On the Inverse Fourier Transform of the Planck-Einstein law

Alireza Jamali*
Senior Researcher
Natural Philosophy Department, Hermite Foundation ${ }^{\dagger}$
alireza.jamali.mp@gmail.com

September 20, 2021

Abstract

After proposing a natural metric for the space in which particles spin which implements the principle of maximum frequency, $E=h f$ is gener-

 alised and its inverse Fourier transform is calculated.Keywords - Einstein-Planck relation, foundations of quantum mechanics, principle of maximum frequency, angles-time space, renormalisation

In [1] I proposed the notion of angles-time space and the principle of maximum frequency based on the fundamental guiding principle that the so-called wave-particle duality is a purely classical result of spin motion of particles and argued that the Planck-Einstein relation $E=\hbar \omega$ is nothing but $E=I \omega^{2}$ of classical mechanics with a change of dress. To recap, our starting point is the following comparison

$$
E=\frac{1}{2} m \mathbf{v}^{2} \quad \text { versus, } \quad E=\frac{1}{2} I \boldsymbol{\omega}^{2}
$$

By analogy between \mathbf{v} and $\boldsymbol{\omega}$, if there is a maximum for \boldsymbol{v} then there must also be a maximum for $\boldsymbol{\omega}$. This analogy leads us to the following
Principle 1 (Principle of Maximum Angular Frequency). All angular frequencies of rotation are bounded above by ω_{P} where

$$
\omega_{P}:=2 \pi f_{P}=2 \pi \sqrt{\frac{c^{5}}{\hbar G}}
$$

[^0]As pointed earlier, contrary to the mainstream view that sees spin of elementary particles unrelated to any kind of rotational spin, I conjecture that it is the spin (rotational) motion of elementary particles that creates de Broglie matterwaves hence we must demand $E=\frac{1}{2} I \boldsymbol{\omega}^{2}$ to yield $E=\hbar \omega$. To that end assuming that the spin (rotational) motion of an elementary particle is completely independent from its translational motion, we conclude that the spin motions must occur in an ontologically distinct space which I dubbed as the space of angles-time. The distances in this angles-time space are measured by the following metric ${ }^{1}$

$$
\begin{equation*}
d \Theta^{2}=\omega_{P}^{2} d t^{2} \pm d \boldsymbol{\theta}^{2}, \tag{1}
\end{equation*}
$$

which naturally implements the principle of maximum frequency. Regarding the doubt in the sign of metric, it is something that must be singled out by experiments therefore I shall consider both cases.
I now prove that the principle of maximum frequency solves one of the fundational problems of quantum mechanics: Taking Planck-Einstein relation $E=\hbar \omega$ as a fundamental law of nature and abiding by the principle that a fundamental law of nature must not depend on our choice of basis for the function space (Fourier basis), we expect the Inverse Fourier Transform of $E=\hbar \omega$ to yield the energy of electromagnetic field as a function of time, viz.

$$
E(t)=\frac{\hbar}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega t} \omega d \omega,
$$

but this integral is wildly divergent, and I maintain that this is the root of the problem of renormalisation in QFT. As a result of the principle of maximum frequency the rotational energy of a particle is given by

$$
\begin{equation*}
E=\frac{I \omega_{P}^{2}}{\sqrt{1-\left(\omega / \omega_{P}\right)^{2}}} \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
E=-\frac{I \omega_{P}^{2}}{\sqrt{1+\left(\omega / \omega_{P}\right)^{2}}} \tag{3}
\end{equation*}
$$

depending on the sign of the metric (1). By analogy with the gamma factor of special relativity we expect the $\pm I \omega_{P}^{2}$ to yield the inertial energy of rotation but that would only be the case if I was a constant, but it turns out that if we are to recover $E=\hbar \omega$ from (2) or (3), I is not a constant and depends on the frequency of rotation. To see this, observe that the second term in the Taylor expansions of (2) and (3) is

$$
\frac{1}{2} I \omega^{2}
$$

showing the expected compatibility with classical mechanics. But to get $E=\hbar \omega$ we need to recall the following familiar relation between I and angular momentum S

$$
S=I \omega
$$

[^1]thus
$$
I=\frac{S}{\omega}
$$
which yields
\[

$$
\begin{equation*}
E=\frac{1}{2} S \omega \tag{4}
\end{equation*}
$$

\]

which can be interpreted as meaning that wave-particle duality is a solely classical fact and it is in the quantisation of spin that quantum mechanics enters: to get $E=\hbar \omega$ we now only need to let

