



## Article

# Positive Mathematical Programming to model regional or basin-wide implications of producer adoption of practices emerging from plot-based research.

Nicolas Quintana-Ashwell <sup>1\*</sup>, Gurpreet Kaur <sup>1</sup>, Gurbir Singh <sup>1</sup>, Drew Gholson <sup>1</sup>, Chris Delhom <sup>2</sup>, L. Jason Krutz <sup>3</sup>, Shraddha Hegde<sup>4</sup>

<sup>1</sup> National Center for Alluvial Aquifer Research, Mississippi State University, 4006 Old Leland Rd, Leland, MS 38756, USA; n.quintana@msstate.edu (N.Q.), gk340@msstate.edu (GK), gs1064@msstate.edu (GS), drew.gholson@msstate.edu (DG)

<sup>2</sup> United States Department of Agriculture, Agricultural Research Service; chris.delhom@usda.gov (C.D.)

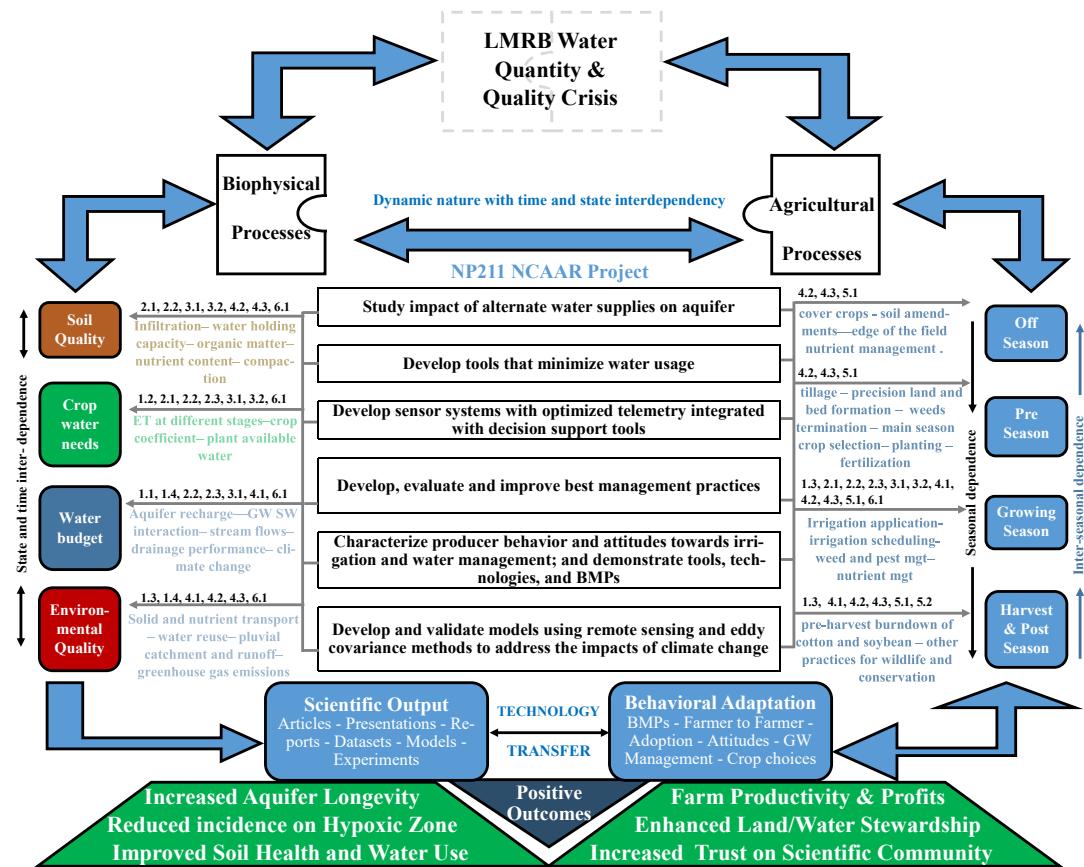
<sup>3</sup> Mississippi Water Resources Research Institute, Mississippi State University; j.krutz@msstate.edu (L.K.)

