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Abstract: The ever-burgeoning growth of autonomous unmanned aerial vehicles (UAVs) has 

demonstrated a promising platform for utilization in real-world applications. In particular, UAV 

equipped with a vision system could be leveraged for surveillance applications. This paper proposes 

a learning-based UAV system for achieving autonomous surveillance, in which the UAV can be of 

assistance in autonomously detecting, tracking, and following a target object without human inter-

vention. Specifically, we adopted the YOLOv4-Tiny algorithm for semantic object detection and 

then consolidated it with a 3D object pose estimation method and Kalman Filter to enhance the 

perception performance. In addition, a back-end UAV path planning for surveillance maneuver is 

integrated to complete the fully autonomous system. The perception module is assessed on a quad-

rotor UAV, while the whole system is validated through flight experiments. The experiment results 

verified the robustness, effectiveness, and reliability of the autonomous object tracking UAV system 

in performing surveillance tasks. The source code is released to the research community for future 

reference. 

Keywords: UAV; Object Detection; Object Tracking; Deep Learning; Kalman Filter; Autonomous 
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1. Introduction 

Unmanned aerial vehicles (UAVs) has revealed their unprecedented potential for 

commercial, military, and civil-government utilization in a wide range of applications 

such as infrastructure inspection [1], aerial photography [2], logistics [3], and so forth. The 

employment of UAV incorporated with vision techniques is exclusively advantageous for 

tasks that require distinct visualization and robust perception, for example, aerial surveil-

lance operation.  

Surveillance plays a vital role in maintaining safety and security as it detects and 

prevents emerging unusual events. Many important tasks, such as information collection, 

military reconnaissance, target tracking, and even traffic management, have a connection 

to surveillance technologies. Yet, the conventional surveillance mission is conducted 

through manual practice to identify targets, which is time-consuming, labor-intensive, te-

dious, costly, and risky for operators to enter some impassable regions physically. Hence, 

the development of UAV as a surveillance tool is gaining a tremendous amount of popu-

larity to reduce human effort significantly. UAV is capable of assisting the surveillance 

activities by its agile maneuverability to approach confined areas of low accessibility and 

its visual functionality to capture the remote scene in real-time. In addition, autonomous 

UAV without manual teleoperation has been shown as a cost-effective solution in resource 

optimization to aid the routine surveillance in different industries. On behalf of mankind, 

an autonomous UAV is extremely helpful for continuously monitoring the movement of 

distant target objects. 

In the past few years, the UAV research community has endeavored to enhance the 

tracking performance of vision-based surveillance in different application scenarios. For 
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instance, Chung et al. [4] implemented the standard but relatively old techniques based 

on background subtraction and frame differencing to detect objects from an aerial robot. 

However, these methods work poorly with moving UAV that has high-frequency vibra-

tions in the camera motion. Then, Fang et al. [5] shown that UAV system with a kernel-

based mean shift algorithm [6] could not robustly track the target object with changing 

size and moving speed. Using a color-based tracker with multi-part representation, Teu-

liere et al. [7] used a UAV to autonomously track and chase a moving target. However, 

many environmental factors could result in malfunction in their tests, such as low-resolu-

tion imagery, noise corruption, variation of illumination, especially when the background 

and targets' color are similar. Other object tracking techniques like the drone-based mobile 

surveillance system with mobility-aware dynamic computation offloading and Pan-Tilt-

Zoom (PTZ) camera from Kim et al. [8], and the approach offered by Zhang [9] spend 

overload computational costs on the UAV platform. Due to the limited onboard compu-

ting resources, their algorithms could not be performed in real-time and onboard directly. 

Alternatively, object tracking systems with multiple sensor data fusion suggested by Car-

rillo et al. [10] and Cho and Lee [11] are also expected to increase the payload and battery 

power consumption of UAV significantly, and thus contradicts low-cost UAV solutions. 

In addition, most of the afore-discussed works did not consider occlusion issues during 

detection. 

In general, most object tracking approaches that rely on the traditional image post-

processing techniques are not competent enough for real-time surveillance applications. 

Unlike signal-based tracking methods, vision-based object tracking surveillance could 

manage challenges like real-time object detection under the physical and computational 

limitations of the UAV system. Moreover, the notable advancement of computer vision 

technologies has enabled a prosperous area of research for the deep learning-based UAV 

system in contributing to the surveillance works. Therefore, we are motivated to develop 

a deep learning-based UAV system that accomplishes real-time and dynamic object track-

ing to achieving autonomous surveillance. Without the prior information of the environ-

ment, the proposed UAV system could use deep learning-based perception and filter-

based 3D object pose tracking methods to monitor the activity of target objects in the sur-

rounding environment during flights. The main contribution of this work is an autono-

mous object tracking UAV system for surveillance application, in which, 

a. a learning-based object detection algorithm combing 3D object pose estimation is 

extended and implemented in a UAV system to recognize and locate the target objects 

autonomously; 

b. Kalman Filter is utilized for resolving false negatives (FN) and occlusion problems 

during tracking progress;  

c. back-end UAV path planning is integrated for surveillance mission, which obeys 

the dynamic constraints for UAV to track and follow the target object movement. 

The following content of the paper is organized as follows: Section 2 introduces the 

relevant literature. Section 3 describes the overall hardware and software architecture of 

the UAV system. Section 4 and 5 explain the detailed methodologies of perception, track-

ing and maneuver. Section 6 presents and analyses the experimental results. The video 

footage of experiments and implementation codes are attached in the supplementary ma-

terial. 

2. Related Work 

2.1 Object detection  

Object detection includes object localization and classification. Researchers have been 

attempting numerous approaches to achieving object detection over the last decades.  

