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Abstract

The gastrointestinal (GI) tract is a continuous channel through the body that consists

of the esophagus, the stomach, the small intestine, the large intestine, and the rectum.

Its primary functions are to move the intake of food for digestion before storing and ul-

timately expulsion of feces from the rectum through the anal sphincter. The mechanical

behavior of GI tissues thus plays a crucial role for GI function in health and disease. The

mechanical properties are typically characterized by a constitutive biomechanical model,

which is a mathematical representation of the relation between load and deformation in

a tissue. Hence, validated biomechanical constitutive models are essential to characterize

and simulate the mechanical behavior of the GI tract under physiological and pathological

conditions. Numerous constitutive models have consequently been proposed over the past

three decades, mainly inspired by work done in cardiovascular tissues. Here, a compre-

hensive review of these constitutive models is provided. This review is limited to studies

where a model of the strain energy function is proposed to characterize the stress-strain

relation of a GI tissue. Several needs are identified for more advanced modeling of GI

biomechanics including: 1) Microstructural models that provide actual structure-function

relations; 2) Validation of coupled electro-mechanical models accounting for active muscle

contractions; 3) Human data under physiological and pathological conditions to develop

and validate models. The findings from this review provide guidelines for using exist-

ing constitutive models as well as perspective and directions for future studies aimed at
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establishing new constitutive models for GI tissues.

Keywords: Digestive tract, Colon, Biomechanics, Mechanical properties, Strain energy

function, Hyperelasticity

1. Introduction

The gastrointestinal (GI) tract is a long conduit extending from the oral cavity to the

anus and consists of five major segments: the esophagus, the stomach, the small intestine,

the large intestine, and the rectum (Figure 1). Each segment is separated by sphincters

such as the lower, esophageal sphincter, pylorus, and anal sphincters. Although there are5

anatomical similarities between these segments of the GI tract, there are also differences

and in particular differences in function. The GI tract acts as a digestive mechanical

system that transforms food into chyme and ultimately feces during transit trough the

GI system. Healthy functioning of the GI tract is crucial for absorbing essential nutrients

(carbohydrates, proteins, fats, water, minerals, and vitamins) from food as well as for10

secretion of chemical substances that aid breakdown of the food constituents [1]. Most

drugs are administered orally, and their efficacy also relies on the healthy functioning

of the GI [2]. The GI functions are affected by numerous structural and functional

GI diseases and disorders such as gastro-esophageal reflux disease (GERD), dyspepsia,

irritable bowel syndrome (IBS), diverticulosis, constipation, diarrhea, hemorrhoids, and15

fecal incontinence. These diseases and disorders have a significant impact on quality

of life and impose a major financial burden on patients and healthcare systems [3–9].

Unfortunately, these GI diseases and disorders are highly prevalent with functional GI

diseases alone affecting over 40% of the world population [10].

Most of these diseases and disorders are invariably linked to altered GI biomechanics20

[11–13]. Studying the deformation of GI organs and the forces that causes such defor-

mation is thus crucial for understanding their mechanical behavior in health and disease.

The mechanical properties are also essential for developing computational models of GI

organs that can generate hypotheses, support diagnosis, predict treatment outcomes, and

virtually evaluate new therapeutic approaches. Mathematically, deformation is typically25

quantified in terms of strain, which is a measure of stretch relative to a reference state,

while force is quantified in terms of stress, which is a measure of force per unit surface

2
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area. A mechanical constitutive model is a mathematical formulation that relates stress

and strain in a material through parameters [14]. It is essential for characterizing the me-

chanical behavior of a tissue quantitatively since stress cannot be directly measured. It30

also constitutes one of the three major elements of biomechanical computational models,

along with tissue geometry and boundary conditions.

In the present work, we provide a comprehensive review of the published constitutive

models of the five GI organs (GI sphincters were excluded). The focus is on studies where

a constitutive model is established based on a strain energy function since this approach35

has been shown to capture well the non linear and large deformation of soft tissues,

including GI tissues. The GI tract consists of four main layers all with different mechanical

characteristics: submucosa, mucosa, muscle, and serosa. In the review, we consider studies

that model intact GI tissue and/or any combination of the individual layers. Over the last

three decades, numerous strain-energy derived constitutive models have been proposed40

for the GI tissues, primarily inspired by models and methods validated in cardiovascular

tissues. After summarizing the most common models and their formulations, we conduct

a cross-analysis of all the studies comparing them based on several factors such as organ

studied, model type, testing protocol followed, species used for the tissue, etc. The

objectives are two-fold: 1) Provide an overview of the validated constitutive models of GI45

tissues currently established to assist in the selection of a suitable model and 2) Identify

gaps in knowledge to provide guidelines for future development of constitutive models.

The review strategy is described in Section 2 and the availability of data is discussed

in Section 3. Section 4 provides a brief overview of the constitutive modeling process.

Subsequently, a review of passive and active constitutive models of GI tissues is given in50

Section 5 and Section 6, respectively. In Section 7, the results from our cross-analysis are

presented. Section 8 ends the review with a discussion of the open challenges, perspectives,

and directions for future studies based on our findings. A summary of the notation used

in the manuscript is provided in Appendix A.

2. Review strategy55

A PubMed search was performed for each GI organ using the terms listed in Table

S1 (supplemental material, c.f. Section 3). The search was set to Title/Abstract. An

3
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upper bound limit of April 30st, 2021 (included) was set for the publication date. No

lower bound limit was specified. Additional manuscripts were included based on the

authors’ knowledge if they were not encountered during the search. The search was60

conducted in several iterations and ended during May 2021. After screening relevant titles

and abstracts, the manuscripts were read to confirm eligibility. Our eligibility criteria

consisted of retaining only English language articles where new material parameters are

derived for the first time, using new or previously published mechanical test data, for

a newly or previously formulated model of the strain energy function for the tissue of65

interest. A total of 49 manuscripts were found to meet these criteria and were retained

for analysis in this work. Three of these manuscripts studied both the large intestine

and the rectum. One manuscript studied the small intestine, the large intestine, and the

rectum. All the studies were counted individually for each organ to simplify the analysis,

thus leading to a total count of 54 studies. The distribution of these studies over the70

different GI organs is shown in Fig. 1. The details of the review process are provided in

the PRISMA diagram given in Fig. 2.