$$
S=2 \hbar
$$

in (4). This $S=2 \hbar$ is nothing but an 'old' quantum-mechanical quantisation rule. Consequently

$$
\begin{equation*}
I=\frac{2 \hbar}{\omega} \tag{5}
\end{equation*}
$$

implies that photons are unlike any rigid body we know in classical mechanics, as the moment of inertia of photons depends on the angular frequency of their spin. Putting all these considerations together, complete exact form of Planck-Einstein relation is given by

$$
\begin{equation*}
E(\omega)=\frac{2 \hbar \omega_{P}^{2}}{\omega}\left(\frac{1}{\sqrt{1-\left(\omega / \omega_{P}\right)^{2}}}-1\right) \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
E(\omega)=\frac{2 \hbar \omega_{P}^{2}}{\omega}\left(1-\frac{1}{\sqrt{1+\left(\omega / \omega_{P}\right)^{2}}}\right) \tag{7}
\end{equation*}
$$

Note that by construction $E=\hbar \omega$ is an approximation to the above equation, by being the first term in the Taylor expansion of the anglestime space factor. Unlike $E=\hbar \omega$ however, my proposed generalisation of Planck-Einstein relation is not plagued by infinities and it is perfectly possible to take its inverse Fourier transform. To this purpose, recall that

$$
\begin{equation*}
\mathcal{F}_{\omega}^{-1}\left[\frac{1}{\sqrt{1+\left(\omega / \omega_{P}\right)^{2}}}\right]=\omega_{P} \sqrt{\frac{2}{\pi}} K_{0}\left(\omega_{P} t\right) \tag{8}
\end{equation*}
$$

where $K_{0}(t)$ is the zeroth order modified Bessel function of the second kind. And

$$
\begin{equation*}
\mathcal{F}_{\omega}^{-1}\left[\frac{1}{\sqrt{1-\left(\omega / \omega_{P}\right)^{2}}}\right]=-i \omega_{P} \sqrt{\frac{2}{\pi}} K_{0}\left(-i \omega_{P} t\right) . \tag{9}
\end{equation*}
$$

Now observe that

$$
i \omega E(\omega)=2 i \hbar \omega_{P}^{2}\left(1-\frac{1}{\sqrt{1+\left(\omega / \omega_{P}\right)^{2}}}\right),
$$

and

$$
i \omega E(\omega)=2 i \hbar \omega_{P}^{2}\left(\frac{1}{\sqrt{1-\left(\omega / \omega_{P}\right)^{2}}}-1\right)
$$

which is

$$
\mathcal{F}\left[\frac{d}{d t} E(t)\right]=2 i \hbar \omega_{P}^{2} \mathcal{F}\left[\delta(t)-\omega_{P} \sqrt{\frac{2}{\pi}} K_{0}\left(\omega_{P} t\right)\right]
$$

and

$$
\mathcal{F}\left[\frac{d}{d t} E(t)\right]=-2 i \hbar \omega_{P}^{2} \mathcal{F}\left[i \omega_{P} \sqrt{\frac{2}{\pi}} K_{0}\left(-i \omega_{P} t\right)+\delta(t)\right]
$$

therefore

$$
\begin{equation*}
E(t)=2 i \hbar \omega_{P}^{2}\left(H(t)-\omega_{P} \sqrt{\frac{2}{\pi}} \int^{t} K_{0}\left(\omega_{P} \tau\right) d \tau\right) \tag{10}
\end{equation*}
$$

where $H(t)$ is the Heaviside step function; or

$$
\begin{equation*}
E(t)=-2 i \hbar \omega_{P}^{2}\left(i \omega_{P} \sqrt{\frac{2}{\pi}} \int^{t} K_{0}\left(-i \omega_{P} \tau\right) d \tau+H(t)\right) \tag{11}
\end{equation*}
$$

References

[1] Alireza Jamali. Towards an einsteinian quantum mechanics (preprint). viXra:2103.0006, 2021.

[^0]: * Corresponding author
 †3rd Floor - Block No. 6 - Akbari Alley - After Dardasht Intersection - Janbazané Sharghi
 - Tehran - Iran

[^1]: ${ }^{1}$ Another motivation for introducing a whole new independent space is to get close to explaining how particles which are separeted by space-like distances can still be correlated (quantum entanglement), for a new space with a new metric means that this space has a new independent notion of locality, independent of the locality in spacetime.