Wang and Liu [12] described the traditional object detector processed pipeline of 4 stages, 

including (1) multi-scale sliding window, (2) hand-crafted features extraction, (3) classifi-

cation done by Supported Vector Machine (SVM) or AdaBoost classifier, and (4) Non-

Maximum Suppression (NMS), and combined bounding box to optimize object detection 
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performance. However, traditional approaches encountered limitations such as low ro-

bustness and high inaccuracy for various geometric changes while also spending exces-

sive computation costs for real-time operation. Other discrete object detection algorithms 

like point target detection and generalized contour search algorithms [13] showed better 

performance than the preceding approach. However, they still suffered limitations of ac-

curacy, speed, cost, and complexity.  

Deep learning-based approaches have emerged as the key breakthrough for object 

detection in computer vision and the UAV industries. The state-of-the-art object detection 

algorithms, particularly the Convolutional Neural Networks (CNNs) series and ‘You-

Only-Look-Once’ (YOLO) series [14], are both derived from the DNNs. Andriluka et al. 

[15], Bejiga et al. [16] and Lygouras et al. [17] fused the CNN-based algorithms with 

onboard visual sensors of UAV to achieve real-time object detection in conducting search 

and rescue (SAR) missions. Meanwhile, Tijtgat et al. [18], Kyrkou et al. [19], and Feng et 

al. [20] employed ‘YOLO’ series algorithm as the object detection framework for real-time 

UAV applications. Deep learning-based approaches, both CNNs and ‘YOLO’ method, are 

deemed to be the powerful and prevailing object detectors embedded in the vision-based 

UAV navigation system.  

Specifically, ‘YOLO’ took advantage of CNNs based architecture and applied single 

CNN on the whole image, generating bounding boxes coordinates, confidence level, class 

probability in one evaluation. Nevertheless, despite the accomplishment of real-time de-

tection speed, ‘YOLO’ occurred inaccuracy in object localization, especially for small or 

adjacent objects in images. Therefore, several updated versions of ‘YOLO’ framework like 

YOLOv2 [21], YOLOv3 [22], YOLOv4 [23] were developed to improve speed, accuracy, 

and availability for embedded computing devices with limited computational resources.  

The ‘YOLO’ object detection systems have high computational requirements, among 

which the powerful graphics processing unit (GPU) is a fundamental component. The 

computational resource on UAV’s GPU remains the most difficult issue that causes slow 

speed and constrains the usage of state-of-the-art object detectors. Hence, Shafiee et al. 

[24] proposed a ‘Fast YOLO’ framework to speed up the object detection by 3.3 times. 

Additionally, Huang et al. [25] recommended the ‘YOLO-LITE’ that works well with non-

GPU computers. Lastly, ‘YOLO v2-Tiny’ and ‘YOLO v3-Tiny’ by Redmon [21,22] and 

‘YOLO v4-Tiny’ by Bochkovskiy [23] significantly reduce the network complexity of the 

original ‘YOLO’ framework. ‘YOLO v3-Tiny’ [22] delivers a higher attainable frame per 

second (FPS) and lower network size than the ‘YOLO’ model.  

After an intensive investigation of the state-of-the-art computer vision research, this 

project utilized the latest ‘YOLOv4-Tiny’ on the UAV’s resource-limited onboard com-

puter. Due to the SWaP (size, weight, and power) constraints, we consider the high detec-

tion speed (high FPS) with acceptable precision and portability of C-based release to be 

an adequate and suitable solution to the proposed objectives. The detailed implementa-

tion of ‘YOLO v4-Tiny’ as the perception solution is elaborated in Section 4. 

2.2 Object tracking  

Beyond object detection, the remarkable development of computer vision technolo-

gies in recent years encourages an exciting new array for object tracking applications. In 

addition to localizing and classifying the target object, object tracking involves the motion 

estimation or trajectory prediction of objects across a sequence of frames [26-28]. Never-

theless, it is deemed more challenging than object detection as it faces uncertainties and 

complexities in aspects including scene illumination changes, the abrupt motion of ob-

jects, occlusions, noise corruption in images, camera motion blur problem, and so forth 

[26-28]. Lee et al. [26] further pointed out that occlusion is the most common issue that 

happens in object tracking, regardless of its type (e.g., partial occlusion, full occlusion, 

inter-object occlusion), which leads to defects of tracking loss and identity switches. Oc-

clusion means the tracked object is not available for camera to keep monitoring its motion 

state while the object is still present at the same scene. Lee et al. [26] also recommended 
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fusion methods with linear or nonlinear dynamics models to handle the occlusion prob-

lem.  

In recent years, some researchers initiated ‘tracking-by-detection’ algorithm [29], in 

which the generative, discriminative, and hybrid statistical modeling were fused to im-

prove the performance of object tracking. Nowadays, benefitting from the revolutionary 

enhancement of deep-learning, different learning-based tracking frameworks were pre-

sented, such as unsupervised deep-learning algorithm, pre-training network combined 

with correlation filter, siamese-based tracking network as well as the spatially supervised 

recurrent convolutional neural networks with YOLO and Long Short-Term Memory 

(LSTM) [30-32]. Another noteworthy development was the ‘DeepSort’ tracker proposed 

by Wojke et al. [33]. Specifically, ‘DeepSort’ applied CNN to the SORT (Simple Online and 

Realtime Tracking) framework that implemented Kalman filtering in image space and the 

Hungarian method. It learned the features of tracked object and predicted the future as-

sociated trajectories and positions of the objects of interest. The recent work from Punn et 

al. [34] demonstrated the positive results of using YOLOv3 with DeepSort tracking 

scheme to observe the social distancing situation. Both Kalman filter and Hungarian 

helped motion prediction and association of object tracking.  