3. Data availability

All the data associated with this manuscript is openly available in a dataset archived on

Zenodo [15]. Multiple information was extracted from the studies to conduct our analysis,75

including title, publication year, species for the source of the tissue, test protocol, model

category, etc. All results from the review have been stored in a spreadsheet called “review-

summary.xlsx”. The spreadsheet also includes a glossary of the technical terms used to

characterize and classify the different studies in this work. We refer to that glossary

for most of the classification terminology used in this manuscript. A Jupyter notebook80

called “post-processing-code.ipynb” has been prepared to analyze the results and generate

the figures of interest. Results and figures deemed most relevant are included in this

paper. Readers are invited to view the spreadsheet as well as use the Jupyter notebook

for further analysis if desired. The dataset also includes our Supplemental Material file

(supplemental.pdf) that contains the sections and the tables referred to in this paper (they85

include ”S” in their label). We have followed applicable FAIR data standards and made all

data available to anyone without restrictions [16]. Specifically, the dataset was organized

4
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according to the SPARC Data Structure using the SPARC data curation software SODA

[17–19] and the files are made available under open and permissive licenses (CC-BY for

data files and MIT for code files).90

4. Basis of constitutive modeling

We provide here an overview of the constitutive modeling process. This section is lim-

ited to concepts identified during our review of GI tissues although it could be applicable

beyond. For more details related to continuum mechanics or constitutive modeling of soft

tissues, we refer the readers to the literature available on these topics [20–22].95

4.1. Strain energy function

It has been shown that soft tissues can endure large deformation and their non-linear

load-displacement behavior is best modeled by defining a Helmholtz free strain energy

function Ψ such that the stress and strain in the material are related as follows:

σ =
2

J
F
∂Ψ

∂C
FT (1)

where σ is the true Cauchy stress tensor, F is the deformation gradient, J = det(F) refers

to the Jacobian of the deformation map, andC = FTF designates the right Cauchy-Green

deformation tensor. The constitutive modeling process consists of establishing an explicit

formulation of Ψ, as explained in the next section. The formulations established for GI100

tissues are discussed in detail in Sections 5 and 6. Here, we provide an overview of the

structure of Ψ.

GI tissues are modeled as homogeneous material, meaning that Ψ is independent of

the location on the tissue. This has been deemed as an acceptable assumption for all soft

tissues at the scale of interest. Moreover, a decoupled form is assumed for Ψ such that:

Ψ = U(J) +W (2)

where U is a purely volumetric (dilatational) contribution and W is a purely isochoric

(volume preserving) contribution. The volumetric term U is only considered in a few

of the studies reviewed [23–28]. In most studies, GI tissues are typically assumed to be

incompressible (i.e., their volume remains constant). Interestingly, no GI-specific studies

5
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are referenced to support this assumption. It appears to have been extrapolated from

studies on other soft tissues. Under the incompressibility assumption, U = 0. Since J

represents the change in volume with respect to the reference configuration, we also have

J = 1. The incompressibility constraint J − 1 = 0 is typically imposed directly on the

energy function as:

Ψ = W − p(J − 1) (3)

Here, p serves as an indeterminate Lagrange multiplier to enforce incompressibility. It can

be identified as the hydrostatic pressure and may only be determined from the equilibrium

equations and the boundary conditions. For GI tissues, the isochoric contribution W is

typically split as follows:

W = W p +W a (4)

where W p represents the passive contribution and W a the active contribution. The

passive contribution is associated with the mechanical contribution of fibers (elastin,

collagen) in the tissue and the ground matrix embedding these fibers while the active105

contribution is associated with the contraction of the smooth and striated muscle cells

and the electrical behavior of pacemaker cells.

4.2. Modeling of passive mechanical properties

A majority of the studies reviewed investigated passive behavior only. The passive

contribution W p of the strain energy function can be further split as follows:

W p = W e +W v (5)

Here, W e represents the hyperelastic part that is associated with the instantaneous re-

sponse of the tissue and is only dependent on the strain. W v represents the viscous part110

associated with the rearrangement mechanisms of tissue micro-components over time.

This component is observable at the tissue level through stress relaxation at constant

strain, creep at constant stress, hysteresis during loading and unloading, and strain-rate

dependence. Most studies of GI tissues have only investigated passive hyperelastic models

for formulating W e (c.f. section 5.1). In this review, we have classified them into three115

categories:

1. Phenomenological models: Do not explicitly account for tissue structure;

6
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2. Structure-based models: Only average orientation of the fibers and their overall

mechanical contribution are accounted in the strain energy function;

3. Microstructure-based models: Strain energy function accounts for the mechanical120

behavior of the individual fibers and their orientation.

Some studies have investigated the passive visco-hyperelastic behavior of GI tissues and

established a model of the strain energy function that includes both the hyperelastic and

viscous contributions (c.f. section 5.2).

4.3. Modeling of active mechanical properties125

Only select studies have investigated active constitutive models for capturing the

complex active behavior of GI tissues linked to the electrical pacemaking activity of the

Interstitial Cells of Cajal (ICC) with respect to smooth muscle contraction (c.f. section

6). Some studies consider the full tissue behavior including both passive and active

contributions while others focus only on the active part. Some studies derive a model for130

the active part W a of the strain energy function. Others consider different approaches

to account for the active contribution through the inclusion of an active stress or active

strain component. In this review, we have classified active models into three categories:

1. Active stress-based: The total equilibrium stress in the tissue results from the su-

perposition of a passive and an active contribution;135

2. Active strain-based: A multiplicative decomposition of the deformation gradient is

assumed to introduce active distortions generating material contractility;

3. Active electromechanics-based: An additive decomposition of the strain energy is

assumed to enforce active and passive stress contributions accounting for electric

field and material distortions.140

4.4. Typical constitutive modeling process

Constitutive modeling in biomechanics consists of identifying a suitable mathemat-

ical model/formulation of the strain energy function Ψ for the tissue of interest [29].

Numerous standard formulations cover the diverse range of behavior of soft tissues, as

we will summarize in the next sections. Each of these formulations contains unknown

parameters, commonly designated as material parameters. If an optimal tuning of these

7
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parameters is performed for a given model of the strain energy function, such as to capture

the actual stress-strain relation of a tissue, then it is considered a suitable constitutive

model for the tissue. To this aim, the constitutive modeling process, independently of

the multiphysics behavior involved, typically starts with mechanical testing on the tis-

sue of interest. During the mechanical test, measures of force (axial force, pressure, etc.),

related deformation (axial stretch, change in radius, etc.), and/or external stimuli (bound-

ary constraints, electric field, voltage, current, etc.) are simultaneously recorded. The

shape of the deformation tensor F is defined based on the test type, and components of F

are calculated for each imposed/measured deformation during the test. A mathematical

formulation, i.e., constitutive model, is then established for Ψ, relying typically on the

known structure of the tissue and/or previous work. The Cauchy stress in Equation 1

is then only a function of the material parameters of the selected constitutive model.

To estimate these parameters, either the experimentally measured force quantities are

converted to corresponding stress values or theoretical formulations are established for

these quantities as a function of the Cauchy stress components. As an alternative to

theoretical formulations, computational estimations based on the Finite Element Method

(FEM) are also used in some studies [30, 31]. Then, optimal material parameters of W

for the tissue are estimated by fitting the theoretical/computational stress/force values

to the corresponding experimental ones for each experimentally imposed/measured de-

formation. During the fitting process, the following cost function is typically minimized

numerically as:

e(s) =

N∑
i=1

(
Aexp

i −Amod
i (s)

)
(6)

where, N indicates the number of experimental data points, s refers to the set of material

parameters for the strain energy function of choice, “exp” designates experimental values

from mechanical tests, and “mod” indicates the corresponding theoretical/computational

value based on the selected constitutive model and associated material parameters. The

symbol A represents the quantity that is fitted, which depends on the type of mechanical

tests conducted. For instance, A is the axial Cauchy stress σa if only uniaxial tests were

conducted and the cost function is expressed as:

e(s) =

N∑
i=1

(
σexp
a,i − σmod

a,i (s)
)

(7)

8
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Parameters quantifying the goodness of fit (e.g., the final cost function value e(s), the

coefficient of determination R2, and the reduced chi-square χ) are finally computed to

decide if the selected strain energy function is suitable for the tissue. If so, the parameters

are commonly validated with test data not used for parameter optimization to confirm145

the suitability of the strain energy function. If not, the process is repeated with another

choice for the constitutive model until a satisfactory model is identified [32, 33]. Once a

suitable model is identified and the material parameters are estimated, an explicit relation

is obtained between the stress and strain in the tissue. The formulation can then be used

to analyze the mechanical characteristics of the tissue or integrated into a computational150

framework, e.g., using the FEM, to conduct load/deformation simulation of the tissue.

