estimated amino acids exchangeabilities for both structural environments and assessed 

the performance of phylogenetic analysis using each data type. We compared those relative ex-

changeabilities with values calculated using a substitution dataset for transmembrane helices from 

a variety of sampled set of nuclear- and mitochondrially-encoded proteins, allowing us to compare 

the bird-specific mitochondrial models with a general model of transmembrane protein evolution. 

To complement our amino acid analyses, we examined the impact of protein structure on patterns 

of nucleotide evolution. Models of transmembrane and extramembrane sequence evolution for 

amino acids and nucleotides exhibited striking differences, but there was no evidence for strong 

topological data type effects. However, incorporating protein structure into analyses of mitochon-

drially-encoded proteins improved model fit. Thus, we believe that considering protein structure 

will improve analyses of mitogenomic data, both in birds and in other taxa. 

Keywords: mitogenome; transmembrane proteins; substitution matrix; JTT matrix; molecular evo-

lution; partitioned models; mixture models; RY coding; cyto-nuclear discordance 

 

1. Introduction 

The accumulation of molecular data has revolutionized our ability to understand bi-

odiversity, especially since the dawn of the phylogenomic era approximately 20 years ago 

[1,2]. However, phylogenomics has also revealed that many conflicting signals can emerge 

when different parts of the genome are analyzed [3]. It had long been appreciated that 

there are a variety of processes that can create genuine discordance among gene trees [4,5] 

and the ability to collect large amounts of data that can capture the variation among gene 

trees has led to a paradigm shift in systematics [6]. In fact, mathematical models that de-

scribe discordance due to the multispecies coalescent, arguably the most prominent 

source of genuine conflicts among gene trees, are now quite mature [7,8]. However, efforts 

to estimate species trees and to understand the amount of genuine discordance among 

gene trees are complicated by two sources of error: stochastic and systematic error [3]. 

Stochastic error is a simple consequence of the fact that all results of phylogenetic analyses 
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are based on a finite number of characters [9]. In principle, it is possible to reduce or even 

overcome stochastic error by sequencing complete genomes (or relatively large propor-

tions of the genome). In contrast to stochastic error, systematic error reflects cases where 

specific analytical methods are expected to converge on an incorrect estimate of phylog-

eny, typically with increasing certainty, as the number of characters used in analyses is 

increased. Ultimately, systematic error can only be addressed by improving the model of 

evolution underlying the analytical method or by excluding data that are misleading 

given the method of phylogenetic analyses. 

Reddy et al. [10] highlighted a type of systematic error in phylogenetic analyses that 

they called data type effects, an idea related to the “process partitions” of Bull et al. [11]. 

Reddy et al. [10] invoked data type effects to explain the observation that phylogenetic 

analyses focused on the earliest divergences among avian orders using coding versus non-

coding data yield different trees (compare trees within Jarvis et al. [12] and compare the 

non-coding Jarvis et al. [12] trees to the coding tree in Prum et al. [13]). Reddy et al. [10] 

controlled for taxon sampling, finding that the important variable was the use of coding 

versus non-coding data types (see also Braun and Kimball [14]). Unlike the case of process 

partitions, where at least some process partitions might exhibit incongruent topologies 

due to genuine discordance among gene trees (e.g., due to the multispecies coalescent [4–

6]), Reddy et al. [10] restricted the definition of data type effects to cases where the spectra 

of gene trees for the data types are expected to be similar (since they were describing a 

phenomenon that emerges in phylogenomic studies where they expected a mixture of 

gene trees). Phylogenomic studies focused on taxa other than birds have also found dif-

ferences among trees estimated using distinct data types [3,15–21], suggesting data type 

effects are a general phenomenon that  can complicate our ability to use molecular data 

to understand the evolutionary relationships that underlie existing biodiversity. 

Data type effects differ from the sources of systematic error that have received the 

most attention in the phylogenetic literature. Those sources of error include long-branch 

attraction [22,23], convergence in nucleotide and/or amino acid composition [24,25], and 

biases due to discordance among gene trees [26,27]. Those phenomena represent specific 

parts of parameter space for the evolutionary process that can be shown to be misleading 

for specific analytical methods using simulations and/or a rigorous mathematical proof. 

Reddy et al. [10] defined data type effects using two criteria: 1) phylogenetic analyses of 

the data types reveal distinct topological signals; and 2) analyses using multiple inde-

pendent samples of each data type converge on the same parts of treespace. The second 

criterion indicates that data type effects are systematic error(s), but the term is agnostic 

regarding the source of that error. For example, a case where one data type exhibits strong 

base compositional convergence and the other data type does not would be a data type 

effect. Alternatively, a case where one data type is subject to long-branch attraction and 

the other is not is also a data type effect. The only source of error that cannot be a data 

type effect is biases due to discordance among gene trees; Reddy et al. [10] explicitly lim-

ited data type effects to cases where gene tree spectra for both data types are expected to 

be similar. The conflict between trees based on coding versus non-coding sequences in 

birds is the best-studied example of a data type effect [10,12,14,28]; that data type effect is 

likely to reflect, at least in part, model misspecification due to deviations from stationary 

base composition in the coding regions [14]. Pandey and Braun [17,20] described another 

data type effect involving solvent exposed versus buried residues in globular proteins that 

has an impact on the topology for the earliest divergences among metazoa. Although the 

basis for that data type effect is unclear, it is clear that the best models of sequence evolu-

tion differ for buried versus exposed residues [17,29–31]. We believe that data type effects 

related to protein structure might be especially fertile ground for understanding data type 

effects. After all, the extensive information about the biochemical and biophysical basis of 

protein structure (reviewed by Kessel and Ben-Tal [32]) opens the door to improved mod-

els of sequence evolution for structurally defined data types. 

The mitochondrially-encoded subset of the animal proteome might be a useful 

“model system” for the study of protein structure data type effects. A classic study by 
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Naylor and Brown [33,34] (hereafter NB) showed that different topological signals are as-

sociated with distinct subsets of amino acids in mitochondrially-encoded proteins. More 

specifically, NB found that sites dominated by hydrophobic residues had a poor fit to a 

number of strongly corroborated relationships in the vertebrate species tree based on the 

maximum parsimony (MP) criterion. This suggests that mitochondrially-encoded pro-

teins will exhibit a structural data type effect because all proteins encoded by vertebrate 

mitogenomes are transmembrane proteins [35,36] and hydrophobic amino acids are con-

centrated in transmembrane (TM) helices. Thus, we expect exhibit distinct topological sig-

nals to be evident if we define TM helices and extra-membrane (ExM) loops as the two 

data types to consider. The central question is how to detect that data type effect, if it 

exists, in other taxonomic groups. The “known phylogeny” approach, used by NB, suffers 

from the fact that any phylogeny that can be viewed as “known” is likely to be character-

ized by a strong historical signal After all, it is the existence of a strong historical signal 

that provides the corroboration of relationships that causes systematists to view the phy-

logeny as known. Unless the non-historical signal(s) are equally strong they are likely to 

be overwhelmed by strong historical signals, rendering weak non-historical signals essen-

tially undetectable. Thus, the ideal datasets to examine for data type effects are those for 

which the historical signal is very weak; the relationships among avian orders (Figure 1) 

represents such a phylogeny. 

Takezaki and Gojobori [47] challenged the broader implications of the NB results by 

showing that using models of evolution that incorporate among-sites rate variation ame-

liorate the poor fit of the hydrophobic residues to vertebrate phylogeny. Virtually all of 

the programs currently used in modern phylogenetic analyses, like the fast maximum 

likelihood (ML) program IQ-TREE [48], implement models that incorporate among-sites 

rate heterogeneity. Although this suggests that relatively simple model improvements 

might eliminate the data type effect implied by the NB results, they do not necessarily 

indicate that adding among-sites rate heterogeneity to analytical models in the most 

straightforward manner (the discrete approximation to the Γ distribution [49]) will be a 

panacea for topological errors in analyses of mitogenomic data. Indeed, more recent stud-

ies indicate that the details of the rate-heterogeneity model can have an impact on esti-

mates of phylogeny for mitogenomic data [50,51]. Moreover, many phylogenetic analyses 

of metazoan mitogenomes have revealed evidence of systematic biases [46,52–58] and the 

sources of those errors is far from clear. 