Nevertheless, object tracking in image planes of camera and object tracking in vision 

assisted UAV systems are two different study fields as the latter requires additional rela-

tive control and coordination of UAV in flight [35]. The fast movement of airborne UAV, 

limited field of view (FoV) of onboard camera, and back-end maneuver of UAV to main-

tain visible distance with goal objects are all essential considerations in planning object 

tracking by UAVs. In addition, the limited computational resource also rises the difficul-

ties of object tracking on embedded systems. Ryan and Hedrick [36] used UAVs installed 

with infrared cameras to track the helicopter during SAR missions. The Kalman Filter es-

timation was proven as an effective solution to predict helicopter’s position and velocity. 

Rathinam et al. [37] applied the vision-based following systems on UAVs to autono-

mously track the path of river or coast; but they occasionally struggled with high error 

rate and low robustness. The better approaches in this field were the image feature pro-

cessing with Kalman filtering [38] and the appearance-based tracking algorithm on color 

and depth data [39]. Lastly, Xu et al. [40] made a good paradigm in employing YOLO and 

JPDA on small-scale UAVs to achieve real-time multiple object tracking. 

To summarize, deep learning-based object detector with filter-based method is con-

sidered as a novel and promising approach with high flexibility in categories of target 

objects, reduced occlusions, and real-time processing speed. As for this work, we utilized 

the YOLOv4-Tiny object detector and Kalman Filter to perform target object tracking, and 

further proposed a back-end UAV maneuver to achieve a real-time accurate tracking and 

autonomous surveillance UAV system.  

3. System Architecture 

To perform surveillance mission, a camera that acts as optical sensor is essential. 

Hence, the main component of the vision-based system is an Intel RealSense D435 stereo 

camera for visual sensing and depth acquisition as it is proven to have light weight, wide 

field of view (FoV) with global shutter for moving camera motion, and high depth accu-

racy and stability. Besides, we employed a powerful GPU for embedded systems, the Jet-

son TX2 onboard computer to process deep learning-based algorithms on small-scale 

quadrotor UAV platform. The deployed flight controller is Pixhawk 4 and an external 

VICON Mocap system is utilized for indoor visual localization. Moreover, the framework 

is supported by the Robot Operation System (ROS), using MAVROS package to communi-

cate PX4 flight controller and planner node at the onboard computer.  
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Figure 1. Prototype of proposed autonomous object tracking system. 

The predominant software architecture of the designed autonomous object tracking 

UAV system consists of (1) perception module, (2) object tracking algorithm, (3) UAV 

back-end maneuver, and (4) ground station visualization. In brief, the UAV system per-

ceives the RGB image and the depth data, and with the deep-learning based object detec-

tor YOLOv4-Tiny, the drone can then recognize objects in its field of view (FoV). The gen-

erated 2D bounding boxes are fused with the depth measurement from camera and con-

secutive regions of interest (ROI) to obtain the 3D pose estimation of objects. A Kalman 

Filter prediction module is integrated to help anticipating the motion of the tracked object.  

Lastly, a path planning component is incorporated with Finite State Machine (FSM) to 

perform safe tracking flight, while the preliminary visualization user interface is included. 

 

Figure 2. The software architecture of autonomous object tracking system. 

4. Object 3D State Estimation  

The foremost and essential procedure to perform object tracking would be precepting 

an object in a 3D world. We adopt a learning-based detector to generate 2D information 

and conduct 3D stereo reconstruction techniques. In this section, we will first discuss the 

adopted object detection method and further elucidate the 3D position information acqui-

sition. 
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4.1 Object Detection 

The UAV must be capable of identifying the target object independently. To achieve 

this, we employed the state-of-the-art YOLOv4-Tiny algorithm as our object detection so-

lution due to the robustness, detection speed, and computational cost requirements dur-

ing the tracking process. This subsection mainly discusses implementing YOLOv4-Tiny 

in the proposed UAV system, particularly the model training with the in-house dataset 

and the 2D bounding box prediction. 

4.1.1 Dataset Establishment and Training  

The first step in using the open-source ‘YOLOv4-Tiny’ would be the preparation of a 

customized dataset for training. To improve the detection performance of the trained 

model, the custom dataset should contain images with random and dissimilar illumina-

tion conditions, scales, view of angles, aspect ratios, resolutions, and backgrounds. Gen-

erally, each training class should have at least 2000 images. Meanwhile, to avoid overfit-

ting and improve training results, it is suggested to have a validation dataset to provide 

an unbiased assessment of a model fit on the training dataset. Hence, the entire dataset 

would comprise subsets of the training set and the validation set.  

Our model aims to detect three classes of objects (i.e., winnie-the-pooh doll, yellow 

bulb ball, human). The human class usually appears as the target object in a surveillance 

mission, while the other two classes are included for experimental convenience. We es-

tablished an in-house dataset including 13,500 images, composed of 2000 training images 

plus 500 validation images (4:1 ratio) for each class, as well as 6000 background images 

with no target object. The 6000 background images are designed as negative images to 

raise the model's accuracy because it will learn to detect no object in a scene, thus reducing 

false positives (FP) results. Additionally, within the training images, many images contain 

multiple objects (i.e., pooh, yellow bulb ball, human) in a single frame, which would en-

hance the detection accuracy in the scenario that multiple target objects appear in the same 

scene. Some representative images of our dataset are shown in Figure 3. 

 

Figure 3. Random image samples from the custom dataset 
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Data labelling is an important process of indicating the interest of object and provid-

ing the ground truth bounding box of the image dataset, so that the IOU (intersection of 

union) and the confidence score could be calculated, and the optimal weights for the 

model be developed. We manually labelled the bounding boxes and the corresponding 

class names (i.e., Pooh, Yellow Bulb, Human) on all 13,500 images by employing an anno-

tation tool.  