In the GI studies reviewed, different constitutive models and constitutive modeling

processes (mechanical testing protocol, tissue source, etc.) have been proposed. They are

discussed in the subsequent sections.

5. Passive models of GI tissues155

We provide in this section an overview of the most common formulation for passive

GI tissues encountered during our review.

5.1. Hyperelastic models

5.1.1. Phenomenological models

The first model of a hyperelastic strain energy function applied to a GI tissue was160

Fung’s model by Miftakhov and colleagues in their study of the small intestine published

in 1994 [34]. In fact, Fung’s model was used in the first six studies of hyperelastic

constitutive modeling of GI tissues [34–39]. It has subsequently been utilized in numerous

GI tissue studies [12, 40–47]. A list of all such studies is provided in Table S2 along with

relevant information. It has been found to characterize well the behavior of the intact165

tissue of all five GI organs as well as the individual layers of the esophagus. Validation

for GI tissues has been achieved against uniaxial tests (planar uniaxial extension and

tubular inflation), biaxial tests (planar biaxial extension and tubular inflation-extension),

and triaxial tests (tubular inflation-extension-torsion).

Fung’s model was originally introduced to characterize arterial tissues [48–52]. It is de-

veloped in terms of the components Eij of the Green-Lagrange strain tensor E = 1
2 (C− I)

9
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with C = FTF being the right Cauchy-Green deformation tensor. It is expressed in its

most general form as follows:

W =
c

2

(
eQ − 1

)
, Q = aijklEijEkl , i, j, k, l = r, θ, z (8)

The constant c is a stress-like material parameter while aijkl are dimensionless material

parameters, and the notation r, θ, z refer to the radial, circumferential, and longitudinal

directions associated with the tubular tissue of interest. None of these parameters relate to

the structure of the tissue, and hence the phenomenological nature of this model. In most

studies, the thickness of the tissue is assumed to be negligible compared to the radius and

the length leading to a plane stress assumption in the radial direction. Moreover, the tissue

behavior is assumed to be orthotropic and shear is not considered. These assumptions lead

to the following three exponential parameters formulation [12, 36, 37, 40, 41, 43–45, 47]:

Q = aθθθθE
2
θθ + azzzzE

2
zz + 2aθθzzEθθEzz (9)

Such a model was previously proposed for capturing the behavior of arteries [49, 53],

myocardium [54], and epicardium [55], among others. Other studies have considered non-

zero stress along the thickness of the tissue [35, 42], shear in the θ − z plane [38, 39],

or both [47], leading to a higher number of exponential parameters. Three studies have

proposed a formulation with an additive quadratic term to Fung’s model [34, 40, 46]:

W =
c

2

(
eQ − 1

)
+

1

2
q , q = bijklEijEkl , i, j, k, l = r, θ, z (10)

Such a model was previously proposed for characterizing the behavior of skin [56], arteries170

[57, 58], visceral pleura [59], and pericardium [60], among others. The term q, referred

to in some studies as the quadratic component, characterizes the tissue’s linear behavior

(typically at small strains), while the exponential term dictates the non-linear behavior

(at larger strains). All three GI studies mentioned above used a three-parameter (bθθθθ,

bzzzz, and bθθzz) quadratic term [34, 40, 46]. In one of these studies, it was found that175

the model with a three-parameter quadratic term and three-parameter exponential Fung

term provided a good fit against tubular inflation-extension loading in all the ranges

tested for the small intestine tissue while the three and six exponential parameter Fung

models without quadratic term only provided a good fit against data in physiological

loading ranges [46]. In another study [40], it was shown that use of a three-parameter180

10
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quadratic term with a three-parameter exponential Fung term did not provide a better

fit than using a three-parameter exponential Fung term alone for the mucosa-submucosa

and muscle layers of the esophagus. In the same study, the authors also tested a neo-

Hookean model (c.f. next paragraph) instead of the quadratic term and reached the same

conclusion.185

Various other phenomenological models have also been proposed to describe the hyper-

elastic mechanical behavior of intact stomach, large intestine, and rectum tissues as well

as the individual layers of the large intestine. A list of such studies is provided in Table

S3 along with relevant information. Contrary to Fung’s model, these other phenomeno-

logical models are isotropic and thus do not account for the variation of tissue behavior

depending on the loading/deformation direction. These models have only been validated

against tissue testing results in one direction at a time using compression and/or planar

uniaxial tests. Among these, invariant-based phenomenological models have been most

commonly utilized. They take the form of a polynomial function in the two invariants

I1 = tr(C) and I2 = 1
2

(
tr(C)2 + tr(C2)

)
of the right Green-Cauchy deformation tensor

C as:

W =

n∑
i,j=0

cij (I1 − 3)
i
(I2 − 3)

j
(11)

The constants cij are the material parameters (with c00 = 0) with unit of pressure. In the

particular case where only c10 is non-zero, the strain energy function is designated as the

neo-Hookean model [61]. In the case where only c10 and c01 are non-zero, it is referred

to as the Mooney-Rivlin model [62, 63]. One study proposed an extended Mooney-Rivlin

model for the large intestine tissue where c11 is also non-zero [64]. One study also used a190

2nd order reduced polynomial (c10 and c20 non-zero) for modeling the individual behavior

of the mucosa, submucosa, and muscle layers of the stomach. It is worth noting that in one

study where Fung’s, Neo-Hookean, and Mooney-Rivlin models were tested, it was found

that Fung’s model reproduced best the planar biaxial behavior of the small intestinal

tissue while Neo-Hookean and Mooney-Rivlin performed very poorly [43].195

Besides invariant-based models, Ogden’s model [65], which depends on the principal

stretches λi with i = r, θ, z (λ2
i = eigen(C)), has been used in various studies [66–69] as

11
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listed in Table S3. The general form of the Ogden’s model is expressed as follows

W =

N∑
k=1

µk

αk
(λαk

r + λαk

θ + λαk
z − 3) (12)

Here, µk (unit of pressure) and αk (dimensionless) are the material parameters of the

model. The constant N determines the order of the model. For GI tissues, N = 1

[66, 67, 69] and N = 3 [68] have been used.