In addition to their potential to improve phylogenetic estimation, models of sequence 

evolution can provide insights into the underlying processes of molecular evolution [31]. 

Examining the evolution of TM and ExM sites in a broadly sampled set of mitogenomes 

(in this study, sampled from birds) has the potential to yield a number of insights. Based 

on Jones et al. [59] and Liò and Goldman [60], it is a virtual certainty that analyses focused 

on mitochondrially-encoded proteins will yield evidence of model differences between 

data types. If those model differences result in model misspecification for at least one of 

those data types we might find evidence for strong data type effects (strong support for 

clades that conflict with the monophyly of the strongly corroborated avian orders), weak 

data type effects (strong topological conflicts for the weakly-supported relationships 

among orders), or both. 
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Figure 1. Consensus phylogeny of birds based on phylogenomic data. This cladogram reflects a 

recent phylogenomic supertree analysis [37] modified based on the results of two more recent phy-

logenomic studies [14,38]; relationships that are highly uncertain are presented as polytomies. Most 

terminal taxa correspond to orders as defined in the IOC World Bird List v. 6.1, with the exception 

of the IOC Caprimulgiformes (clade V) where we used the ordinal definitions of Chen et al. [39,40]. 

These ordinal definitions are strongly corroborated so we view their monophyly as “known.” Ro-

man numerals indicate the “magnificent seven” superordinal clades defined by Reddy et al. [10]; 

the historical signal uniting the magnificent seven is weak, but they are relatively well corroborated. 

The dashed line highlights an exception; support for the position of Musophagiformes is especially 

weak [14], this is not relevant to the present study given our taxon sample. Three additional clades 

are indicated using letters: “N” (within Palaeognathae) indicates Notopalaeognathae (non-ostrich 

paleognaths [41]); “D” (within clade V) indicates Daedalornithes (owlet-nightjars, swifts, and hum-

mingbirds [42]); and “E” (within Passeriformes) indicates Eupasseres (all passerines except the New 

Zealand wrens [43]). Relationships within two selected orders are also shown;; they were chosen 

because they highlight relationships where the positions of taxa in published mitochondrial phy-

logenies differed from the position in nuclear phylogenies [44–46]. Orders and families without a 

complete (or nearly complete) mitogenome sequence included in this analysis are presented in gray. 

Here, we conducted a study motivated by the classic NB studies and previous work 

on models of TM protein evolution [59,60]. We generated an aligned data matrix compris-

ing the 12 proteins encoded by the light strand of the avian mitogenome sampled from 

420 bird species, annotated the alignment with structural information, and used those 

data to examine three predictions that emerge when the NB studies are considered. First, 

we predicted that if we use the 20-state general time reversible (GTR20) model to estimate 

the relative exchangeabilities of amino acids in TM versus ExM environments we would 

find evidence for very different parameter values. This prediction is already corroborated 
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by other studies focused on transmembrane protein evolution [59,60], so it is very likely 

to be true. However, we can make a more specific prediction regarding the patterns we 

are likely to see in our estimated rate matrices: we predicted that relative exchangeabilities 

for pairs of amino acids that are rare in a particular structural environment would be ele-

vated in mitochondrially-encoded proteins because this has already been shown for glob-

ular proteins [31]. Second, we expected phylogenetic analyses of the ExM loops to perform 

better than analyses of TM helices. Since the relationships among avian orders are highly 

uncertain (Figure 1) we tested this prediction by examining the monophyly of orders 

(monophyly of avian orders as they are currently circumscribed is strongly corroborated; 

reviewed by Braun et al. [61]). Third, we expected different topological signals to emerge 

in phylogenetic analyses of each data type. Even if there were no strong non-historical 

signals it seems likely that even very weak biases might perturb the highly uncertain por-

tions of the bird tree (Figure 1). We then used a mixture model framework to determine 

whether there were model violations that remained after estimating GTR20 rate matrices 

for each data type. To complement our analyses of amino acid data, we analyzed the nu-

cleotide sequences for each data type (with and without coding as purines and pyrim-

idines (RY-coding). These analyses provided insights into the processes of molecular evo-

lution for mitochondrially-encoded proteins and they have the potential to improve phy-

logenetic analyses of mitochondrial sequences, a major tool in the study of biodiversity. 

2. Materials and Methods 

2.1. Data matrix construction 

We started with the alignment used by Nabholz et al. [62], which includes 92 taxa, 

identified gene boundaries and began adding annotated coding regions for each of the 12 

proteins encoded on the light-strand of the avian mitogenome. We added sequences from 

taxa with complete or nearly complete mitogenome sequences and the coding regions 

from one study [63] where the sequences for each gene were obtained separately from the 

same specimen. We did not construct chimeric sequences from multiple individuals. Ul-

timately, this resulted in a data matrix with 420 species. After translating the sequences 

we used the TM helix boundaries annotated for the chicken (Gallus gallus) in UniProt [64] 

to create a NEXUS charset [65] for the TM helices. Although the lengths of TM helices can 

vary depending on the tilt angle of the helix [66], their lengths are highly constrained by 

the width of the lipid bilayer. Thus, we believed that it was reasonable to assume that the 

sites were either associated with TM helices or ExM segments across all birds. These da-

tasets are available as Supplementary File S1. 

2.1. Analyses of molecular evolution and phylogy 

We used IQ-TREE version 2.0.6  [48] for all tree estimation and we assessed support 

using the ultrafast bootstrap [67], with 1000 replicates. We used the Bayesian information 

criterion (BIC) [68] values calculated by IQ-TREE to identify the best-fitting model. 

We analyzed three amino acid datasets (TM sites, ExM sites, and all sites) using the 

GTR20 and mtVer [69] models. We accommodated among sites rate heterogeneity using a 

combination of invariant sites and Γ-distributed rates across sites. We used empirical 

amino acid frequencies (+F) for the mtVer. For the partitioned analysis we fixed R matrix 

parameters at the values estimated using the separate TM and ExM alignments, which we 

call the bird mtTM model and bird mtExM model. The mixture model (bird mtMIX) was 

constructed using the bird mtTM and bird mtExM R matrices as the two mixture compo-

nents with the rate of each mixture component set to a value proportional to the tree 

lengths (the sum of all ML branch length estimates) for each separate analysis; the relative 

rates (rounded to three decimal places) were mtTM = 0.918 and mtExM = 1.082. We as-

sumed Γ-distributed rates to accommodate rate heterogeneity beyond that of the mixture 

component rates. We estimated mixture weights by ML and calculated the relative contri-

butions to the site likelihoods using the -wslm option. We generated a generalized TM 
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helix model to compare with the bird mtTM model; we generated this model (JTTtm) by 

using the DCMut method [70] method to convert the data in Jones et al. [59] into an R 

matrix. All R matrices (bird mtTM, bird mtExM, and JTTtm) are available in PAML format 

in Supplementary File S2 and https://github.com/ebraun68/protmodels. The bird mtMIX 

model is also available as a NEXUS models block, which can be read by IQ-TREE (this file 

includes unrounded values for the mixture component rates). 

We conducted four analyses of nucleotide data, all of which were partitioned by co-

don position. As with the amino acid datasets we analyzed three nucleotide datasets: 1) 

TM sites; 2) ExM sites; and 3) all sites. We conducted two analyses of the all sites data, one 

using three partitions (the codon positions) and a second with six partitions (the three 

codon positions for TM sites and the three codon positions in the ExM sites). The same 

four analyses were conducted using binary (RY) versions of the three datasets. Since the 

IQ-TREE binary model uses 0 and 1 as character states we actually coded the data as pu-

rines = 0 and pyrimidines = 1; we generated the binary data matrix using recodeRY.pl, 

available from https://github.com/ebraun68/RYcode. 