During the training process, the discrepancy is calculated by loss function, and the 

result is referred to as loss or cost through the continual comparison on a large number of 

iterations. Two important metrics that quantitatively measure the performance in the 

training process are the mean Average Precision (mAP) and the Loss. In short, the inten-

tions of the training are to maximize the mAP and to minimize the loss. Empirically, a 

training process is deemed as effective if the mAP reaches acceptable value and levels off 

after a certain number of training epochs. As the iteration number of the model increases, 

the mAP also gradually increases as the model is more capable of detecting the target 

object accurately. We observed the changes of loss throughout the process, as the model 

executed an optimization of sum-squared error loss and multi-part loss function to reduce 

the overall loss. We trained the model until there was no significant drop of loss, which 

indicated that the discrepancies between the model predictions and the ground truths 

were sufficiently low.  

4.1.2 2D Bounding Box Prediction 

In real-time object detection, YOLO predicts the 2D location of detected object by 

generating 2D bounding boxes on every single frame of the streaming video input. Since 

the upgrade of YOLOv2, the k-means clustering method and anchor-box mechanism were 

adopted in predicting 2D bounding boxes on objects. Using anchor box to predict bound-

ing box could increase the average IOU for each grid cell and thus enhance the overall 

accuracy of object localization. 

There is a pre-defined number and shape of anchor boxes on each grid cell through 

the k-means dimension clusters method. For instance, if the default number is 3, the 

YOLOv4-Tiny outputs 6 x 6 x 3 anchor boxes on a 6 x 6 feature map. The center of the 

anchor box is always located at the center of its respective cell. The shape is normally 

rectangular in different orientations and aspect ratios. Every anchor box predicts class and 

“objectness”. Among all numbers of anchor boxes on different grid cells, only the anchor 

boxes which are predicted to contain the object (i.e. objectness = 1 with a certain confidence 

score) would be kept. Then, only the anchor boxes that have the highest similarity and 

closest shape to the ground-truth box of target object would be kept as positive anchor 

boxes for further processing. In other words, the selection of the anchor box depends on 

the confidence score output of the network and the following non-max suppression 

(NMS) technique, or more explicitly, the highest IOU between the ground-truth box and 

the selected anchor box. After acquiring the anchor boxes for particular object, the anchor 

boxes with score values higher than the set confidence threshold values are further trans-

formed to the final predicted bounding box using a parameter regression function.  

According to Redmon and Farhadi [33], YOLO adopted the following computation 

in transforming the anchor box to the predicted bounding box. One anchor box generates 

one bounding box with four parameters:  

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥 (1) 

𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦 (2) 

𝑏𝑤 = 𝑝𝑤

𝑒𝑡𝑤 (3) 

𝑏ℎ = 𝑝ℎ

𝑒𝑡ℎ (4) 

• 𝑡𝑥 , 𝑡𝑦 , 𝑡𝑤 , 𝑡ℎ are coordinates of predicted bounding box in terms of x position, y po-

sition, width, and height, which are not finalized bounding box coordinates.   

• 𝑐𝑥 , 𝑐𝑦 are the offset of cell from the top left corner of the image. 
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• 𝑝𝑤 is the width and 𝑝ℎ is the height of the predicted prior anchor box.  

• σ is the sigmoid function applied to constrain the offset range between 0 and 1.  

• 𝑏𝑥  , 𝑏𝑦 , 𝑏𝑤  , 𝑏ℎ are the finalized parameters of bounding box, where 𝑏𝑥 and 𝑏𝑦 are the 

center coordinates, 𝑏𝑤 and 𝑏ℎ are the width and height respectively.  

Figure 4 shows an instance of prediction result generated by YOLOv4-Tiny. 

 

Figure 4. Bounding box coordinates on the image plane 

4.2 3D Pose Estimation 

From section 4.1, we save the predicted bounding box as 𝑆𝑅𝑂𝐼 . We then recover the 

3D pose of the object to conduct dynamic tracking by the following information: (1) the 

coordinates of the object on 2D frame, (2) the depth information retrieved from the stereo 

camera. We first generate an inner rectangle 𝑆𝑖 by shrinking 𝑆𝑅𝑂𝐼  with scaling factor 𝜃: 

𝑆𝑅𝑂𝐼 = [𝑐𝑥   𝑐𝑦  𝑤  ℎ], (5) 

𝑆𝑖 = [𝑐𝑥  𝑐𝑦  𝜃𝑤  𝜃ℎ]. (6) 

The acquired 𝑆𝑖 will then play as the region of interest (ROI) on depth for depth in-

formation acquisition. From the depth image acquired by the stereo camera, we first fil-

tered out the unfilled pixels and averaged the remaining depth data in 𝑆𝑖. We then as-

sumed the averaged depth value 𝑠 as the distance between the observer and the target 

object. Subsequently, with the bounding boxes coordination, we conducted coordination 

transformation and got the relative pose from the camera and the global pose in the world 

frame. The frame transformation equations are as follows: 

𝑠[𝑢 𝑣]𝑇 = 𝐾 ∙ [𝑋𝑖
𝐶

1
] , (7) 

[𝑋𝑖
𝑊

1
] = 𝑇𝐵

𝑊𝑇𝐶
𝐵 [𝑋𝑖

𝐶

1
] , 𝑇𝐵

𝑊𝑇𝐶
𝐵 ∈ 𝑆𝑂(3) , (8) 

where u and v are the pixel coordination of the 𝑆𝑖, K is the intrinsic camera matrix, 𝑋𝑖
𝐶 is 

the object pose vector in camera frame, while 𝑋𝑖
𝑊 being the object pose vector in the world 

frame. In particular, the transformation matrices are: 

𝑇𝐶
𝐵 = [

0 0
−1 0

1 0
0 0

0 −1
0 0

0 0
0 1

] (9) 
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𝑇𝐵
𝑊 = [

𝑟11 𝑟12

𝑟21 𝑟22

𝑟13 𝑜𝑥

𝑟23 𝑜𝑦

𝑟31 𝑟32

0 0
𝑟33 𝑜𝑧

0 1

] , (10) 

in which 𝑟𝑖𝑗  is the element in the rotation matrix of the attitude of the observer, and 

𝑜𝑥, 𝑜𝑦  , 𝑜𝑧 are the current position of observer (UAV) with respect to the world frame. The 

rotation of a coordinate frame is usually expressed in either rotation matrix or quaternion 

representation.  