5.1.2. Structure-based models

Most of the structure-based models for GI tissues are inspired by the formulation,200

and its variants, proposed by Holzapfel, Gasser, Ogden, and collaborators for arterial

tissues [70–72]. We refer to them here as Holzapfel-type models. These models account

for the fiber orientation in the tissue and hence their classification as structure-based. A

Holzapfel-type model was the second type ever to be tested (after Fung’s type model) for

a GI tissue in two studies by Yang and colleagues on the esophagus published in 2006205

[73, 74] followed by numerous studies subsequently [28, 75–81]. A list of such studies is

provided in Table S4 along with relevant information. Overall, Holzapfel-type models

characterize well the mechanical behavior of the intact tissue of the esophagus, small

intestine, large intestine, and rectum as well as the individual layers of the esophagus,

stomach, large intestine, and rectum. Validation has been achieved against uniaxial tests210

(planar uniaxial extension, planar shear) and biaxial tests (planar biaxial extension and

tubular inflation-extension)

An additive split of the strain-energy function is suggested in Holzapfel-type mod-

els between a part associated with isotropic deformations and a part associated with

anisotropic contribution, as follows

W = Wiso +Waniso (13)

The isotropic contribution is associated with the mechanical response of the non-collagenous

components of the tissue (matrix material, elastin) [27, 70]. The use of the neo-Hookean

model is typically prescribed as

Wiso = C10(I1 − 3) (14)

12
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In one study for the esophagus, no isotropic part was included [76]. Rather, the non-

collageneous part was attributed solely to the elastin fibers, and an anisotropic pseudo-

elastic model was used to describe its behavior. The anisotropic contribution is associated

with the mechanical response of collagenous fibers. In its most general form, an expo-

nential function of the following form is used to describe the strain energy stored in the

collagen fibers of the tissue:

Waniso =

N∑
j

W
(j)
aniso =

N∑
j

k
(j)
1

nk
(j)
2

[
eQ

(j)

− 1
]

(15)

with

Q(j) =

k
(j)
2 (I

(j)
4 − 1)2 if I

(j)
4 ≥ 1

0 otherwise
(16)

Here, the superscript j designates a family of collagen fibers, typically defined as all

collagen fibers aligned along the same mean direction. The coefficient N indicates the

total number of fiber families and n is typically equal to N . The stress-like parameter

k
(j)
1 > 0 and the dimensionless parameter k

(j)
2 > 0 describe the mechanical behavior of the

fiber family j at small and large strain, respectively, and are estimated using mechanical

testing data. The anisotropic fourth invariant of the deformation I
(j)
4 is a measure of

the stretch of the fibers from family j. Because of the wavy structure of collagen, it

is regarded as not supporting compressive stresses. Thus, it is assumed that the fibers

contribute to the material response in extension, but are excluded in compression, such

that each of the corresponding terms in Waniso is zero when I
(j)
4 < 1. I

(j)
4 is defined as

I
(j)
4 = C : (a(j) ⊗ a(j)) (17)

where C designates the right Cauchy-Green deformation tensor, and a(j) represents a

unit vector indicating the mean fiber direction. In all the GI studies, it is assumed that

the collagen fibers are embedded in the tangential surface of the tissue (no components in

the radial direction). Thus, in a cylindrical polar coordinate system, the direction vector

is expressed as

a(j) = cos
(
γ(j)

)
eθ + sin

(
γ(j)

)
ez (18)

with eθ and ez referring to the circumferential and axial directions in a cylindrical polar

coordinate system, respectively and γ(j) denoting the angle between the a(j) and eθ. In
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some studies, γ(j) is estimated from microscopy imaging while in others it is considered215

as an unknown material parameter and estimated from fitting against mechanical testing

data. In the original model proposed for arterial wall, a two-fiber family model was pro-

posed with the same stiffness properties (k
(1)
1 = k

(2)
1 and k

(1)
2 = k

(2)
2 ) and such that they

symmetrically oriented (γ(2) = −γ(1)). Yang and colleagues found that this exact model

did not provide a good fit for the mucosa-submucosa and muscle layers of the esophagus220

against planar uniaxial tests [73]. Looking at their mechanical testing data, they pos-

tulated that this model was too nonlinear. Accordingly, they formulated two modified

versions of Waniso, which they called modified exponential and bilinear models. They

found that their bilinear model provided the best fit for both esophageal layers. In a sub-

sequent study where they considered tubular inflation-extension tests in addition to the225

planar uniaxial tests, they found that their modified exponential model provided a better

fit [74]. Later studies have shown that rather than a modification of the original Holzapfel

model, an extension of the model that captures better the collagen fiber distribution in

the GI tissues provided a good fit to the tissue’s behavior. Overall, multiple fiber family

configurations have been tested and validated for GI tissues: One family [28, 77], two230

symmetrical fiber families similar to the original Holzapfel model [82], two-fiber families

along the longitudinal and circumferential directions [81], three-fiber families along lon-

gitudinal and two symmetrical directions [76, 78, 79], and four-fiber families along the

longitudinal, circumferential and two symmetrical directions [75, 76, 80]. Typically, the

set of parameters k1 and k2 is assumed to be equal for the two symmetrical directions.235

Another structure-based model was presented for the first time for GI tissues by Natali

and colleagues in their study of the individual layers of the esophagus [23] before being

applied to the intact tissue and layers of the large intestine [24, 25] as well as to the intact

tissue of the stomach [83]. A list of studies that presented a Natali-type model is provided

in Table S5. This type of model uses a split between isotropic and anisotropic contribution240

similar to the Holzapfel-type models formulated in Equation 13. Different formulations

are, however, used for both. The model of the isotropic contribution is formulated as a

non-linear function of the three invariants of the right Cauchy-Green deformation tensor

C. The model for the anisotropic part account for an exponential function of the fourth

invariant similar to the Holzapfel-type models but also consider additional components.245
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We refer the readers to the corresponding studies for more details.

One study has proposed a structure-based model with a different formulation for the

esophagus tissue, referred to as Microcontinuum Mechanics model [84]. The proposed

model is an extension of the Saint-Venant model for classical elasticity to large defor-

mation with an additional parameter that describes the local orientation of fibers (thus250

making it a structure-based model per definition). We refer the readers to the corre-

sponding study for more details [84].

5.1.3. Microstructure-based models

Microstructure-based models account for the microstructural contribution to the macro-

scopic stress as they incorporate not only the orientation but also the mechanical contri-255

bution (strain energy function) of individual fibers. Our search only provided one study

investigating a microstructure-based constitutive model for GI tissue. In that study,

Puertolas and colleagues [80] conducted planar biaxial testing on intact large intestinal

tissue and investigated five constitutive models to capture the passive stress-stain behav-

ior of the tissue: Three Holzapfel-type models (with two symmetrical fiber families, two260

symmetrical fiber families with consideration of fiber distribution like Gasser [71], four-

fiber families with longitudinal, circumferential, and two symmetrical directions) and two

microstructure-based models. The two microstructural models proposed were based on

the formulation proposed by Alastrué and colleagues for arterial tissue [85, 86]. Overall,

the models use a split between isotropic and anisotropic contributions as formulated in265

Eq. (13). The neo-Hookean model was considered for the isotropic part, which is at-

tributed to the ground matrix. The anisotropic part is attributed to the contribution of

the collagen fibers and defined as the sum of the contributions of each collagen family of

fibers as:

Waniso =

N∑
j=1

Wf,j (19)

where, N indicates the number of collagen families. Similar to the Holzapfel-type models,270

a family of fiber is defined as all collagen fibers aligned along a preferred direction. A

dispersion of the fibers is, however, considered around this preferred direction as discussed

below. For each family j, the micro-sphere approach was used to express the overall strain
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energy function Wf,j as the average of the contribution, over a unit volume, of each fiber

of the family. Specifically, integration of the strain energy of individual fibers wf,j over a275

unit sphere S was considered such that the contribution of fibers dispersed in all direction

is accounted as follows:

Wf,j =
1

4π

∫
S

nρj(r)wf,j (λ(r)) dA (20)

where r expresses the unit vectors associated with the direction along the spherical inte-

gration and λ(r) =
√
Fr · Fr indicates the stretch of the fibers in that direction. Here, n

is a constant representing the isotropic network chain density [87], ρj is the orientation280

density function (ODF) to take into account the fiber dispersion. A numerical Gaussian

quadrature was used to estimate the integral leading to the following expression of Wf,j :

Wf,j =

m∑
i=1

ωinρj(ri)wf,j (λ(ri)) (21)

where m represents the total number of Gaussian points, and (ωi, ri) the associated sets

of Gaussian weights and points. This led to the following overall formulation of Waniso

as:285

Waniso =

N∑
j=1

m∑
i=1

ωinρj(ri)wf,j (λ(ri)) (22)

A Holzapfel-type model was proposed for wf,j

wf,j(λ) =


k
(j)
1

k
(j)
2

(
ek

(j)
2 (λ2−1)

2

− 1
)

if λ ≥ 1

0 otherwise
(23)

accounting for the tension-compression switch formulation (i.e., fibers do not support

compressive loading). In this study, N = 2 was chosen based on structural observation of

the tissue. However, only one set of parameters (k1, k2, θ) was considered indicating that

the authors assumed a symmetrical orientation of the preferred directions for the two col-290

lagen families. Two different ODFs ρj , respectively known as Microfiber von Mises model

and Microfiber Bingham model, were used in the two microstructural models that were
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tested in the study. We refer the readers to the corresponding study for the formulation

of the ODFs and additional details. Overall, the study found that the Holzapfel-type

four-fiber families model provided the best fit to biaxial testing data, even in comparison295

to the miscrostructure-based models tested. The microstructure-based models still pro-

vided a good fit (0.83 < R2 < 0.95 for model fitting across specimens for the different

locations considered in the study along the colon) with fewer parameters (5 vs. 8 for

Holzapfel-type four-fiber family model).

5.2. Viscous and visco-hyperelastic models300

Overall, three studies investigating the visco-hyperelastic behavior of GI tissues were

identified, as summarized in Table S6. We outline below the formulation utilized in these

studies. We refer the readers to the respective papers as well as classical literature on the

topic [88, 89] for more details.

In the first study published in 2007, Higa and colleagues [90] proposed a Mooney-

Rivlin incorporated convolution integral model to characterize the stress relaxation in

the colon tissue of the following form:

W v =

∫ t

0

n∑
i+j=1

g(t− s)
d

ds
[c10 (I1 − 3) + c01 (I2 − 3)] ds (24)

where t is the time measured with respect to a reference time (e.g., beginning of the

experiment), the integral variable s represents an infinitesimal time within time 0 to t,

and the term under the brackets represents the Mooney Rivlin model presented previously

in Equation 11. Here, g represents a normalized relaxation function expressed in terms

of the generalized Maxwell’s model. In this study, n = 2 Maxwell elements were selected

leading to the following expression of g as:

g(t) = 1− g1

(
1− e−

t
τ1

)
− g2

(
1− e−

t
τ2

)
(25)

where g1, g2 (normalized modulus) and τ1, τ2 (relaxation times) are material parameters.305

The model parameters were estimated from in vivo compression tests at different velocity

and resulting model-estimated stress values provided good agreement with experimental

data.

Fontanella and colleagues [83] modeled the visco-hyperelastic behavior of the stomach.

A Natali-type model, presented in section 5.1.2, was used for the hyperelastic component.
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A viscous variable-based model was used to characterize stress relaxation in the tissue as:

W v = −
n∑

i=1

∫ t

0

1

2
qi(s) : Ċds (26)

This model was previously utilized to characterize the viscous behavior of periodontal

ligament [91, 92] and heel pad region [93], among others. Here, Ċ = ∂C
∂t designates the

time derivative of the right Cauchy-Green deformation tensor C, t is the time measured

with respect to a reference time (e.g., beginning of the experiment), and the integral

variable s represents an infinitesimal time within time 0 to t. The parameters n indicate

the number of viscous elements in the model [88, 89]. It was assumed in this study that

n = 2. The evolution of the viscous variables q is determine by the following differential

equation

q̇i +
1

τ i
qi =

γi

τ i
2F

∂W e (C(t))

C
(27)

where γi and τi (i = 1, 2) are material parameters of the model. The parameters of the

hyperelastic model were estimated using previously published planar uniaxial tests [94].310

Viscous parameters were identified from relaxation curves obtained from ex vivo tubular

inflation tests at various inflation/deflation rates and relaxation times. The model was

subsequently implemented into a FEM framework and model parameters were further

fine tuned to validate the predictions of the FE model against the tubular inflation data.

Panda and Buist [95] investigated the visco-hyperelastic behavior of the small intes-

tine, large intestine, and rectum within a framework proposed previously as an extension

of the original work of Huber and colleagues [96, 97]. A multiplicative decomposition of

the deformation gradient was assumed as:

F = FeFi (28)

where subscripts e and i indicate elastic and inelastic parts of F . The following decom-

position of the strain energy function was also introduced as:

Ψ = ΨE(C) + ΨOE(Ce) (29)

where Ce = FT
e Fe , and ΨE and ΨOE are strain energy functions associated with the315

elastic and overstress parts of the deformation, respectively. The full development of

the stress-strain relation requires a viscosity model. The authors considered a linear
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viscosity model with a material parameter ν and a non-linear viscosity model with two

material parameters µ and ϵ. The author applied their model to reproduce several GI

tissue behavior reported in previously published experiments. They used small intestinal320

inflation data aimed at studying stress relaxation [98] and demonstrated that their model

was able to reproduce the experimental data with a neo-Hookean formulation for ΨE and

ΨOE in conjunction with either linear or non-linear viscous models (it was not specified

which performed better). They used colonic inflation data aimed at studying creep [99]

and demonstrated that their model was able to reproduce the experimental data with325

a Humphrey model (we classified as Fung-type) for ΨE and ΨOE along with a linear

viscous model. They used rectal inflation data aimed at studying the behavior of the

rectum under normal conditions and Hirschsprung’s disease [100], and demonstrated that

their model was able to reproduce the experimental data for healthy and diseased tissue

with a neo-Hookean formulation for ΨE and ΨOE along with a linear viscous model.330

6. Active models of GI tissues

Active models comprise a large class of biological tissues characterized by subcellular

microstructural rearrangement scaling up to whole organ contractility. In the specific

case of slow wave gastroenterology activity, such a feature entails a tight interplay be-

tween interstitial cells of Cajal (ICCs) and smooth muscle cells (SMCs) (via specialized335

gap junction proteins), thus implying an intrinsic multi-field coupling that takes into ac-

count transmembrane voltage, calcium dynamics, and actine-myosine overlapping [101]

(see section S1). The complexity of active tissue modeling is further comprised of the (i)

Multiple scales involved both in time and space (from milliseconds to minutes, from mi-

crons to centimeters), (ii) Strong directionality due to collagen and SMC reinforcements340

within the multi-layered GI wall (usually two and three orthotropic reinforcing layers),

and (iii) Marked spatial dependence of GI excitability driving slow waves propagation

and associated contraction. These overlapping layers can be separated experimentally

and studied individually (a procedure not applicable in other organs, including the blood

vessels and heart). Therefore, more valid experimental input and validation processes of345

complex models are foreseen compared to other organs. Accordingly, generalized electro-

mechanical constitutive laws can be formulated requiring the introduction of advanced
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notions of thermodynamics of continuum media [102] enforcing the need for homogeniza-

tion techniques within a multiphysics framework [103, 104].