We assessed the topological distances among trees using matching distances [71,72], 

calculated in PAUP* 4.0a169 [73]. We used the Kimball et al. [37] supertree (specifically, 

the matrix representation of the parsimony supertree from that paper) as our estimate of 

the avian species tree. To facilitate comparisons between estimates of the mitogenomic 

tree and the Kimball supertree we reduced the trees to a set of 51 taxa, each of which 

represent major lineages that were monophyletic in the mitogenomic tree. All trees are 

included in Supplementary File S3. Taxa used for the comparison with the Kimball super-

tree are included in that file as a taxset. We visualized distances among trees by clustering 

the matching distances using neighbor-joining [74]. The matrix of matching distances is 

available in Supplementary File S4. 

We used a simple dataset subdivision similar to the Farris et al. [75,76] incongruence 

length difference (ILD) test to assess the differences between the TM and ExM data types. 

Briefly, we generated 100 randomly subdivided dataset pairs, where one data subset had 

the same number of sites as the TM sites and the other had the same number of sites as 

the ExM sites. The ILD test uses the sum of the MP treelengths for the optimal trees for 

each data subset as the test statistic; we eschewed the use of MP treelengths because they 

can confound topology and model. Instead, we used three different test statistics: 1) Eu-

clidean distances between vectors of normalized R matrix parameters; 2) Euclidean dis-

tances between vectors of amino acid frequencies; and 3) topological distances (matching 

distances). This separates model differences (captured by two Euclidean distances) from 

topological differences. The use of dataset subdivision and model distances might be seen 

as yielding results similar to the BIC, but we believe it might have more power when e 

not seem distances have the potential to number of free parameters in the GTR20+I+Γ 

model is much larger than fixed matrix model (mtVer+F+I+Γ), the GTR20+I+Γ model had a 

better fit to the data. 

3. Results 

3.1. Do the mtTM (transmembrane) and mtExM (extramembrane) models differ? 

We estimated relative exchangeability (R matrix) and amino acid frequency param-

eters for the TM and ExM sites using the GTR20 and mtVer models (+I+Γ rate heterogene-

ity, see Methods); GTR20 had a better fit to both datasets (ΔBIC for TM = 677.0478 and ΔBIC 

for ExM = 861.4969). This suggests the relative exchangeability parameters for the two 

data types exhibit significant differences. We used a random dataset subdivision to deter-

mine whether that was true; we asked whether the distances between model parameters 

estimated using TM versus ExM sites exceeded our null expectation. Our null hypothesis 

was that the two data types are best described by very similar models (i.e., the model 

distances will be low). The observed distances between models for the TM and ExM sites 

fell outside the null distribution for the R matrices and for amino acid frequencies (Figure 
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2). These results corroborated our first prediction (that the distances between estimated 

model parameters for TM and ExM sites were greater than expected by chance). 

 

 

 

Figure 2. Results of the 100 randomly subdivided datasets showing Euclidean distances between (a) relative exchangea-

bilities (R matrix parameters) and (b) amino acid frequencies. The distributions were compared to the observed values for 

the TM versus ExM distances (black arrows). Although group boundaries for the histogram are arbitrary, the scale of the 

x-axis places the observed distance for the empirical data correctly relative to distances for random subdivisions. 

Comparing our novel mtTM and mtExM models to other TM and mitochondrial 

models can provide insights into the patterns of molecular evolution for each data type. 

The parameters that are most obviously expected to differ between TM and ExM models 

are the amino acid frequency parameters and the existence of this difference is strongly 

corroborated by our random subdivision test (Figure 2). As stated in the introduction, TM 

helices are expected to be enriched for hydrophobic residues whereas ExM segments will 

be enriched for polar residues. This is exactly what we observed when the bird mtTM and 

mtExM matrices were compared (the blue boxes in Figure 3 indicate cases where the two 

TM matrices have a higher amino acid frequency parameter than the bird mtExM matrix). 

All nine of the amino acids with an elevated amino acid frequency in bird mtTM that was 

elevated relative to mtExM had very low to moderate Grantham [77] polarity values; 

seven of those nine amino acids (L, I, F, W, C, M, and V) form a group at the very lowest 

end of the Grantham polarity scale (Supplementary File S2). Jones et al. [59] reported data 

for a TM helix mutation data matrix based on nuclear- and mitochondrially-encoded 

transmembrane proteins from a variety of taxa; we derived the JTTtm matrix (Figure 3a) 

using their data. There were a few differences in the set of amino acids enriched in JTTtm 

versus those enriched in bird mtTM, but the set of amino acid frequencies in JTTtm that 

were elevated relative to bird mtExM (L, I, F, C, V, Y, A, and G) was quite similar to the 

set enriched in bird mtTM. 

Differences in amino acid exchangeability (R matrix) parameters were also evident 

(Figure 3). Polar-polar exchangeabilities (e.g., N-K, D-E, and N-D) were elevated relative 

to bird mtExM in both TM matrices whereas hydrophobic-hydrophobic exchangeabilities 

(e.g., I-V, M-V, and F-Y) were elevated in mtExM (Supplementary File S2). However, the 

largest relative exchangeability parameters in the mtTM matrix in absolute terms were 

not polar-polar; they were I-V and H-Y instead. The largest exchangeability in JTTtm was 

a polar-polar exchange (R-K), which also has a relatively high value in the bird mtTM 

matrix, albeit not to the same degree (Figure 3). Regardless, it is clear that there are sub-

stantial differences between models of TM helix versus ExM loop evolution, as expected 

based on our first prediction. 
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Figure 3. Models of sequence evolution for TM and ExM sites, showing amino acid frequencies 

(bottom) and R matrices (above). Four models of protein sequence evolution: (A) the JTTtm model, 

a general model of TM helix evolution; (B) bird mtTM, our new model of TM helix evolution; (C) 

bird mtExM, our new model of ExM loop evolution; and (D) the mtVer model [69], which was 

trained using all sites in mitochondrially-encoded proteins from diverse vertebrates. The TM mod-

els are inside the blue box and the mitochondrial models are inside the red box. All matrices were 

normalized to have a maximum exchangeability of 100. Progressively darker shades of red are used 

for larger relative exchangeability values. Amino acid frequency parameters highlighted in blue in 

the TM models have values that are higher than the bird ExM amino acid frequency. These R ma-

trices available in Supplementary File S2 and from https://github.com/ebraun68/protmodels. 
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3.2. TM helix and ExM loops tree topologies: Stochastic error, not data type effects 

ML analyses of amino acid alignments of both data types yielded trees with similar 

treelengths but a large number of differences for the relationships among orders (Figure 

4). The TM tree and the ExM tree both exhibited substantial conflict with the best available 

estimates of the bird tree (Figure 1). Although this is consistent with the results of pub-

lished broadly sampled mitogenomic trees of birds [62,78] it emphasized the fact that the 

additional taxon sampling in this study did not result in increased support. 

 

 

 

Figure 4. Condensed ML trees for 420 taxon mitochondrial data matrix estimated for each data type using the GTR20+I+Γ 

model. (A) Sites annotated as TM. (B) Sites annotated as ExM. Most tips reflect multiple taxa, with orders collapsed to 

yield a single tip whenever they were monophyletic. Cases where taxa in the same order were not recovered as monophy-

letic in at least one of the analyses (e.g., Accipitriformes, Suliformes, and Gruiformes) are presented as two or more tips 

with information regarding the subset of the order that the tip represents in parentheses. Boxes to the right of each tree 

indicate clades highlighted in the results. Complete trees with branch lengths and ultrafast bootstrap support for all 

branches are available as a Nexus format treefile in Supplementary File S3. 