<sup>4</sup> Delta Research and Extension Center, Mississippi State University; sgh234@msstate.edu (S.H.)

\* Correspondence: n.quintana@msstate.edu; Tel.: 1-662-390-8508

Version September 15, 2021 submitted to Journal Not Specified

**1** **Abstract:** A method for calibrating models of agricultural production and resource use presented  
**2** by Howitt [1] for policy analysis is proposed to leverage multidisciplinary agricultural research at  
**3** the National Center for Alluvial Aquifer Research (NCAAR). An illustrative example for Sunflower  
**4** County, MS is presented to show how plot-level research can be extended to draw systemic region  
**5** or basin wide implications. A hypothetical improvement in yields for dryland soybean varieties is  
**6** incorporated to the model and shown to have a positive impact on aquifer outcomes and producer  
**7** profits. The example illustrates that a change in one practice-crop combination can have system-wide  
**8** impacts as evidenced by the change in acreages for all crops and practices.


**9** **Keywords:** positive mathematical programming; integrated multidisciplinary research; aquifer  
**10** depletion; land use allocations; groundwater use; irrigation; conservation; profitability; water  
**11** economics; groundwater; alluvial aquifer; row crops; Mississippi Delta; Lower Mississippi River  
**12** Valley

---

## **13** 1. Introduction

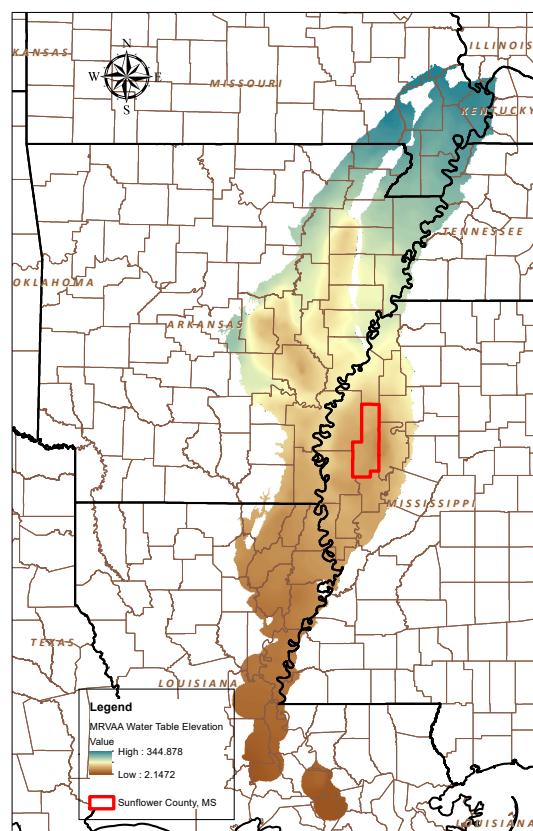
**14** The National Center for Alluvial Aquifer Research (NCAAR) was created to conduct research  
**15** aimed at developing novel irrigation and agricultural water management technologies to improve  
**16** water productivity, decrease irrigation water withdrawal from, and increase the groundwater  
**17** recharge to the Mississippi River Valley Alluvial Aquifer (MRVAA) with the overall objective of  
**18** ensuring sustainable agricultural water supplies in the Lower Mississippi River Basin (LMRB). The  
**19** complexity of natural resource management in general, and groundwater resources in particular,  
**20** require multidisciplinary research efforts that are reflected in the diverse background of the NCAAR  
**21** researchers, from natural to social scientists. The complexity of the problem and the composition  
**22** of NCAAR is represented in the conceptual diagram for the proposed USDA Agricultural Research  
**23** Service (ARS) project under National Program 211: Water Availability and Watershed Management  
**24** which funds NCAAR (see figure 1). The complexity of the the NCAAR mission is magnified by  
**25** the challenge that the region receives significant rainfall annually, but the timing does not coincide  
**26** with crop production. The rainfall timing is paired with evolving land use, long-term irrigation





**Figure 1.** Conceptual diagram of USDA ARS NP211 that funds the National Center for Alluvial Aquifer Research (NCAAR).

27 practices which must change, and a wide range of socio-economic classes of producers who must  
 28 all adopt new practices. This paper presents a methodology that can bridge the inter-disciplinary  
 29 obstacles to translate plot and field level research results to regional or basin-wide potential outcomes  
 30 that incorporate implicit producer behavior with minimal data requirements: Positive Mathematical  
 31 Programming.