A list of studies presenting an active structure-based model is provided in Table S7.350

We review common formulations of GI tissues’ active models according to their historical

appearance and mathematical complexity.

6.1. Active Stress

The active stress model, initially developed for the cardiac tissue [105], has been

typically adopted as a first modeling approximation of the complex excitation-contraction355

coupling typical of smooth muscle cells, with particular reference to the esophagus [30,

106, 107]. An example can be found for the stomach [27] and the small intestine [108],

while no publications were found for the large intestine and the rectum using an active

stress formulation. As discussed in the literature [109–111], the active stress approach

suffers from a rigorous thermodynamical derivation. Accordingly, advanced approaches360

are briefly discussed in Sec. 6.2.

The basic idea of the active stress approach is to superimpose an active contribution

σa to the passive (elastic) stress σp such that the total equilibrium Cauchy stress can be

defined as:

σ = σp + σa (30)

with the pulled-back counterpart expressed in terms of the first Piola-Kirchhoff stress

tensor:

P = Pp +Pa (31)

In such a way, the constitutive modeling can be framed into an invariant reference system

and can be used both in small and large strains frameworks. Accordingly, the passive

stress can be described by one of the hyperelastic laws described before, whereas the

active part is directly coupled with the electrophysiological variable responsible for tissue

contraction, e.g., the membrane voltage dynamics (see next section and section S1). Al-

though the electromechanical coupling is due to complex multiscale intracellular calcium

dynamics (known as Calcium-induced, Calcium-released or CICR mechanism), the active

stress approach usually adopts a phenomenological volumetric formulation where:

σa = TaI (32)
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with

dTa

dt
= ϵ(V )(kTaV − Ta) , ϵ(V ) =

ϵ0 if V < Vthr

Nϵ0 if V ≥ Vthr

(33)

Here, the switch function ϵ(V ) together with the material parameter kTa
allows controlling

the maximum contractility induced on the tissue according to the level of the membrane

voltage V . Smooth continuous variants of the switch function ϵ(V ) can also be used to

modulate the timing of the contraction.365

6.2. Active Strain

The active strain approach, originally developed for the cardiac tissue [109, 112–115],

has been recently applied to the esophagus [82], the stomach [116], and the colon [117]

in order to enforce active contractility guided by ICC electrophysiology (see next section

and section S1). Adopting the notion of distortion (active deformations [109, 118]) in

continuum mechanics, the approach is based on the multiplicative decomposition of the

deformation gradient (similar to well-known plasticity theories [119]) into a passive elastic,

Fe, and an active, Fa, part, as:

F = FeFa (34)

In this way, it is possible to enforce multiscale and multiphysics couplings in a con-

tinuum homogenized framework through the local active strain deformation map. In

particular, intracellular calcium and transmembrane voltage dynamics occur at the cell

or subcellular level in much smaller space and time scales with respect to the tissue or370

organ levels. Accordingly, the local traction-free configuration of the continuum body is

herein constitutively related to smooth muscle contractility in terms of infinitesimal vol-

ume elements. A representative scheme of such a mapping is provided in Fig. 3, in which

an intermediate non-compatible configuration arises due to the presence of the active map

Fa.375

From a computational point of view, once the active map is known because of muscle

contractility, one can compute the elastic deformation gradient by imposing both the

balance of linear momentum and geometric compatibility. Moreover, as usual for soft

biological media, the tissue is considered incompressible, i.e., J = detF = 1, and further

assuming Ja = detFa = 1 it follows that Je = detFe = 1. Finally, in view of obtaining
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frame invariant constitutive formulations, the right Cauchy-Green deformation tensors

can be introduced from (34) as:

C = FTF , Ce = Fe
TFe = Fa

−TCFa
−1 (35)

and the total first and second Piola-Kirchhoff equilibrium stress tensors read, respectively;

as:

P =
∂Ψe

∂Fe

∂Fe

∂F
= PeFa

−T , S = F−1P = Fa
−1SeFa

−T . (36)

In the previous equation, Pe,Se represents the classical elastic first and second Piola-

Kirchhoff stress tensors, respectively.

The active strain approach constitutive law is completed by the introduction of the

specific formulation for the active map Fa. As detailed in [116], considering longitudinal

and circumferential principal directions of GI muscle contractility, we can write:

Fa = I− γ(V )(αcNc ⊗Nc + αlNl ⊗Nl) + γnNn ⊗Nn (37)

where Nc,Nl are the orthogonal unit vectors in the circumferential and fiber direction,

respectively, defined in the reference configuration and within the plane encompassing

SMCs, while Nn = Nc ×Nl represents the orthogonal to the plane thickness direction.

In Equation (37), αc, αl represent material parameters ruling the amount of contractility

in the corresponding directions1, while γn enforces incompressibility as:

γn =
1− (1− γαc)(1− γαl)

(1− γαc)(1− γαl)
(38)

Finally, the excitation function γ(V ) couples the mechanical problem with the electro-

physiological one (see next section), in particular via a smooth activation function defined

in [116] in terms of the transmembrane voltage of SM as:

γ(V ) =
(
1− e1−β1(V−Vthr)

)(
1− e1−β2(V−Vthr)

)
H(V − Vthr) (39)

where β1, β2, Vthr are material parameters linked to the intracellular Ca2+ dynamics,

while H(V − Vthr) is a Heaviside step function switching on the active contraction when-

ever the threshold Vthr is reached.380

1Note that (37) can be recast also in the usual structural tensor formalism.
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6.3. Active Electromechanics

Active stress and active strain approaches have been recently collected under a sound

thermodynamical framework [120] generalizing the constitutive modeling of active media

electromechanics in the case of the small intestine [121, 122]. To this end, Maxwell

electrostatics theory has been introduced, dealing with the material electric field E =

−∇XV defined as the gradient of the electric potential (i.e., the transmembrane voltage

V ), the material electric induction D, and the polarization tensors Π linked through the

following constitutive relation:

D = Jϵ0C
−1E+Π , ∇X ·D = 0 (40)

where ϵ0 is the vacuum dielectric constant and Π accounts for electric distorsions due

to materials deformations. Following previous works [120, 123–125], the local thermody-

namics state is defined through an electrical Helmholtz free energy A characterized by

the functional dependence on F,E and a collection of internal variables Q, such that:

P =
∂A

∂F
, D = −∂A

∂E
, Y = − ∂A

∂Q
(41)

where P is the equilibrium stress and Y the thermodynamic forces work-conjugate to

Q. According to classical theories of multiphysics couplings in finite elasticity, an addi-

tive decomposition of the free energy is assumed in conjunction with the multiplicative

decomposition of F (see Eq. (34)), such that:

A(F,Fe,E) = Ae(Fe) +Aa(F,E) (42)

and the associated stress assumes an additive composition similar to the active stress

approach, (31) and (36). In other words, Pa assumes an explicit expression when a

constitutive prescription of Fa is provided together with the active inelastic potential.