In contrast to our second prediction, neither data type appeared to perform substan-

tially better based on the “known clade” criterion. Analysis of TM sites recovered Noto-

palaeognathae, Phasianidae + Odontophoridae, and Eupasseres whereas analysis of ExM 

sites recovered monophyly of the order Gruiformes and two magnificent seven clades: V 

(Strisores [40]) and VII (Mirandornithes [79]). Although there were cases where analyses 

of both data types yielded 100% support for specific clades, support for orders and other 

strongly corroborated clades was often surprisingly low (Table 1). Conducting a com-

bined analysis of all sites often increased support relative to analyses of the individual 

data types, as expected if the primary reason for differences between the analyses of TM 

and ExM sites was increased stochastic error due to the smaller size of the data subsets. 
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When there were conflicts between the analyses of the TM and ExM site, the combined 

analyses did not appear to agree with one subset more than the other (Table 1). Results 

were similar when analyses were conducted using the mtVer model (Supplementary File 

S3), although the fit of this model was not as good as the fit of the GTR20+I+Γ model (see 

above, section 3.1). 

Table 1. Support for selected clades1 in GTR20+I+Γ analyses of TM, ExM, and All (TM+ExM) sites. 

Clade 2 TM sites ExM sites All sites 

PALAEOGNATHAE 100 100 100 

     NOTOPALAEOGNATHAE 72 — 57 

     (-) “Ratites” - Dinornithiformes 3 — 42 — 

     Dinornithiformes + Tinamiformes 87 92 98 

GALLOANSERES 100 100 100 

          Galliformes 100 100 100 

               (-) Numididae + Phasianidae — 74 57 

               Odontophoridae + Phasianidae 75 — — 

               Odontophoridae 84 — 71 

NEOAVES 95 99 100 

     VII. MIRANDORNITHES — 78 93 

     VI. COLUMBIMORPHAE — — — 

     “ORPHAN ORDERS” 4 n/a n/a n/a 

          Charadriiformes 89 76 98 

          Gruiformes — 90 — 

     V. STRISORES — 59 75 

          Daedalornithes 82 35 80 

               Apodiformes 97 92 99 

     IV. OTIDIMORPHAE — — — 

     III. PHAETHONTIMORPHAE — — — 

     II. AEQUORNITHES — — — 

          Procellariiformes — 96 96 

          Suliformes — — 92 

               Sulidae + Phalacrocoracidae + Anhingidae 99 100 100 

          Pelecaniformes — — — 

               (-) Ardeidae + Threskiornithidae — — 64 

               Balaenicipitidae + Pelecanidae 72 81 95 

     I. TELLURAVES — — — 

          Accipitriformes — — — 

               Accipitres (Acciptriformes - Cathartidae) 96 49 93 

          Strigiformes 99 100 100 

          Coraciiformes 36 84 79 

          Passeriformes 94 100 100 

               Eupasseres 94 — 87 
1 We present ultrafast bootstrap support for clades present in the optimal tree and we have shaded support values when analyses 

of the data subsets disagree, but one agrees with the combined analysis and the combined analysis result agrees with our best esti-

mate of the avian species tree.   
2 Clades were included if they met one of these three criteria: 1) they were members of the “magnificent seven”; 2) they had <100% 

support in at least one analysis; or 3) that included a subclade that met the second criterion. 
3 We have highlighted a small number of groups that are unlikely to be present in the avian species tree. The putative clades that 

are unlikely to be correct begin with (-) and are presented in italics. 
4 Although some studies [12,80] have supported a Charadriiformes+Gruiformes clade we do not view that clade to be sufficiently 

corroborated to be scored in this table. Therefore, we designate these orders as “orphans” to indicate that they are not members of 

the “magnificent seven” superordinal clades. 
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There are two clades that could reflect data type effects based on the support values 

in Table 1: Notopalaeognathae and the Odontophoridae + Phasianidae clade. In both cases 

there is conflict between the TM and ExM trees and support is higher in the TM tree than 

it is in the all sites tree. This suggests that the topological signal in each data type actually 

conflicts. This pattern contrasts with Mirandornithes and Strisores; both of those clades 

are present in the ExM tree and absent in the TM tree but the all sites tree had substantially 

higher support than the ExM tree. This suggests that there is hidden support [81,82] for 

both Mirandornithes and Strisores in the TM data). In all of the cases we highlighted, the 

TM tree includes a signal congruent with the likely topology (albeit mixed in the case of 

Mirandornithes and Strisores) of the true mitogenomic tree. This suggests that ExM sites 

might perform slightly worse than TM sites, which is the opposite of our prediction. 

Our third prediction was that phylogenetic analyses of TM and ExM sites will yield 

significantly different tree topologies. It is possible to exclude the existence of strongly 

misleading data type effects because we did not recover strong support for any backbone 

relationships (Table 1 and Supplementary File S3). Despite the obvious differences be-

tween the tree topologies we recovered (Figure 4), the low support along the backbone 

and for many orders (Table 1 and Supplementary File S3) led us to postulate that the top-

ological differences simply reflect the stochastic error associated with dividing the com-

plete mitochondrial protein alignment into smaller sub-alignments for the TM and ExM 

sites. We calculated topological distances for the 100 randomly subdivided datasets used 

above. Unlike the case for model distances, the topological distance between the TM and 

ExM trees fell within the null distribution (Figure 5), with analyses of nine of the 100 ran-

domly subdivided dataset pairs yielding trees with higher matching distances. Although 

we acknowledge that the topological distance between the TM and ExM trees fell at the 

upper end of the null distribution and that much of the topological similarity between the 

TM and ExM trees appears to reflect nodes closer to the tips (284 out of 417 possible inter-

nal branches were present in a strict consensus of the TM and ExM trees), we believe that 

these results are best interpreted as evidence for strong stochastic error due to the reduced 

size of the TM and ExM data matrices. Thus, we were unable to corroborate our third 

prediction (that topological distances between trees estimated using TM versus ExM sites 

would be greater than expected by chance. 

 

Figure 5. Results of the random subdivision analysis for topological distances based on matching 

distances between the TM and ExM trees. 

3.3. Is there evidence for heterogeneity within TM and ExM sites? 

One type of model misspecification might be the assumption of homogeneity within 

each data type implicit in our analyses. If the bird mtTM and bird mtExM matrices are 

good approximating models for each data type we would expect them to exhibit a better 

fit to the vast majority of sites within the appropriate data type (i.e., bird mtTM would fit 

TM sites better than bird mtExM and vice versa). It is straightforward to test this by fitting 

a two-component mixture model, with one component corresponding to bird mtTM sites 
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and the second component corresponding to bird mtExM sites. Since there are clear dif-

ferences between the models for TM and ExM sites (Figures 2 and 3) we expect the mixture 

model, which we call bird mtMIX, to fit the data better than a single matrix. This is pre-

cisely what we found (ΔBIC for bird mtMIX relative to all sites GTR20+I+Γ = 5045.4351). 

Table 2. Mixture weights and contribution of each mixture component to site likelihoods. 

Site type 1 
ML estimate of 

weight 

Proportion of 

sites 

TM 0.5943 0.5103 

ExM 0.4057 0.4897 

 

lnL mtTM - lnL mtExM 2 

 

TM sites 

 

ExM sites 

Lower Quartile 0.3038 -1.6424 

Median 1.2827 0.0894 

Upper Quartile 2.16975 1.23255 
1 The estimated mixture weight is expected to equal the observed proportion of sites.  
2 Positive values are expected for TM sites and negative values are expected for ExM sites. 