5. Filter Based Tracking and UAV Maneuvers 

5.1 Relative Pose Estimation 

We utilized YOLOv4-Tiny framework as it possesses a good trade-off between speed 

and accuracy. Nevertheless, the higher FPS also indicates that the accuracy has been, to 

some extent, yielded. Furthermore, as both the states of the target object and the quadrotor 

are dynamic, the pose estimation based on Section 4 is considered not sufficiently robust. 

In a surveillance mission, it is not guaranteed that the target object could always be cap-

tured in the field of view (FoV), as there might be false positive or false negative results; 

and occasionally, occlusion might also occur. To address the above issues, we utilized the 

Kalman Filter to increase the tracking performance. 

5.1.1 Kalman Filter 

As the Kalman Filter is frequently substantiated to be a sufficienly robust solution in 

the robotics field, it is opted to be a critical module in the proposed system.  

We first established the state vector of the object with the relative positions and ve-

locities from the camera, i.e., the x, y, and z coordinates in the camera coordination frame. 

The state-space vector is shown as  

𝑥𝑘 = [𝑝𝑘 , 𝑢𝑘]𝑇 , (11) 

where 𝑥(𝑘) ∈ 𝑅6 and 𝑇 represents the matrix transpose. We further considered that the 

target’s dynamic state varied with nearly constant velocity (NCV), and assumed that all 

the states, measurements, and noises followed the Gaussian distribution. Therefore, we 

could then describe the object’s dynamic system in the form of Kalman Filter. The follow-

ing content shows the discrete linear equation of the target object, and the measurement 

expression: 

𝑥𝑘 = 𝐴(∆𝑡)𝑥𝑘−1 + 𝑤𝑘 (12)

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘  , (13)
 

in which 𝐴(∆𝑡) is the transition matrix, 𝑤𝑘 is the process noise, 𝑧𝑘 is the measurement 

from the detection module, H is the measurement matrix, and 𝑣𝑘  is the measurement 

noise. The system can then be further divided into 2 steps: time update (prediction) and 

measurement update (correction). 

Time update (prediction): 

𝑥̂𝑘
− = 𝐴𝑥̂𝑘−1 + 𝐵𝑢𝑘−1 (14) 

𝑃𝑘
− = 𝐴𝑃𝐾−1𝐴𝑇 + 𝑄. (15) 

Measurement update (correction): 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1 (16) 

𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥̂𝑘

−) (17) 

𝑃𝑘 = (1 − 𝐾𝑘𝐻)𝑃𝑘
−. (18) 

Specifically, 

𝑄 = 𝐸[𝑤𝑘  𝑤𝑘
𝑇] (19) 

𝑅 = 𝐸[𝑣𝑘  𝑣𝑘
𝑇]. (20) 
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The two matrices (Q and R) are the covariance matrices of noises (𝑤𝑘 and 𝑣𝑘), and 𝑃𝑘 is 

the error covariance matrix. 

Kalman Filter mainly resolves the problem of the estimation of states; from the above 

equations, the objective is to obtain the filtered result 𝑥̂𝑘 at every discrete time step k. 

Majorly, the filter makes educated estimations based upon the following: (1) the predic-

tions (𝑥̂𝑘
−) from previous states, (2) the measument (𝑧𝑘) at each frame (elucidated in section 

4), and (3) the optimal Kalman gain (𝐾𝑘). The process is iterative, and its performance has 

been empirically determined to be satisfactory in the designed surveillance UAV system, 

whose results will be presented in Section 6. 

5.1.2 Overall 3D Tracking Algorithm 

To track the target object, the system will execute the following working pipeline. 

After the video stream frame is retrieved, the deep learning model will generate bounding 

boxes with every object having a corresponding confidence score. Nevertheless, only the 

bounding box with the target object class will be tracked. Due to the relatively lower mAP 

of YOLOv4-Tiny, to avoid false positive detections, the system will only take the bound-

ing boxes with a confidence score higher than 0.75 as direct information output. Those 

outputs with a confidence score lower than 0.75 will be fed to the update equation of the 

Kalman Filter correction step shown in equation 17. The system will then take the poste-

rior estimates as the final output. The threshold of 0.75 is empirically determined. Never-

theless, in some scenarios, temporary object occlusion or false negative detections could 

happen, and the system might lose track of the object. Under such a situation, the algo-

rithm will take the prior results from the prediction step and deem it as the perception 

result. The following pseudo-code shows the overall 3D tracking algorithm. 

 

Algorithm 1: 3D Yolo-KF-Tracking 

Notation: object states 𝑥𝑘, measurement 𝑧𝑘, Kalman filter KF, image set 𝐹 

Input: image 𝐹 

while true do  

    Object-Detection (F) 

    if object detected then 

        trigger and initiate KF 

        break 

     else 

        continue 

     end if 

end while 

while true do 

    KF.predict() 

    Object-Detection (F)     

    if object detected then 

       if confidence score > 0.75 then 

           𝑥̂𝑘 = 𝑧𝑘 

           KF.update (𝑧𝑘) 

       else 

           KF.update (𝑧𝑘) 

           𝑥̂𝑘 = KF.update (𝑧𝑘) 

       end if        

    else 

       𝑥̂𝑘 = KF.update (KF.predict()) 

    end if 

    Output: 𝑥̂𝑘 (posteriori estimate) 

    continue  
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end while 

5.2 Finite State Machine Definition 

In a surveillance mission, to capture the target object within the FoV, the UAV com-

putes the relative position of the target object from its FoV and determine the reactional 

maneuver. In particular, all the relative positions are in the UAV’s camera coordination 

system. By determining the moving trend of the target object on each of the 3 axes, the 

UAV would define its states, formulating a finite state machine (FSM). Specifically, the 

system is designed to have two parallel state machines: one for resolving the attitude and 

altitude of the camera FoV, and the other for modifying the relative distance between 

UAV and the target. The following items are the state definitions and the corresponding 

UAV maneuver based on the sequence of the states in a surveillance mission.  