In this regard, the directional active Helmholtz free energy can be decomposed into

isotropic and anisotropic contributions of the GI wall based on the functional dependencies

on the electric field E, the fiber direction n, and associated structure tensor G = n ⊗ n

(by means of the fourth invariant I4(n) = C : G) as:

Aa(E,n) = Aiso
a (E) +Aaniso

a (E,n) (43)
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Respecting the usual linear isochoric and quadratic directional anisotropic contributions385

(see original paper [120]), the active energy formulations state:

Aiso
a (E) = −1

2
ϵ0JE ·

[
C−1 + χiso(I1)

]
E (44)

Aaniso
a (E,n) = −1

2
ϵ0JE · χaniso(I4(n))E (45)

with χiso,χaniso the associated permittivity tensors. Accordingly, the final expression of

the active stress, in terms of the second Piola-Kirchhoff stress tensor, is:

Sa = Siso
a + Saniso

a (46)

Visco-electro-elastic distributed models. In Refs. [122, 124, 125], the active electromechan-

ics setting was further extended to include viscous deformation and stochastic material

properties [126, 127] to model the colon wall. Assuming a generalized multiplicative

decomposition of the deformation gradient (see Fig. 3):

F = Fe(t)Fv(t)Fa , Fe(t) = FFa
−1Fv

−1 , (47)

the viscous deformation can be considered as an internal variable, Fv = Q, governed by

suitable kinetics. Accordingly, the Helmholtz free energy density becomes:

A = Ae(Fe) +Aa(F,E) +Av(Fv,E,∆t) (48)

from which the total first Piola-Kirchhoff stress tensor reads:

P = PE +Pv (49)

wherePE = Pp+Pa represents the equilibrium stress, e.g., from (41), and the constitutive

prescription of the viscous stress is provided by a suitable pseudo potential Ψ∗ as:

Pv =
∂Ψ∗

∂Ḟ
(50)

Furthermore, the active deformation gradient, Fa, incorporates directional-dependent

stochastic material properties, as key features of GI wall, by means of the functional

dependence on a distributed angular variable β, i.e.:

Fa = f1(E)I+ f2(E) cosβ2G (51)
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Here, β refers to the angle between the aleatoric fiber direction, a, and the electric field

unit vector m:

cosβ = m · a , m =
E

|E|
(52)

such that the expected value (integral average) of the active deformation gradient be-

comes:

Fa = f1(E)I+ f2(E)

∫
Ω

cosβ2G ρ(a)dω = f1(E)I+ f2(E)M : H (53)

according to the usual structural tensor approach. Here, H is the average fourth order

structural tensor associated with the second order approximation worked out for the

passive contribution [126, 128, 129]:

M = m⊗m , cosβ2G = M : G ,

∫
Ω

G ρ(a)dω = H (54)

6.3.1. Multiphysics mathematical modeling of GI tissues

Few attempts have been made to study multiphysics couplings in GI tissue. An excel-

lent example is provided in [117, 130], modeling the thermal coupling within the intestine

tissue because of its critical role in paralytic ileus disease. Adopting the approach pro-

posed by Bini et al. [131], intestinal excitability was coupled to the thermal transport

problem by using the Pennes bio-heat equation. Accounting for the ability of tissues to

remove heat both by passive conduction (diffusion) and blood perfusion, these contribu-

tions were combined in a generalized reaction-diffusion PDE of the form:

Ct
∂T

∂t
−∇ ·K(x)∇T︸ ︷︷ ︸

Diffusive evolution

−ωm(T )Cb(T0 − T )︸ ︷︷ ︸
Blood perfusion

− qm(T )︸ ︷︷ ︸
Metabolic heat

− p(x, t)︸ ︷︷ ︸
External stimulation

= 0 (55)

We refer to the original work [130] for details on model formulation and implementation.

Of note, this work was the first to recognize and theoretically anticipate the existence

of spiral waves in the intestine (dysrhythmias), which were later experimentally demon-390

strated [132–136].

The role of ion channels mechanosensitivity [137] and recent advances in the elec-

trophysiological mathematical modeling of GI is referred to recent reviews on the sub-

ject [101].
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7. Cross-analysis of the reviewed studies395

We present a cross-analysis to provide an overview of the existing studies for modeling

GI tissue mechanics and to help identify remaining gaps.

7.1. Overview

A total of 54 studies were found to fit our review criteria (when counting individu-

ally for each organ). Among them, 40 (80%) investigated a hyperelastic model, 5 (9%)400

investigated a visco-hyperelastic model, and 9 (17%) investigated an active model (with

or without passive or viscous behavior). The majority of all the studies (56%) were on

esophagus and large intestine tissues. Most of the active studies (44%) were on the esoph-

agus while active modeling of the rectal tissue has not been investigated to date. These

findings are presented in Figures 4.405

Looking at the chronological distribution of the studies, shown in Figure 5, we observe

that the first study ever published was in 1994 for the esophagus and introduced a con-

stitutive model for the hyperelastic behavior. No studies were subsequently published for

almost a decade, until 2003. Since then, studies have regularly been published, with the

first study on the small intestine, large intestine, stomach, and rectum published respec-410

tively in 2003, 2007, 2008, and 2009. The first study investigating a visco-hyperelastic

model was published in 2007 and the first study investigating an active model was pub-

lished that same year.

7.2. Species

Tissue source for mechanical testing was clearly identifiable in 50 studies. Seven415

different types of species were used for the tissue source across them (Figure 6). Swine

(45%) and rodent (29%) were the most commonly used while human tissues were used in

5 studies (11%).

Among those studies, 6 studies investigated the effect of a disease on the mechanical

behavior of GI tissue. Five of the studies were on the small intestine and investigated420

the hyperelastic behavior of the tissue in diabetic rats [37], active behavior in patients

with systemic sclerosis [108], hyperelastic behavior in obstructed guinea pigs [42], hy-

perelastic behavior in obstructed rats [47], and visco-hyperelastic behavior in patients
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with Hirschsprung’s disease [97]. One study investigated the hyperelastic behavior of the

esophagus tissue in diabetic rats [38].425

7.3. Mechanical testing condition

The mechanical testing condition and protocol used to conduct the testing necessary

for estimating the material parameters of the constitutive models and/or validating the

models were identifiable in 50 studies (7). In 48 studies (96%), the model parameters

were estimated based on testing conducted in ex vivo conditions. A total of 14 different430

protocols were identified. Planar uniaxial testing (26%) and tubular inflation-extension

testing (22%) were most commonly utilized. The two in vivo studies consisted of com-

pression testing in the large intestine of goat [90] and impedance planimetry in the small

intestine of humans [108].

7.4. Model types435

Most of the 40 studies on hyperelastic model considered a phenomenological model

(56%), followed by a structure-based model (42%). Only one study recently (2019) estab-

lished a microstructure-based model [80]. Fung-type models (35%) and Holzapfel-type

models (31%) were the most commonly used (Figure 8).

Limited number of studies (5) investigated the visco-hyperelastic behavior of GI tissues440

as discussed in section 5.2.