 

Estimates of phylogeny generated using partitioned analysis and mixture models 

were generally similar to the unpartitioned tree (Table 3). Unsurprisingly, both the parti-

tioned analysis and use of the bird mtMIX model resulted in a better fit to the complete 

data matrix than the GTR20+I+Γ model with parameters estimated using all sites (ΔBIC for 

partitioned analysis = 2480.0035; ΔBIC for bird mtMIX = 5045.4351). A strict consensus of 

the unpartitioned and partitioned trees had 377 resolved branches (90.4% of the potential 

branches) and a strict consensus of the unpartitioned and bird mtMIX tree had 383 re-

solved branches (91.8% of the potential branches). Support for various clades in the parti-

tioned and bird mtMIX trees was generally similar to support in the unpartitioned all sites 

tree (compare the values in Table 3 to the all sites column in Table 1). 

3.1. Protein structure has an impact on analyses of nucleotide and purine-pyrimidine data 

Arguably, mitochondrial sequence data have the greatest potential as sources of in-

formation for biodiversity studies near the tips of the vertebrate tree of life [84–86]. Thus, 

it would be desirable to assess the impact of protein structure on analyses of nucleotide 

data. For our partitioned analyses of the TM and ExM codons (three partitions, one for 

each codon position), the TM and ExM nucleotide trees exhibit a number of differences 

from the trees based on amino acid data (Table 4 and Supplementary File S3). We did not 

observe a simple pattern of either increased or decreased congruence with the likely spe-

cies tree. 

The six-partition analysis of all sites (partitioning by structure and codon position) 

improved the fit to the data (ΔBIC favoring the six-partition analysis = 1811.5226) relative 

to three partitions (partitioning by codon position alone). The six-partition tree exhibited 

a number of differences from the trees based on separate analyses of TM and ExM sites 

and the three partition all sites tree. The most notable difference between the three parti-

tion and six partition trees was the non-monophyly of Charadriiformes and Gruiformes 

in the former and the strongly supported monophyly of those orders in the six-partition 

analysis (Table 4). That result was surprising because separate nucleotide analysis of TM 

and ExM data yielded trees with monophyly of Charadriiformes and Gruiformes. The 

estimated nucleotide frequencies for TM sites and ExM sites were very different (Table 5), 

suggesting that the three-partitions analysis resulted in model misspecification that, based 

on the topological results, had a meaningful impact on phylogenetic estimation. 
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Table 3. Support for selected clades in analyses of all amino acid sites using partitioned and mixture models. 

Clade Partitioned birdMIX 

PALAEOGNATHAE 100 100 

     NOTOPALAEOGNATHAE 57 — 

     (-) “Ratites” - Dinornithiformes — 23 

     Dinornithiformes + Tinamiformes 98 99 

GALLOANSERES 100 100 

          Galliformes 100 100 

               (-) Numididae + Phasianidae 57 61 

               Odontophoridae + Phasianidae — — 

               Odontophoridae 67 71 

NEOAVES 97 99 

     VII. MIRANDORNITHES 94 93 

     VI. COLUMBIMORPHAE — — 

     “ORPHAN ORDERS” n/a n/a 

          Charadriiformes 99 100 

          Gruiformes — 97 

     V. STRISORES 71 86 

          Daedalornithes 77 81 

               Apodiformes 99 99 

     IV. OTIDIMORPHAE — — 

     III. PHAETHONTIMORPHAE — — 

     II. AEQUORNITHES — — 

          Procellariiformes 97 97 

          Suliformes 94 65 

               Sulidae + Phalacrocoracidae + Anhingidae 100 100 

          Pelecaniformes — — 

               (-) Ardeidae + Threskiornithidae — 35 

               Balaenicipitidae + Pelecanidae 98 98 

     I. TELLURAVES — — 

          Accipitriformes — — 

               Accipitres (Acciptriformes - Cathartidae) 97 96 

          Strigiformes 100 100 

          Coraciiformes 80 89 

          Passeriformes 100 100 

               Eupasseres 72 80 
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Table 4. Support for selected clades in analyses of nucleotide sequences for TM, ExM, and All sites. 

Clade TM sites ExM sites All sites (3) All sites (6) 

PALAEOGNATHAE 100 100 100 100 

     NOTOPALAEOGNATHAE — — — — 

     (-) PALAEOGNATHAE - Rheiformes 1 — 62 — 34 

     (-) “Ratites” - Dinornithiformes 1 59 — — — 

     (-) “Ratites” 1 79 — 48 — 

     Dinornithiformes + Tinamiformes — 84 — 55 

GALLOANSERES 100 100 100 100 

          Galliformes 100 100 100 100 

               (-) Numididae + Phasianidae — 64 — — 

               Odontophoridae + Phasianidae 65 — 69 70 

               Odontophoridae 99 76 100 100 

NEOAVES 100 99 100 100 

     VII. MIRANDORNITHES 88 98 100 100 

     VI. COLUMBIMORPHAE — — — — 

     “ORPHAN ORDERS” n/a n/a n/a n/a 

          Charadriiformes 99 100 —2 100 

          Gruiformes 79 97 — 99 

     V. STRISORES — 84 — — 

          Daedalornithes 97 79 95 100 

               Apodiformes 99 99 100 100 

     IV. OTIDIMORPHAE — 46 — — 

     III. PHAETHONTIMORPHAE — — — — 

     II. AEQUORNITHES — 73 — — 

          Procellariiformes 100 100 100 100 

          Suliformes 100 86 100 100 

               Sulidae + Phalacrocoracidae + Anhingidae 100 100 100 100 

          Pelecaniformes 40 — — — 

               (-) Ardeidae + Threskiornithidae 60 84 94 97 

               Balaenicipitidae + Pelecanidae 93 100 100 100 

     I. TELLURAVES — — — — 

          Accipitriformes — — — 22 

               Accipitres (Acciptriformes - Cathartidae) 98 100 100 100 

          Strigiformes 100 99 100 100 

          Coraciiformes — — — — 

          Passeriformes 100 100 100 100 

               Eupasseres 100 — 76 72 
1 We have added two groups that are unlikely to be correct because they appeared in the appeared in nucleotide analyses and they 

relate to the topology for Palaeognathe (see discussion for additional information). 
2 All Charadriiformes except Turnix sylvaticus form a clade with 100% support in the three-partition nucleotide analysis of all sites. 

The family Turnicidae (hemipodes) has a long branch in many analyses of molecular data [41,61,63]. 
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Table 5. ML estimates of base frequencies and relative partition rates in the analyses of nucleotide sequences. 

Clade Rate A C G T A+G1 

All sites (3 partition analysis)       

      1st. codon positions 0.2806 0.292628 0.294518 0.212506 0.200348 0.505134 

      2nd codon positions 0.1578 0.185234 0.295701 0.121601 0.397464 0.306835 

      3rd codon positions 2.5616 0.399664 0.422178 0.0456232 0.132535 0.4452872 

TM sites (6 partition analysis)       

      1st. codon positions 0.2730 0.274286 0.284418 0.216439 0.224857 0.490725 

      2nd codon positions 0.1253 0.0871239 0.280307 0.116706 0.515864 0.2038299 

      3rd codon positions 2.7629 0.386619 0.433748 0.0439558 0.135678 0.4305748 

ExM sites (6 partition analysis)       

      1st. codon positions 0.2540 0.311341 0.304823 0.208493 0.175343 0.519834 

      2nd codon positions 0.1611 0.285325 0.311407 0.126596 0.276672 0.411921 

      3rd codon positions 2.4235 0.412972 0.410375 0.0473243 0.129329 0.4602963 
1 Sum of the nucleotide frequency parameters for purines. 