Initialization: starting from ground, the camera is turned on when the whole system 

is being initialized. The UAV will then take off to a certain altitude and start to search for 

the target object. 

Sway and Search: after going airborne, the UAV will then sway for 360 degrees to 

search for the object. To avoid severe motion blur that affects the perception performance, 

the angular velocity of the swaying is set to be conservatively low. 

Track and Hover: after locating and locking the target, the UAV will enter “track and 

hover” mode. During this stage, the system will base on the consecutive frames from the 

camera input and determine whether the target is dynamic or not. If the target is observed 

as “static”, the surveillance UAV will continue to hover. 

Track and Sway: for a surveillance assignment, we consider that the center axis of 

the camera should be aligned with the target. By doing so, the system can prevent the 

target from exiting the FoV in a short duration of time. Therefore, when being in the state 

of “track and hover”, if the target is observed as “horizontally dynamic”, the UAV will try 

to sway around, keeping the target object staying within the vicinity of the center. How-

ever, in order not to exceed the dynamical feasibility of the UAV, the angular velocity has 

been restricted to be less than 𝑉𝜃𝑚𝑎𝑥
. 

Track and Climb or Descend: similar to the above, the UAV will decide to climb or 

descend, depending on the relative position to the target object. The vertical velocity is 

limited within 𝑉𝑧𝑚𝑎𝑥
 to maneuver within the dynamic constraints. 

Track and Forward or Backward: to guarantee a collision-free flight, the UAV should 

maintain a certain safety distance 𝑅𝑠𝑎𝑓𝑒 with the target object. Nevertheless, in order not 

to lose the object, it is deemed that the UAV should be within a surveillance radius 𝑅𝑠𝑢𝑟. 

Therefore, based on the inputs from the stereo camera, the system will calculate the depth 

data and determine whether the gap between them lies in the scope of 𝑅𝑠𝑎𝑓𝑒  and 𝑅𝑠𝑢𝑟 

and further decide the reactional movement. The moving velocity, analogously, should 

not exceed 𝑉𝑥𝑚𝑎𝑥
.  

The “x” and “z” in the subscript indicate the X and Z axis in the body frame. The 

system could be simultaneously in one or more states. For instance, if the target object is 

moving further, whilst travelling leftwards from the camera view, the system will be in 

both “Track and Sway” and “Track and Forward”.  

Lost and Await: it is not guaranteed that the object could always be tracked. There-

fore, we have designed a fail-safe mechanism. If the object is lost for too many frames, the 

UAV will enter the mode “lost and await” and hover until the object returns to FoV, or 

land after the awaiting time exceeds the threshold. 

Land: the UAV will land after the target object is lost for too many frames. It will try 

to return to its home position and land.   

 

 

6. Experiment Results and Discussions 

To validate the proposed UAV system, we conducted experiments through a strategy 

of gradual phases. Before the fast development of deep learning, object tracking has 
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usually been separately discussed from object detection. Nonetheless, with the rise of ro-

bust detectors, researchers have increasingly deployed the “tracking by detection” 

method, and this has led to a convergence of difference between object detection and ob-

ject tracking field. Therefore, conventionally, for recent object tracking works, only track-

ing performance will be discussed. Nevertheless, as this work is based upon a self-gener-

ated dataset, we assert that it is necessary to discuss the training result of our detection 

model. 

In this section, we first assessed the performance of the trained model on Jetson TX2 

onboard computer, where the YOLOv4-Tiny model was trained via the Darknet open-

source framework through Google Colaboratory. As mentioned, we then observed the 

robustness of the proposed tracking algorithm on 2D streaming video by exploiting sev-

eral quantitative analysis techniques for object tracking. Lastly, we carried out intensive 

flight tests on a self-assembled quadrotor platform and evaluated the overall perfor-

mance.  

6.1 Training Result of YOLOv4-Tiny 

The surveillance task starts with object detection. We employed the YOLOv4-Tiny 

model to perform object detection. The YOLOv4-Tiny model will output a prediction 

bounding box which classifies the detected object into a certain category and indicates the 

location of that object. The goal of the experiments is to validate the object detection per-

formance using our trained model, which is critical for subsequent UAV pose estimation. 

The quality of using ‘YOLO’ framework in operating real-time object detection as well as 

3D pose estimation significantly depends on the training result of the YOLOv4-Tiny 

model on custom dataset. Two factors, detection speed and accuracy, play dominant roles 

in judging the model training result. The model training process lasted for 6000 iterations 

at which the training loss did not decline any further. Since different neural network res-

olutions could influence the model precision, we trained our YOLOv4-Tiny model with 

different resolutions (i.e., 320× 320, 416 × 416, 512 × 512, 608 × 608) to evaluate the best 

model performance. The comparison of the four input resolutions in terms of accuracy 

and detection speed is demonstrated in Table.1. Meanwhile, since the UAV surveillance 

task relies on real-time perception solutions to address object detection and tracking prob-

lems, the detection speed and accuracy need to be balanced such that the UAV can con-

sistently detect and track the object with negligible delay and sufficient accuracy. Thus, a 

comparison between YOLOv4-Tiny and YOYLOv4 models of the same network resolu-

tion was made to examine accuracy and speed. 