32 The Mississippi River Valley Alluvial Aquifer (MRVAA, see figure 2) is the primary source of water  
 33 for irrigation for the Lower Mississippi River Basin (LMRB) and is depleting at an unsustainable rate [2,  
 34 3]. The increase in global population, the resulting growing demand for food, and the receding irrigated  
 35 acreage in areas where aquifers are depleting require ever increasing levels of productivity from  
 36 agricultural areas that are relatively rich in water resources such as the LMRB [4,5]. NCAAR's mission  
 37 leverages multidisciplinary agricultural research to alleviate and ultimately contribute to solving the  
 38 problem of a depleting MRVAA. Aligned with this mission is research at the experimental plot or  
 39 field level that reduces crop water use without a significant impact on baseline yields, increases crop  
 40 productivity for a baseline level of water use, or increases the capture of available water by allowing  
 41 earlier planting to capture natural precipitation or developing infrastructure to capture irrigation  
 42 or pluvial runoff for reuse. Plot and field level research in this area show growing evidence that  
 43 important water savings are achievable with relatively minor modifications to existing irrigation and  
 44 agronomic practices in the Mid-South USA [3,4,6–11]. However, regional or basin-wide implications  
 45 of the potential results of wide producer adoption of these practices have not been explored.

46 Positive Mathematical Programming (PMP) is a methodology widely used for agricultural  
 47 economic policy analysis because it requires minimal data; it is capable of characterizing resource,  
 48 environmental, or policy constraints; and models that employ it are consistent with economic  
 49 production theory [1]. Basically, PMP uses the shadow prices of calibration constraints from a profit

50 maximization linear program (LP) to specify (calibrate) a non-linear objective function such that  
 51 observed activity levels are reproduced by the optimal solution of the new unconstrained programming  
 52 problem [12,13]. The form of the unconstrained programming model can be subsequently modified  
 53 to incorporate farming, environmental, resource, or policy conditions not explicitly modelled [13].  
 54 The calibration step avoids the problem of over-specialization or corner solutions in which all the  
 55 acres are assigned to the most profitable crops [14]. The analysis proceeds by evaluating changes  
 56 in optimal allocations induced by changes introduced in the variables or parameters of interest.  
 57 Furthermore, in the case of groundwater, dynamic simulations that update the state of the aquifer and  
 58 other constraining resources over time allows to project the impact of those changes into the future.

59 The PMP methodology is particularly  
 60 useful when data on individual decision units  
 61 is unavailable, insufficient or inadequate  
 62 for econometric analysis. The absence of  
 63 observations over a wide range of prices  
 64 required the use of programming approaches  
 65 to estimate the elasticities of the derived  
 66 demand for water[15,16]. A growing literature  
 67 has employed PMP to study water use or  
 68 aquifer depletion implications in a variety of  
 69 settings. For example, Pulido-Velazquez *et al.*  
 70 [17] calibrate a set of functions of marginal  
 71 economic benefit of surface-groundwater use in  
 72 a hydroeconomic model of a river basin in Spain.  
 73 Clark [18] explores the impact of high commodity  
 74 price scenarios on irrigated crop production,  
 75 groundwater application to irrigation and  
 76 aquifer outcomes in Western Kansas. Esteban  
 77 and Albiac [19] use PMP to calibrate a model of  
 78 groundwater management under three aquifer  
 79 management scenarios that incorporate  
 80 ecosystem damages from groundwater  
 81 over-pumping. Employing a formulation  
 82 similar to Clark [18], Garay-Armoa [14]  
 83 assesses the impact of two water conservation  
 84 practices (water use restrictions and permanent  
 85 conversions to dryland crops) on the Ogallala  
 86 Aquifer and on producer welfare for a set of  
 87 counties in Kansas.