 

Recoding nucleotide data as two-states (purines and pyrimidines; typically called 

RY-coding) has been used in a number of studies, especially those using mitochondrial 

data. In fact, RY-coding has resulted in very clear improvements to estimates of avian 

phylogeny when limited taxon samples are used [52]. When we used RY-coding for the 

four analyses conducted using nucleotide data (Table 6), we did observe several differ-

ences. One notable shift relative to four-state data was the support in Notopalaegnathae 

in the TM sites; however, other analyses (ExM sites, all sites/three partitions, and all 

sites/six partitions) all placed Rheiformes sister to other Palaeognathae, similar to some of 

the nucleotide analyses. Although this shift represented greater congruence with the spe-

cies tree, we noticed that analyses of TM sites after RY-coding also resulted in the loss of 

Strigiformes monophyly (Table 6). This was surprising given the high support for Strigi-

formes in other analyses (Tables 1, 3, 4, and 6). Similar to the analyses using nucleotide 

data, the six-partition model had a better fit to the data than the three-partition model 

(ΔBIC favoring the six-partition RY analysis = 303.0233). This is likely to represent the fact 

that the hydrophobic amino acids I, L, M, F, and V, which are enriched in the TM helices 

(Figure 3), have codons with T in their second position. These results emphasize that re-

searchers should consider protein structure when conducting analyses of mitochondrial 

nucleotide sequences, regardless of whether or not they employed RY-coding. 

3.1. Multiple factors shape the treespace for analyses of mitochondrial proteins 

We assessed the topological distances among our estimates of the mitogenomic tree 

for birds and between those trees and the likely species tree (represented by the Kimball 

et al. [37] supertree). It was necessary to reduce the taxon sample to compare our mitoge-

nomic trees to the Kimball supertree. This limited the comparisons major clades, although 

we did capture all of the topological variation highlighted in the tables along with all re-

lationships among orders. The matching distances between the mitogenomic trees and the 

Kimball supertree ranged from 131 to 200 (Figure 5), much lower than expected for 

matches among random trees (the median matching distances for a sample of 1000 ran-

dom trees was 428; 95% of comparisons fell in the range of 369 to 496). Thus, the topolog-

ical distances between the Kimball supertree and the mitogenomic trees was between 31% 

and 47% of the expected distance for pairs of random trees. The ExM amino acid data 

clustered with the Kimball supertree, but the distance to the TM amino acid trees was only 

slightly higher in absolute terms (Figure 6 and Supplementary File S4). The nucleotide 

trees clustered in treespace and the trees estimated using the same datasets (TM, ExM, 

and all sites) clustered regardless of whether they were two-state (RY) or four-state (unal-

tered nucleotide data) trees. The most striking pattern was the large distances among all 
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estimates of the mitogenomic tree and between estimates of the mitogenomic tree and the 

Kimball supertree. 

Table 6. Support for selected clades in analyses of purine-pyrimidine (RY) data for TM, ExM, and All sites. 

Clade TM sites ExM sites All sites (3) All sites (6) 

PALAEOGNATHAE 100 100 100 100 

     NOTOPALAEOGNATHAE 83 — — — 

     (-) PALAEOGNATHAE - Rheiformes — 56 42 60 

     Dinornithiformes + Tinamiformes 75 95 95 94 

GALLOANSERES 100 100 100 100 

          Galliformes 100 100 100 100 

               (-) Numididae + Phasianidae — 77 — — 

               Odontophoridae + Phasianidae 57 — 50 54 

               Odontophoridae 97 81 89 99 

NEOAVES 100 100 100 100 

     VII. MIRANDORNITHES 100 98 100 100 

     VI. COLUMBIMORPHAE — — — 58 

     “ORPHAN ORDERS” n/a n/a n/a n/a 

          Charadriiformes 100 98 100 100 

          Gruiformes 92 98 100 100 

     V. STRISORES — 72 — — 

          Daedalornithes 95 80 100 99 

               Apodiformes 100 98 100 100 

     IV. OTIDIMORPHAE — — — — 

     III. PHAETHONTIMORPHAE — — — — 

     II. AEQUORNITHES — — — — 

          Procellariiformes 100 97 100 100 

          Suliformes 99 35 100 100 

               Sulidae + Phalacrocoracidae + Anhingidae 100 100 100 100 

          Pelecaniformes 54 — — — 

               (-) Ardeidae + Threskiornithidae 71 — 75 78 

               Balaenicipitidae + Pelecanidae 93 100 100 100 

     I. TELLURAVES — — — — 

          Accipitriformes — — — — 

               Accipitres (Acciptriformes - Cathartidae) 100 100 100 100 

          Strigiformes — 94 98 97 

          Coraciiformes — — — — 

          Passeriformes 100 100 100 100 

               Eupasseres 79 — 70 69 
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Figure 6. Dendrogram generated by clustering topological distances for the major lineages. We 

viewed the Kimball et al. [37] supertree, which is a summary of phylogenomic studies, as an esti-

mate of the species tree and included for comparison to the mitogenomic trees. The parenthetical 

number that follows each mitochondrial tree is the matching distance to the Kimball supertree. To 

facilitate visualization the root of the tree has been placed at the midpoint. The complete distance 

matrix is available in Supplementary File S4. 

4. Discussion 

We addressed three hypotheses related to the potential relationship between the 

structure of mitochondrially-encoded proteins and the behavior of phylogenetic analyses, 

using a dataset comprising all 12 light-strand encoded proteins from 420 bird species. 

First, we corroborated our hypothesis that the relative exchangeabilities and equilibrium 

frequencies of amino acids would differ between TM and ExM environments. We also 

found evidence that the bird mtTM model exhibited similarities to a general model of TM 

helix evolution (JTTtm). Moreover, the observed similarities between the bird mtTM and 

JTTtm models conformed to our expectations based on the analyses of buried versus sol-

vent exposed residues in globular proteins [31]. We did not corroborate our second hy-

pothesis, that phylogenetic analyses of ExM loops would exhibit better performance in 

terms of topological estimation than analyses of TM helices (based on the NB observa-

tions). We found that some a priori expected clades emerged only in analyses of ExM sites 

and that others emerged only in analyses of TM sites. The overall support for many clades 

was also quite low. Third, we hypothesized that distinct topological signals would emerge 

in phylogenetic analyses of each data type. Although the trees based on each data type 

differed (Figure 4), it seems reasonable to postulate that stochastic error can explain the 

observed incongruence between the data types. The broad distribution of topological dis-

tances in the data subdivision test (Figure 5) suggests that stochastic error played a large 

role in shaping the differences among trees. Overall, we concluded that the best models 

for TM and ExM sites were very different but found little or no evidence for topological 

data type effects in the mitochondrially-encoded proteins of birds. 

4.1. Data type effects and process partitions 

It has long been appreciated that patterns of evolution are heterogeneous, with dis-

tinct subsets of the genome and suites of morphological characters having the potential to 

exhibit different patterns of evolution. Bull et al. [11] defined process partitions as subsets 

of characters in a larger phylogenetic data matrix that evolved according to rules that dif-

fer from the other subset(s) in some demonstrable way. They provided a number of ex-

amples, such as: 1) codon positions; 2) coding versus non-coding regions; 3) different 
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genes and different regions within genes (including regions defined by the three-dimen-

sional protein structure); 4) stems versus loops in ribosomal RNAs; and 5) nuclear versus 

organellar genes. As described in the introduction, the data type effects idea modifies this 

in two ways. The first is that data type effects exclude cases where discordance among 

gene trees can provide a simple explanation for any observed incongruence. Reddy et al. 

[10] explicitly excluded sex chromosome versus autosome comparisons from data type 

effects because different gene tree spectra are expected in such a comparison. Thus, it 

would certainly be inappropriate to view differences between a tree based on analyses of 

multiple nuclear loci and a tree based on a large non-recombining region like the avian 

mitogenome [87,88] as a data type effect. On the other hand, it is reasonable to describe 

incongruence among estimates of phylogeny obtained using different subsets of sites in 

organelle genomes (or sex chromosomes) as data type effects. 

 The second criterion for data type effects is that multiple independent samples of 

each data type converge on trees in similar parts of treespace. It difficult to test this crite-

rion in the same way as Reddy et al. [10] given the size of vertebrate mitogenomes, alt-

hough observing similar topologies in jackknifed subsets of the TM and ExM sites would 

corroborate the hypothesis that different signals are associated with TM versus ExM sites. 