Table 1. Performances of YOLOv4-Tiny and YOLOv4 with respect to different resolutions.  

Method Backbone Size mAP@0.50 (AP50) FPS 

YOLOv4-Tiny CSPDarknet-53-tiny 

320 x 320 74.85% 16.63 

416 x 416 77.21% 16.19 

512 x 512 79.36% 16.31 

608 x 608 80.20% 14.34 

YOLOv4 CSPDarknet-53 416 x 416 97.09% 3.16 

 

Notably, larger input resolutions will increase the best possible mAP but will inevi-

tably slow down the training process and the detection speed. Thus, it is not necessary to 

train higher input resolution as we achieved acceptable speed and accuracy at 608 × 608, 

at which the mAP is 80.20% with intersection of union threshold of 0.50 (AP50). However, 

its FPS is slightly lower than that of resolution 512 × 512. Furthermore, when comparing 

YOLOv4-Tiny to YOLOv4 model, we conclude that YOLOv4-Tiny model generates a 

moderately lower mAP but much higher FPS. Since the object detection speed (FPS) 

should be of more importance in real-time autopilot operation, we therefore chose the 
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YOLOv4-Tiny model with resolution 512 × 512 as a good balance between detection ac-

curacy and speed. 

Once the training process was completed, we assessed the model performance of de-

tecting target objects on real-time videos captured on Intel RealSense D435i stereo camera. 

The trained model was robust under various environments and there were low False Pos-

itives and low False Negatives found in the detection results. After assuring the validity 

of our trained model, the object tracking was then successively assessed. 

6.2 Tracking Performance on Target Object 

Some of the most common ways to evaluate the tracking performance of an algorithm 

are precision plots and success plots [41]. Therefore, the center error between the ground 

truth and tracked targets as well as the IoU (Intersection over Union) values were meas-

ured and calculated. Nevertheless, it is deemed to be unsuitable if all benchmark algo-

rithms are compared with this work, as: (1) the camera could be constantly moving and 

giving occasional severe motion blur, while most of the other proposed research were 

designed with a video stream with the FoV being fixed; and (2) the work focuses on a 

customizable surveillance UAV system, in which the system and its algorithm is preferred 

to be assessed on an embedded computation unit (with a suitable real-time speed) and 

yet, many of the state-of-the-art methods requires high computation power. Hence, we 

only compared our algorithm with Opromolla et al. [42] and Peixoto et al.[43], where they 

deployed similar tracking techniques based on the YOLO detector. The compared system 

was able to be executed on the designed hardware architecture in real-time.  

Robustness of the tracking module was validated the on 2D video stream, in which 

the custom object was fully captured in most frames. The videos mainly consist of several 

pre-recorded clips retrieved manually on campus prior to our flight tests, with camera’s 

ego-motion being both static and dynamic. It is deemed that the target object in the video 

has been sufficiently exposed to different environmental backgrounds, illumination con-

ditions, and different capture angles as well as distances. The video frames input was 640 

x 480 and a total of 2,767 frames were collected. The ground truth is labelled manually 

during the image post-processing.  

We first calculate the center location error (CLE), i.e., the Euclidian distance between 

ground truth and tracker, by the following equation, with 𝑅 being the bounding boxes of 

ground truth and tracker, and 𝑋 being the states of the bounding boxes: 

∆ (𝑅𝐺 , 𝑅𝑇) = ‖𝑋𝐺 − 𝑋𝑇‖ (21) 

We then plot the precision plot of one-pass evaluation (OPE), where the x-axis is the 

center location error threshold, and y being the percentage of the frames whose center 

distance lies within the threshold. Additionally, we consider the precision score at thresh-

old value 20 as the final representation of precision. Figure 5 shows the precision plot of 

OPE. 
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Figure 5. The precision plot of OPE.  

As observed, the proposed method has outperformed the comparison set, as it 

achieved a precision rate of 76.54% at CLE threshold equals to 20, whereas the other being 

72.97%. During the experiments, our method shows higher robustness for target object, as 

it managed to continuously follow the object for most of the time, even when object is 

occluded, or being captured with occurrence of motion blur. The success plot of OPE by 

calculating the Intersection over Union (IoU) by  

𝑆 =
|𝑅𝐺 ∩ 𝑅𝑇|

𝑅𝐺 ∪ 𝑅𝑇

(22) 

is shown in Figure 6. Similar to precision plots, the x-axis of success plot is the threshold 

of IoU value, whilst the y axis being the percentage of frames that exceed this threshold. 

Figure 6 also indicates that our system has outperformed the other, as the area under curve 

(AUC), or average precision (AP) has been calculated to be higher than the other, being 

72.58% and 63.63%, respectively.  

 

Figure 6. The success plot of the proposed tracking method and compared system.  

As we retrieved the depth information based on the bounding boxes, both center lo-

cation and region of interested (ROI) generated by the tracking algorithm matter. From 

above, the proposed tracking algorithm achieves an acceptable precision rate and average 

precision that guarantees a certain robustness.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 September 2021                   



 

 

Moreover, as the UAV surveillance system could be either hovering, swaying or pro-

ducing linear motion, it is required that the performance difference between static and 

dynamic states should not be significantly high. Table 2 further compares the performance 

based on the root mean square error (RMSE) of center location when the ego-motion of 

camera being dynamically different. 

Table 2. Comparison of RMSE between static and dynamic camera ego-motion. 

Experiments  
No. of Consecu-

tive frames 
Camera ego-motion RMSE (pixels) 

Trial 1 487 Static 14.30 

Trial 2 356 Static 8.09 

Trial 3 220 Static 9.37 

Trial 4 705 Dynamic 17.88 

Trial 5 466 Dynamic 16.21 

Trial 6 533 Dynamic 18.47 

It can be observed that although the RMSE values are apparently affected by the cam-

era’s motion, as the RMSE values for trial 4, 5, and 6 are higher than the static trials. The 

value between the two is considered to be controllably near, as center location RMSE are 

all lesser than threshold = 20. Hence, we appraise that the overall discrepancies lie in an 

acceptable scope, making our system sufficiently robust under different state machines. 