88 A major criticism of the programming approach is that the pre-specified functions may not  
 89 precisely represent the biological and physical processes of, for example, plant growth [15,16]. However,  
 90 several studies have been able to address this issue by applying PMP iteratively in combination  
 91 with separate crop growth and hydrological models. Aistrup *et al.* [20] apply the formulation to  
 92 Groundwater Management District 3 (GMD3) in southwestern Kansas in which PMP is used with a  
 93 plant growth model integrating water and land use patterns, changing climate, economic trends, and  
 94 population dynamics. In California, MacEwan *et al.* [21] develop a modular hydroeconomic modeling  
 95 approach integrating California's C2VSim groundwater-surface water simulation model with the  
 96 Statewide Agricultural Production (SWAP) economic model. Similarly, PMP is the core of the Central  
 97 Valley Production Model (CVPM), a "multi-regional model of irrigated agricultural production that can  
 98 forecast changes in crop acres as a function of changes in the availability of water supplies," presented  
 99 by Dale *et al.* [22]. Finally, Qureshi *et al.* [13] developed a biophysical-economic mathematical model



**Figure 2.** Potentiometric map of the Mississippi River Valley Alluvial Aquifer based on U.S. Geological Survey data from 2016.

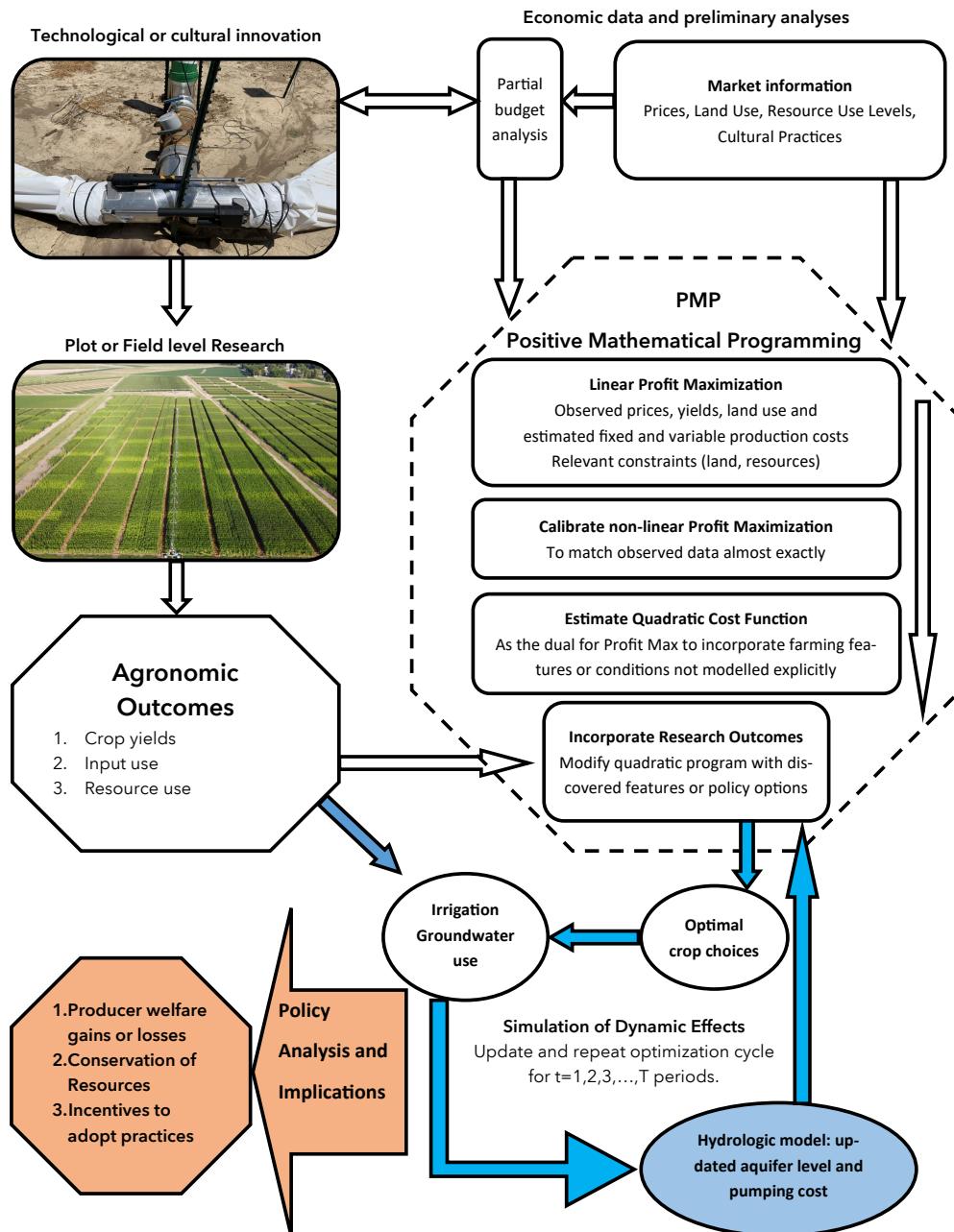
100 with PMP that calibrated against the observed multi-period land use data to evaluate the impacts of  
101 droughts and a set of policy options on agricultural production in the Murray-Darling Basin, Australia.