Overall, most of the 9 studies where an active model is established considered active

stress model (56%), followed by an active strain model (33%) (Figure 8). Only one study

established an active electromechanics model that considered a strain-energy function for

modeling the active response [127].445

7.5. Studies on human tissues

An overview of the studies proposing a model based on human tissue testing is provided

in Table S8. A total of six such studies have been identified in our review. They proposed

models for the intact small intestine [95, 108], large intestine [63], and rectum tissue

[62, 67] as well as the muscle layer of the large intestine [117]. All but one study on450

the small intestine [95] were based on ex vivo testing. Three of the studies focused on

hyperelastic modeling and all proposed phenomenological models [62, 63, 67], one focused

on visco-hyperelastic modeling [95], and two focused on active modeling [66, 117].
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8. Discussions

8.1. Overview of the current effort455

While the development of constitutive models for biological tissues started as early as

the 70s with the advent of engineering approaches in the study of organs and tissues, the

gastroenterology field was somehow sidetracked from this revolution. It started to draw

serious attention only in the early 2000s. The first study on the constitutive modeling of

GI tissues was published in 1994 but consistent attention to the topic has only been drawn460

from 2003 and the first studies investigating visco-hyperelastic and active tissue models

only appeared in 2007. This is a relatively late start compared to the cardiovascular area

where studies on the passive and active constitutive modeling for arterial tissues have

been initiated in the early 70’s and late 80’s, respectively. It is thus not surprising that

constitutive models of GI tissues are highly inspired by cardiovascular tissue.465

To date, there is a disparity of effort attributed to the different GI organs. The stomach

and the rectum have been especially neglected despite the prevalent disorders affecting

them and the known role/consequence of these conditions on the mechanical behavior

of these organs. No study has investigated the behavior of the stomach, large intestine,

or rectum under disease conditions. Similarly, the majority of studies have focused on470

hyperelastic models while limited effort has been dedicated to visco-hyperelastic and

active tissue modeling.

8.2. Recommendations for using existing models

Our review has identified a number of studies that can be readily used to predict

the stress-behavior of GI tissues. When simple geometry and boundary conditions are of475

interest, these could be used directly for estimating stress/strain values analytically. For

more complex studies, these models can also be implemented in a numerical framework,

using for instance the FEM [27, 31, 67, 69, 138].

Choice of the hyperelastic model requires the most attention since a variety of models

have been established for GI tissues. It has been shown that phenomenological models480

typically fail to predict deformation modes outside of those used for estimating their

material parameters [139]. Thus, it is recommended to use phenomenological models

only when the simulation of interest is within the range of deformation/load used for
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establishing their material parameters. Especially, all the isotropic hyperelastic models for

GI tissues have been established based on uniaxal behavior, suggesting that they are only485

suitable to predict the behavior of the tissue along uni-directional loadings. Structure-

based models have greater predictive power and are thus typically recommended. A

structure-based model has been established for all the GI organs. While no hyperelastic-

specific study has been identified in our review for the stomach, Klemm and colleagues

have proposed one as part of their study on the active modeling of the stomach.490

Only three manuscripts have investigated modeling of the visco-hyperelastic behavior

of the GI tissues. They studied the stomach, large intestine, and rectum. Given the

scarcity of such models, selection of a model is simply guided by availability for the tissue

of interest.

Although the critical role of smooth contractile cells into the modeling part is well-495

established, studies on active models development for GI tissues are still very limited. The

complexity of the phenomenon and its intrinsic multiscale nature require further effort to

produce reliable and robust modeling tools for device design and optimization.

8.3. Suggestions for future studies

Microstructure-based hyperelastic models are now commonplace for cardiovascular500

tissues [140, 141]. To date, only one such model has been established (for the large intes-

tine). It is thus recommended that future hyperelastic studies investigate such models.

Visco-hyperelastic models are overall scarce, and especially lacking for the esophagus.

Active models have attracted more attention in recent years, but none have been vali-

dated for the rectum. In general, advanced experimental techniques are required, based505

on well-established examples in the cardiac domain, characterizing active and passive

contributions independently for the different tract of GI. Moreover, only one study has

established a full model of the strain energy function incorporating hyperelastic, viscous,

and active components. More of such studies are critically needed to capture accurately

the full in vivo behavior of GI tissues.510

We found only a few studies investigating the role of GI diseases on the mechanical

response of the tissues. Such studies are crucial and must be pursued to expand our

knowledge of GI mechanics in diseases and also enable accurate simulations of diseased

tissue and prediction of treatment outcomes. They are made possible by animal models
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of GI diseases and disorders that have been established over the years that could be used515

as the source for diseased tissue [142–145].

Although animal tissue based studies provide very useful knowledge of the overall

behavior of a tissue, human tissue based studies are clearly needed to evolve towards

in silico patient-specific diagnosis and treatment strategies. Across the study reviewed,

only six studies proposed a model of human tissues and only one was based on in vivo520

measurements (small intestine). The development of technologies enabling in vivo and

minimally invasive measurements of GI tissue mechanics is also critical to support such

modeling effort [146–149].

8.4. Closing comments

Notwithstanding the substantial importance of GI mechanics in our everyday life, the525

research and industry efforts do not compare with the level of modeling, analysis, and in-

vestment associated with cardiovascular mechanics. The development of a comprehensive

constitutive and computational model of GI mechanics, parametrized for each different

section, can lead to patient-specific in-silico tools unveiling the principles governing food

digestion and disease mechanisms at different scales. Therefore, such a paradigm stands530

as an unprecedented opportunity for computer-aided medicine, innovative device design,

and optimal treatment approaches. Although modeling approaches can be adapted from

the cardiovascular field, GI-specific technologies are needed to gather mechanical behavior

data needed to inform and validate such models, especially in humans.
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Appendix A. Notation

We denote Ω,Ωs ∈ R a deformable body in the reference, spatial configuration with545

smooth boundary ∂Ω, ∂Ωs and outward unit normal N,n, respectively. A material point

in Ω,Ωs is denoted by X,x, respectively, with motion x = x(X, t). Material and spatial

gradient, divergence, and determinant operators are identified with ∇X,∇x, ∇X· ,∇x· ,

and detX,detx, respectively. Cross, vector, and tensor products are denoted ·,×,⊗. If

not explicitly stated, we denote second order tensors in matrix notation with capital bold550

symbols, A, and corresponding index notation, AIJ , in reference configuration. Fourth

order tensors are indicated with A. Transpose and inverse of a second order tensor are

indicated as AT,A−1, respectively. Single and double tensor contractions are indicated

with ATB and A : B, respectively.
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Figure 1: Illustration of the GI tract along with specification of the different organs (edited from
www.flickr.com/photos/nihgov/25083237542). The number of studies that fitted our review criteria is
indicated in parenthesis for each organ.
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Figure 2: PRISMA diagram providing an overview of our review process.
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Figure 3: Illustration of the decomposition of the deformation gradient.
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Figure 4: Organ-wise distribution of the studies with distinction between studies investigating hypere-
lastic, visco-hyperelastic, and active models.
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Figure 5: Organ-wise and year-wise distribution of the studies with distinction between studies investi-
gating hyperelastic, visco-hyperelastic, and active models.
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Figure 6: Organ-wise distribution of the studies with distinction of the tissue source used for mechanical
testing.
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Figure 7: Organ-wise distribution of the studies with identification of the mechanical testing protocol
utilized to estimate model parameters and/or validate the models.
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Figure 8: Distribution of the studies based on the hyperelastic model type proposed.
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Figure 9: Distribution of the studies based on the active model type proposed.
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