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Abstract.

This article describes an algorithm for generating fractals using polar coordinates. The classic
Julie and Mandelbrot polynomial iteration applied to a complex number is replaced by a
separate iteration for distance and angle. By varying the polynomial parameters of the iteration
functions, a wide range of attractive images can be created. Distance and angle values are used
to colorize fractal images.
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Introduction.

Beginning with the classical studies of Benoit Mandelbrot (1), who expanded on the work of
Gaston Julia (2), many researchers have studied Julia sets and Mandelbrot sets from different
angles (3-8). Various generalizations of these sets have been proposed. Many iterative processes
(such as Ishikawa, Noor, SP, MM iterations) have been successfully used to generate fractals.

In this article, following the author's previous work (9), the classical iteration z — z2 + ¢ has
been replaced, using polar coordinates, by an iteration with separate functions for distance and
angle. A partial escape criterion for iteration is proposed along with a graphical presentation of
the result sets.

Algorithms and Results.
The Mandelbrot set M for the function Q¢(z) can be defined in the following way (4):

M ={c € C:{Q"(0)} does not tend to oo as n — oo}, Q)
For classical Mandelbrot set Qc(z) =22 + c.

The proposed iteration scheme uses the polar representation of the complex number z = re'®,
Qc(2) can be defined as
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Qc(2) =T(r, ) +¢ (2)
where

T(r’ (p) = rs(ngip(e) (3)

and s and p are polynomials s(r) = Akrk + ... + Air +Ao, and p(¢) = Bno™ + ... + Big + Bo To
obtain the classical Mandelbrot set, the parameter values must equal 0, except Ao = B1 = 2.

The escape criterion can be obtained as follows: if there exists k > 0 such that for the sequence
Zk, Zk+1, ...

|Zn| < |Zn+1| (4)

and the sequence is not limited, then Q"¢(z) — o as n — oo.

|zn| = 1 < [Zn+1] = Fne1 = [T(rn, @n) + C| ®)
If rs0 > |c| then

fn < 10 — |c| < [T(tn, @n) + | (6)

and in the condition r >1 and s(r) > 1, the value of the escape threshold r can be calculated as
a solution to the equation

rst_r>|c| @)

s(r) > Axr' — max(A) r*t =v —vw/r 8)

where v = Axr and w = max(A)/ Ax. If K =0 thenw =0.

vV —vw/r>v—vw = v(1-w) 9)

PV > g (10)
Considering that the sequence |z«|, |zk+1], ... is bounded by sequence Un=|zn|, Un+1, ..., |Zn| > un,
where

Un+1 = U0 - [] (11)
and that

Un+2 — Un+1 > Un+1 — Un > 0 (12)

then Q"¢(z) — o as n — .
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Figures 1 shows the escape threshold for some sets of A.
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Fig 1. The escape threshold as function |c| for different parameters A.

To create a color image the distance |z| and angle ¢ is mapped in the palette lookup table.
Averaging these values provides a smoothing effect. Figure 2 shows examples of fractals with
some parameter sets A, B and different color schemes. All fractal images in this work are y-
mirrored and stretched in x by factor 1.6. The maximum order of polynomials is 2.

Figure 2. Fractal "Bird". A=1.3,-3.45, Figure 3. Fractal "Bird". A = 1.3, -3.45,
45.0. B =0.0, 0.0, 2.0. Coloring by |z|. ~ 45.0. B =0.0, 0.0, 2.0. Coloring by
Mean(|z|).



Figure 4. Fractal "Shrimp". A =0.73, Figure 5. Fractal "Shrimp". A =0.73, 1.26,
1.26,-2.41. B =251, 2.87, -0.35. -2.41. B =251, 2.87, -0.35. Coloring by
Coloring by . Mean(e).

The generated images enable the identification of various types of fractal types. The first type
corresponds to the classical one with a fractal border between the sets of escaped and bounded
points. Figure 6 shows a sequential zoom of the "head" of the "Bird" fractal.