However, a prerequisite for such a test would be finding that the trees estimated using 

the TM and ExM sites are different enough to define two distinct parts of treespace. For 

that to be true the distance between the TM and ExM trees should exceed the expected 

distances between pairs of trees estimated using random subsets of the complete data ma-

trix identical in size to the TM and ExM subsets; we did not meet that criterion. 

A similar criterion can be used to judge distances between models, although such a 

test might not appear to yield information beyond the information available from stand-

ard model selection criteria like the BIC. However, a random subdivision test might have 

an advantage relative to criteria like the BIC for protein models. Most models of protein 

sequence evolution, like the Dayhoff/PAM [89], JTT [90], LG [91], and mtVer [69] models, 

are fixed R matrices estimated based large training dataset, so they have no free R matrix 

parameters. In contrast, the GTR20 model is very parameter-rich (it has 189 free R matrix 

parameters). However, many R matrix parameters are highly constrained (e.g., amino 

acid substitutions that require multiple nucleotide changes will have R matrix parameters 

equal to or close to zero). However, fixing those parameters at a value of zero is not a good 

solution; Kosiol et al. [92] and Pandey and Braun [31] used very different analytical frame-

works but both showed that some amino acid substitutions that require multiple nucleo-

tide changes are associated with values much larger than zero. Thus, when faced with the 

question of whether a potentially heterogeneous protein dataset is best described by a 

single R matrix or multiple R matrices one may find conditions where optimizing all 

GTR20 model parameters, including those constrained to be close to zero, cannot be justi-

fied using the BIC. However, a few important parameters might have very different val-

ues; dataset subdivision provides a simple method to determine whether this is the case. 

In this study, both the BIC and random subdivision corroborated the hypothesis that the 

best models for TM and ExM sites were significantly different whereas random subdivi-

sion revealed that topological data type effects are either very weak or non-existent. 

4.2. Models of transmembrane protein evolution and the NB hypothesis 

The new models of mitochondrial protein evolution we developed exhibit patterns 

consistent with the “rule of opposites,” described by Pandey and Braun [31] for buried 

versus solvent exposed residues in globular proteins. The rule of opposites is a statement 

that the most exchangeable amino acids in a specific structural environment are the less 

common amino acids in that environment. In this study, polar-polar exchanges were as-

sociated with the most elevated relative exchangeabilities in both of our new TM models 

(bird mtTM and JTTtm) and hydrophobic-hydrophobic exchangeabilities were the most 

elevated in mtExM. The rule of opposites applies to relative exchangeabilities (R matrix 

parameters) and not to instantaneous rates (Q matrix parameters). Therefore, the rule of 
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opposites could reflect, at least in part, the time reversibility constraint. Pairs of rare amino 

acids require large exchangeabilities to explain even modest instantaneous rates of change 

between those amino acids. Pandey and Braun [31] proposed two mutually-exclusive ver-

bal models regarding protein evolution relevant to the rule of opposites: 1) amino acids 

that are rare in a specific environment would not be exchangeable because they are nec-

essary for specific functions; and 2) exchanges between pairs of amino acids that are rare 

in a specific environment are actually common (relative to their frequency) as long as the 

physicochemical nature of the amino acid is conserved. If the first model was correct it is 

necessary to invoke the high variance of R matrix parameters for pairs of low frequency 

amino acids. But that would predict that models some datasets would not show evidence 

of the rule of opposites, at least for some exchangeabilities. Pandey and Braun [31] argued 

that their results for globular proteins, where they estimated parameters from seven dif-

ferent training datasets, favored the second model. This study shows that a similar pattern 

emerges in the bird mtTM model and in the more general JTTtm models, further corrob-

orating the second verbal model. 

 Although we were able to improve the fit of evolutionary models to mitochondri-

ally-encoded proteins by considering TM and ExM sites separately, we interpret the re-

sults of the mixture model analyses as evidence that there is substantial heterogeneity 

within each data type. All of the mitochondrially-encoded proteins of vertebrates are sub-

units within large multiprotein complexes that include nuclear-encoded, mitochondrially-

localized proteins. This could cause some sites in the ExM loops to evolve under rules 

similar to those for buried sites in globular proteins, reflecting their contacts with other 

subunits. Since buried sites in globular proteins are enriched for hydrophobic amino acids 

[17,93] the existence of these sites could explain both the elevated estimate of the mtTM 

component mixture weight and the large contribution of the bird mtTM mixture compo-

nent to the site likelihoods for some ExM sites (Table 2). Regardless, that heterogeneity 

suggests further improvements to models of sequence evolution have the potential to be 

useful, both for efforts to understand patterns of molecular evolution and for improving 

estimates of phylogenetic trees. 

The topological distances between our estimates of the avian mitogenomic tree and 

the likely species tree (represented by the Kimball supertree; see Figure 6) were very high, 

ranging from 31% to 47% of the expected distance between pairs of random trees. The 

largest distance among estimated mitochondrial trees was even higher (the distance be-

tween the ExM amino acid tree and the three-partition RY tree for all sites was 250, 58% 

of the median distance between pairs of random trees). The simplest interpretation of 

these results is that they further emphasize the role of stochastic error in our estimates of 

the mitogenomic tree of birds. The clustering of nucleotide trees in treespace is likely due 

to the influence of information from synonymous substitutions on topology. The observa-

tion that there were three clusters (TM, ExM, and all sites) within the nucleotide trees 

suggests that deviations from stationarity in base composition did not lead to a strong 

topological signal. The hypothesis that the shifts base composition led to a strong topo-

logical signal would predict two clusters, one for four state data and one for two state6, 

because RY-coding reduces deviations from stationarity [54,94,95] under most conditions. 

Although we believe that our “tree-of-trees” is useful, we emphasize that it is simply a 

tool to reduce high-dimensional data (topological distances among trees) to facilitate vis-

ualization. Thus, the clustering of the ExM trees with the Kimball supertree in the den-

drogram should not be overinterpreted. Although it could indicate that analyses of ExM 

sites perform better than those of TM sites (which would be consistent with the prediction 

based on NB), the long terminal branches provide evidence that any such effect is weak. 

Overall, the structure of the tree-of-tres supports two conclusions: 1) analyses of all da-

tasets are very sensitive to the details of analytical methods (compare the distances be-

tween trees estimated using mtVer versus the optimized mtTM and mtExM models in 

Figure 6); and 2) stochastic error plays a large role in our estimates of the mitogenomic 

tree. 
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Using non-historical topological signals to study molecular evolution has one poten-

tial advantage over methods that focus on parameter estimation (e.g., the rate matrices in 

this study). If we assume model misspecification leads to non-historical signals, then it 

becomes possible to identify sites with a poor fit to the model used for the analysis finding 

sites associated with the unexpected topological signal. It is challenging to identify sites 

with poor fit to a model of sequence evolution in absolute (rather than relative) terms 

[96,97], making approaches that are able to highlight sites characterized by model viola-

tions useful. This was our goal when we searched for a topological data type effect asso-

ciated with structural environments in mitochondrially-encoded proteins.  