6.3 Flight Experiment in Indoor Environment aided with External Locolization 

The flight tests were conducted under a Vicon arena with the size of 6 m x 4.6 m. To 

simulate a surveillance mission, we have assigned the UAV to search, track, and follow 

the “pooh” class object. During the experiment, we tried to move the target object around 

while the quadrotor maneuvered in order to track and follow the object. Both object and 

camera were constantly moving such that the difficulty of pose estimation was raised. In 

addition, we also included occlusion scenarios, as we intentionally trespassed the space 

between the UAV and the object. Furthermore, due to the cluttered environment, the pa-

rameters were conservatively set for safety reasons. Table 3 shows the values of the tuned 

parameters. 

Table 3. Defined parameters for flight test. 

Parameters Value 

𝜃 0.15 

𝑉𝜃𝑚𝑎𝑥
 0.2 Rd/s 

𝑉𝑧𝑚𝑎𝑥
 0.4 m/s 

𝑉𝑥𝑚𝑎𝑥
 0.4 m/s 

𝑅𝑠𝑎𝑓𝑒 2.25 m 

𝑅𝑠𝑢𝑟 3.25 m 

As this work focused on integrating a perception to reaction, end-to-end surveillance 

system, we first validated the overall flight behavior as shown in Figure 7-9. During in-

tensive trials, finite state machines were executed normally, even when the objects were 

occluded or not detected (False Negative detections). The experiments are recorded and 

attached as the Supplementary Materials.  
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Figure 7. Flight test under the motion capture arena. 

 

Figure 8. First-person views of the UAV system during the tracking mission (the yellow bounding 

boxes are the detection generated by YOLO-Tiny, while the red being the predicted state of the 

object).  

 

Figure 9. Frames where the target object is not detected or fully/partially occluded.  
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To further evaluate the system, we compared the estimated dynamic position and 

the ground truth of the tracked object. As shown in Figures 10 and 11, the system was able 

to track the object’s pose in the 3D space for most of the time. Despite having jittering and 

occasional drifts, the proposed tracking algorithm could still relocate the object after sev-

eral frames. 

  

Figure 10. Comparison between the ground truth (retrieved by motion capture system) and the 

object position estimation. 

 

Figure 11. Error throughout the mission time.  

In Figure 11, the error stays within 0.4 m in all axis of the world frame for most of the 

time. We further calculate the root mean square error (RMSE) and mean absolute error 

(MAE) with results shown in Table 4. 

Table 4. Calculated RSME and MAE of the dynamic object position estimation. 

Error Evaluation  X (m) Y (m) Z (m) 

𝑅𝑀𝑆𝐸 0.1322 m 0.1072 m 0.0896 m 

𝑀𝐴𝐸 0.1033 m 0.0812 m 0.0728 m 

Compared to other 3D object pose state-of-the-art estimation systems [20,44], which 

focused on static objects instead of dynamic, the proposed method possesses slightly 

higher error but is robust enough for real-time dynamic position estimation. 
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To achieve a collision-free surveillance mission flight, we have defined the state ma-

chines in section 5.2. For further evaluation, we then plotted the clearance distance 

throughout the flight. It is believed that the distance between the UAV and the target ob-

ject should be maintained within 𝑅𝑠𝑎𝑓𝑒 and 𝑅𝑠𝑢𝑟, which are respectively 2.25 m and 3.25 

m. Figure 12 shows the relative distance between the two. 

 

Figure 12. The clearance distance Δ (the relative gap between the UAV and dynamic target object) 

during the experiment. 

As observed from Figure 11, for the majority of the time, the quadrotor stays within 

the scope of 𝑅𝑠𝑎𝑓𝑒 and 𝑅𝑠𝑢𝑟. Although the quadrotor may sometimes exceed the pre-de-

fined boundaries during the flight test, it still successfully fell back after a while. We con-

sider the sparse overshooting period, which were caused by the abrupt movement of the 

target object, would not significantly affect the overall performance and conclude that the 

proposed method could achieve a real-time, maneuverable and autonomous UAV sur-

veillance system. 

7. Conclusion 

In this work, we established an autonomous UAV tracking system for assisting sur-

veillance using a deep learning-based approach. We employed the YOLOv4-Tiny to train 

a model for object detection based on our custom dataset. A Kalman Filter was leveraged 

to aid the YOLOv4-Tiny for 3D pose estimation to increase the tracking performance. The 

Kalman Filter was also responsible for tackling the common problems in aerial tracking, 

such as false positive or false negative detection and occasional occlusion. Additionally, a 

back-end UAV maneuver state machine was incorporated to conclude the fully autono-

mous system. The proposed autonomous UAV system does not require prior knowledge 

regarding the external environment or target objects. System modules were evaluated 

through extensive experiments in both virtual and real environments. The experimental 

results have validated the system feasibility and robustness for object surveillance track-

ing. 

In the future, an independent localization module, based on methods like sensor fu-

sion, will be merged into the UAV system. Meanwhile, the current experiments model the 

moving target objects as nearly constant velocity (NCV). An Extended Kalman Filter (EKF) 

or Unscented Kalman Filter (UKF) can be employed to cope with highly nonlinear object 

motions and hence further augment the applicability of the UAV tracking system.  

Supplementary Materials: The following are available online at 

https://www.youtube.com/watch?v=tY16YnZQoB4, Video: Dynamic Object Tracking on Autono-

mous UAV System: for Surveillance Applications. https://github.com/HKPolyU-UAV/AUTO, 

Source code. 
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