Fig 6. A sequential zoom of the "head" of the "Bird" fractal allows to see a self-similar pattern
generated by the iterative process. The fractal border separates the escaped and non-escaped
points. A =1.3,-3.45,45.0. B=0.0, 0.0, 2.0. Coloring by |z|.

The second type can be considered as inversed to first. In comparison with the classical
situation, the set M can be defined as



M={ceC:{Q"(0) < Thr} asn— oo} (13)

The escaped set is split into an infinite number of unconnected subsets, bounded inside non-
escaped region. The Figure 7 shows the sequential zoom of the "antenna” of the "Bracelet"”

fractal.

Fig 7. A sequential zoom of the "Bracelet" fractal allows to see a self-similar pattern generated
by the iterative process. A =2.52,0.15, -0.88. B =-2.43, 0.45, -2.81. Coloring by Mean(|z|).

The third type is characterized by smooth borders. The Figure 8 shows the sequential zoom of
the" Perforated Nose" fractal.
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Fig 8. A sequential zoom of the "Perforated Nose™ fractal shows smoothed a self-similar pattern
generated by the iteration process. A = 0.73, 0.26, -0.85. B = 0.83, -1.30, 0.77. Coloring by
Mean(|z|).

Figure 9 shows examples of the Mean(|z|) value as a function of the iteration step for the escaped
and bounded points of these 3 fractal types.
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Fig 9. The logarithm of the average distance as a function of the iteration step number for the
fractals shown in Fig. 6,7,8. The oo symbol indicates escaped tracks.

There are many other types of iteration results and self-similar patterns generated by changing
parameters A and B. Figures 10-22 show an image gallery with a wide variety of fractal shapes
and structures.



Figure 7. Fractal "Spiral”. A =-0.12,  Figure 8. Fractal "Triangle". A =-0.21,
0.71, 0.38. B =-0.99, 0.89, 0.94. -2.24,-1.23,B =0.0, 0.0, -2.09.

Figure 9. Fractal "Infinity". A =0.01,  Figure 10. Fractal "Crocodile breakfast". A
0.16, 0.26. B =-0.43, -1.24, 0.49. =0.40,-1.33,-2.06. B =0.87,-1.17, -1.39.

Figure 11. Fractal "Fish". A = -0.61,  Figure 12. Fractal "Duckling". A = -1.15,
1.01, -2.67. B =0.93, -1.48, 1.25. 2.58,-2.66. B =2.07, -2.73, 1.57.



-

Figure 13. Fractal "Banana Snail", A= Figure 14. Fractal "Dolphin”, A =-0.29,
-0.10,0.96,1.78.B=0.74,-0.58,0.28.  -0.44,-1.81. B =-0.20, -0.45, 2.74.

—d

Figure 15. Fractal "Face profile”, A Figure 16. Fractal "Eye". A = 0.26, 0.56,
=-0.56, -0.98, 0.74. B = 0.01, -0.82, -1.67. B =-0.52,0.37, 1.24.
-1.34.

Figure 17. Fractal "Heart". A = 0.90,  Figure 18. Fractal "Smile". A =0.10,
1.12,1.51. B =0.35, 1.09, 2.88. -0.97, 2.44. B =-0.09, -0.23, 1.22.
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Figure 19. Fractal "Clam™ A =-0.49, -  Figure 20. Fractal "Cyclone". A = 0.50,
1.94,-1.88. B =0.10, 0.00, 0.24. 0.85, 0.86. B =-0.71, 1.36, -0.54.

Figure 21. Fractal "UFO". A = 0.18,  Figure 22. Fractal "Dune" = -0.77,
0.50, 1.61. B =-0.38, 2.20, -0.19. 1.68,-0.91. B =0.00_0.00_0.48.
Conclusions.

The proposed method allows to create attractive-looking fractals. An escape criterion is
proposed for a certain range of parameters. The algorithm is simple to implement, it can be
adapted and extended.

Supplemental Material

The datasets can be downloaded from (10). The online version of the fractal generator is
available at (11).
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