102 In the following sections we describe the PMP methodology and how it can help integrate  
103 multidisciplinary plot or field level research to project likely aquifer and producer welfare outcomes.

104 Then we present a case study to illustrate the methodology and conclude with a discussion of the  
105 implications.

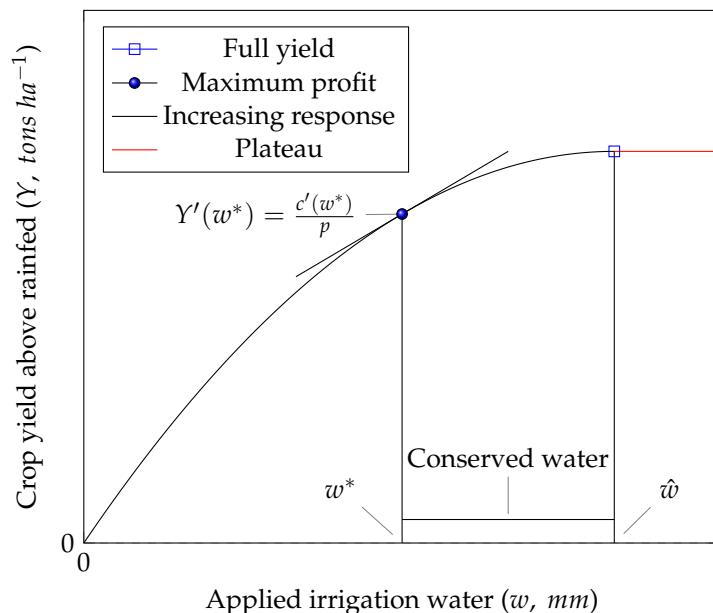
## 106 **2. Integrating multidisciplinary research with Positive Mathematical Programming (PMP)**

107 Disciplinary research offers important insights into processes within a specific domain and  
108 rarely incorporate interactions with other natural or social processes [23]. The way career researchers  
109 are evaluated by their academic department tends to incentivize disjoint disciplinary research that  
110 result in shorter publication timelines and favor “preferred field-journals.” This effect is particularly  
111 evident with Early Career Researchers (ECRs) who are underutilised in multidisciplinary research [24].  
112 However, the scientific community is increasingly pushing and demanding research that integrates  
113 the insights of multiple disciplines to address global environmental challenges [23,25,26]. Far from  
114 being an integration of multidisciplinary models, Positive Mathematical Programming is an economic  
115 analysis tool that allows the incorporation of otherwise disjoint disciplinary research into economic  
116 analyses and simulation of biophysical and socio-economic impacts that may result if certain practices  
117 or policies are adopted (see figure 3).


118 Next, we describe the type of disciplinary research that can be fed into a PMP model to draw  
119 aquifer and policy implication insights.