There are also challenges associated with using non-historical topological signals to 

study molecular evolution. First, there is always some uncertainty in empirical phyloge-

nies, making it difficult to identify the true historical signal. Discordance among gene trees 

further complicates this issue because a tree that conflicts with a “known” species tree can 

also be explained by gene tree-species tree discordance. Second, the best method to reveal 

non-historical signals is unclear. NB used the MP criterion, a computationally efficient 

method [98] with a simple biological interpretation (MP treelength is the minimum num-

ber of changes for a character given a specific tree topology). However, the model implicit 

in MP has troubling mathematical properties when it is used with molecular data; (Holder 

et al. [99] describes the problems associated with branch lengths in MP-equivalent mod-

els). This motivated us to use a standard ML framework. Third, misleading signals, like 

those identified by NB, might emerge only at certain depths in the tree of life. Our taxon 

sampling largely limited our topological assessments to clades that diversified in the 

lower Paleogene or upper Cretaceous (see Field et al. [100]); biases that might appear at 

other depths in the tree would not be detectable. Finally, substitutions responsible for 

misleading signals accumulate in a stochastic manner, just like substitutions responsible 

for historical signals. Even if one knew that a specific tree topology and evolutionary 

model is misleading in expectation (given a specific analytical method), analysis of a finite 

sample of sites generated under that model might not show evidence of the misleading 

topological signal (Figure 13 in Kim [101] presents an example of a topology+model that 

exhibits this behavior). However, that scenario would be expected to yield a dataset with 

very weak non-historical signals. Since it is impossible to distinguish a weak misleading 

signal from simple stochastic error this could be the case for the avian mitogenomic tree, 

although that scenario requires more assumptions than a scenario involving stochastic 

error alone. 

4.3. Implications for avian systematics and evolution 

Two additional questions emerge if we shift our focus from molecular evolution to 

the study of avian biodiversity: 1) what information about avian evolution does an accu-

rate estimate of the mitogenomic tree of birds provide?; and 2) have our analyses gener-

ated an accurate estimate of the avian mitogenomic tree? The first question is especially 

important in the era of genomics; whole genome sequences for birds are now accumulat-

ing at an ever accelerating pace [102,103] and those data are being used to revolutionize 

phylogenetics [61]. Ultimately, the mitogenomic tree is a single gene tree and discordance 

among gene trees is known to be ubiquitous [6]. This is especially true for the diversifica-

tion of avian orders at the base of Neoaves [12,104,105] . However, the mitogenomic tree 

is also an unusual gene tree because it is expected to be more congruent with the species 

tree than the average nuclear gene tree [106] and, when it differs from the species tree, 

that discordance can have important biological implications. 

The unusual nature of the mitochondrial gene tree is likely to reflect, in large part, 

the maternal inheritance of the mitogenome. Maternal inheritance is expected to reduce 

the effective population size of the mitogenome relative to nuclear genes under many cir-

cumstances [107]. The ZW sex chromosome system of birds probably has an additional 

impact on avian mitochondrial population biology; Berlin et al. [108] suggested that Hill-

Robertson interference [109] between the W chromosome and mitogenome can explain 
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the low intraspecific variation observed in avian mitogenomes. Hickey [110] and Lane 

[111] suggested the opposite pattern (that selection on mitogenome leads to low W chro-

mosome variation) is more likely; however, the locus of selection is actually irrelevant for 

birds because both scenarios reduce the effective population size of the mitogenome and 

therefore increase the likelihood of congruence with the species tree. In fact, both scenarios 

could be true in that selection on either the mitogenome or the W chromosome is expected 

to lead to selective sweeps that reduce variation on both genetic elements (obviously, the 

locus of selection would be relevant in taxa with different sex determination systems). On 

the other hand, some analyses support instances of genuine discordance between the mi-

togenomic tree and the species tree [112–114]. Although incomplete lineage sorting is 

likely to explain some instances of mitochondrial incongruence, mitochondrial capture 

probably explains many instances of discordance between the mitogenomic tree and the 

species tree [115]. Mitochondrial capture is likely to have a functional basis; introgression 

of a mitochondrial genotype is favored if it is better adapted to the local environment than 

the genotype of the recipient and/or when the mitochondrial genotype of the recipient 

taxon has a high mutational load. This creates two situations: 1) the true mitogenomic tree 

typically matches the species tree more closely than the true gene tree for a typical nuclear 

locus; and 2) genuine discordance between the species tree and mitogenomic tree can in-

dicate interesting biological processes. Thus, an accurate estimate of the mitogenomic tree 

is likely to provide interesting information. 

The second question was whether the evidence suggested that we were able to gen-

erate an accurate estimate of the mitogenomic tree; obviously, we were unable to do so. 

Although the incongruence among our estimates of mitochondrial phylogeny speak vol-

umes, an even bigger problem is that concordance with the likely avian species tree is 

approximately evenly split between TM and ExM sites. This evaluation of the perfor-

mance of analyses using a specific data type is predicated on the assumption that congru-

ence between the estimated mitochondrial tree and the likely species tree indicates better 

performance. Although it is possible that any specific example of congruence is coinci-

dental it is a virtual certainty that this will be true on average, especially in cases where 

the branch uniting a group is long in terms of the multispecies coalescent. For example, 

the branch uniting Notopalaeognathae is known to be long based on retroelement inser-

tion data [116] (also note the high estimate of the concordance factor in Smith et al. [117]). 

Thus, one can place a very high prior probability that the true mitogenomic tree includes 

that clade and further leads us to the conclusion that analyses of the TM sites are correct 

(and those of ExM sites are incorrect) in this case. On the other hand, Mirandornithes is 

also recovered in a large number of individual gene trees [12,118], indicating that the 

branch uniting it is long in coalescent units. However, in this case it is the ExM sites that 

yield a tree with Mirandornithes and TM amino that fail to do so (although analyses of 

TM nucleotides do yield the clade). We chose these examples because both are clades that 

appear in many nuclear gene trees and therefore it is very likely that the relevant clades 

are in the true mitogenomic tree. Indeed, it is likely that many of the clades that are present 

in at least some estimates of the mitogenomic tree as well as the likely species tree are 

present in the true mitogenomic tree. However, there is no clear pattern relating the top-

ological signal in different structural environments to clades that are present in the species 

tree. This makes it impossible to assess the evidence for clades without reference to the 

species tree; this makes it impossible to identify genuine discordance between the true 

mitogenomic tree and the species tree. 
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5. Conclusions 

The central conclusion of this study is that the best-fitting models of sequence evolu-

tion for TM versus ExM sites differ substantially but the tree topologies for those two data 

types exhibit few, if any, significant differences. Thus, we did not corroborate the NB hy-

pothesis for the bird tree, at least for the parts of the tree we could examine given our 

taxon sample. Nevertheless, the conclusion that there are significant differences between 

the best-fitting models for TM and ExM sites suggest that it would be wise to incorporate 

information about these model differences into analyses of mitochondrial data. In general, 

better-fitting models will yield more accurate estimates of phylogeny and it seems reason-

able to assert that better models of mitochondrial protein evolution will be useful in at 

least some parts of the tree. Even if the direct improvements to estimates of the topology 

for the mitogenomic tree are limited, incorporating differences related to protein structure 

into models of mitochondrial sequence evolution likely to improve studies focused on 

shifts in the strength of purifying selection [62] or those focused on positive selection and 

convergence in mitochondrial proteins [119–121]. 

Despite our focus on a single gene tree, we believe our results have implications for 

the theory and practice of phylogenomics. Most modern phylogenomic studies combine 

gene trees estimated using many different loci to generate the species tree using summary 

coalescent methods, such as the method in the program ASTRAL [122] (although most 

studies also present trees estimated using other methods). Summary coalescent methods 

are unbiased when two conditions are met: 1) conflicts among gene trees reflect the mul-

tispecies coalescent; and 2) true gene trees are used as input [123]. However, they can be 

sensitive to gene tree estimation error [124–127]. Even when the species tree generated by 

a summary coalescent method has the correct topology, low quality input gene trees lead 

to the underestimation of coalescent branch lengths [128]. This raises a profound question: 

how accurate are our estimates of gene trees? Although simulations provide some guid-

ance, it seems likely that trees estimated from empirical data are often less accurate than 

trees based on simulated data. This study suggests that most estimates of the avian mito-

genomic tree are inaccurate but many of these conflicts were uncovered because we in-

corporated information about mitochondrial protein structure. However, we have much 

less information about most loci used to generate gene trees. This study suggests that it 

would be valuable to incorporate more detailed information to better assess the accuracy 

of typical nuclear gene trees; structure is one such source of information for gene trees 

estimated using protein coding regions. 
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