### 120 *2.1. From plot and field level research to economic behavior*

121 Farmers operate in an increasingly risky environment and are more likely to adopt practices that  
122 improve productivity (including water productivity), increase profits or reduce risks [3]. Producers  
123 who want to be good stewards of their environment and are attracted to natural resource conservation  
124 still need assurances that the practices they adopt do not adversely affect their net income [27]. Plot  
125 and field level research develops practices or prescriptions that hold the potential to deliver increased  
126 crop productivity but often times it is hard to evaluate the impact the practice would have on marginal  
127 producer behavior. As the practices influence farmers’ behavior at the margin, wider implications  
128 would be expected at a regional or basin level.


129 Economists model producer behavior primarily as pursuing a business objective: maximizing  
130 profits or delivering a level of output at the minimum cost. Despite a multitude of other objectives,  
131 including cultural ones, the assumption of profit maximization is used because it predicts economic  
132 behavior reasonably well, particularly at some level of aggregation [28]. The decision regarding how  
133 input use, such as irrigation water, is determined “at the margin”, meaning the decision is made based  
134 on whether the treatment is expected to return a higher benefit than the cost of applying it. Figure  
135 4 illustrates the concept with respect to water use: apply irrigation water until the benefit of the last  
136 unit applied equals its cost (marginal cost = marginal revenue). The response of crop yields to the  
137 amount of irrigation water applied depends on how much of other inputs have been used on the  
138 field (notably, fertilizer). However, because irrigation events occur after most of the other inputs have  
139 already been applied, it is acceptable to model crop yield response to water as a single-input function.  
140 The equations in Figure 4 reflect how plot and field level results can be incorporated into an economic  
141 behavior model: if the innovation affects yields, production costs, or crop prices; then we can expect  
142 that it will affect farmers’ economic behavior.

143 With the insights of how agricultural innovations may affect producer behavior, the next step  
144 would be to assess how the adoption of the innovation at the region or basin level would affect aquifer  
145 levels or environmental outcomes. Examples of agricultural research that could be incorporated in this  
146 framework abound. Plot level research on improved irrigation systems and technologies, and better



**Figure 3.** Diagram depicting multidisciplinary research using Positive Mathematical Programming (PMP) to integrate plot level research to basin-wide models and drawing policy implications.

## Example of a nonlinear-plateau yield response to irrigation



**Figure 4.** Illustration of the relationship between crop yield, applied irrigation water, and profits.

147 agronomic management practices such as row spacing, cover crops, conservation tillage, and skip row  
 148 irrigation are prime candidates.

149 The irrigation technologies that are available to the producers in the LMRB for increasing furrow  
 150 irrigation application efficiency and irrigation water use efficiency include computer-hole-selection  
 151 (PHAUSET: Pipe Hole and Universal Crown Elevation Tool or Pipe Planner), surge valves, soil  
 152 moisture sensors, tailwater recovery systems and recycling the runoff to reuse for irrigation, and  
 153 sprinkler irrigation systems [9,11]. The soil moisture sensors, PNAUCET, and surge valves have been  
 154 shown to improve in irrigation application efficiency of furrow irrigation systems. However, the  
 155 application efficiency of the sprinkler systems is higher than the furrow irrigation systems. But there is  
 156 little information available on the comparison of water savings with a sprinkler irrigation system and  
 157 a furrow irrigation system in which water conservation practices have been adopted to increase water  
 158 use and application efficiencies (eg: computer-hole-selection and moisture sensors). Adopting sprinkler  
 159 irrigation systems could potentially increase water savings while increasing irrigation application  
 160 efficiency and profits by reducing the costs of irrigation events.

161 Among conservation tillage practices, the use of strip tillage can reduce evaporation losses of  
 162 water as it only disturbs 25 percent of the plow layer and allows retention of residues on the surface.  
 163 Strip till shank can also break hardpans and reduce subsoil compaction. Retention of crop residues  
 164 on the surface and reduction in subsoil compaction can allow better water infiltration in the soil, less  
 165 runoff loss, and improve water availability for plant roots which can increase water use efficiency by  
 166 plants.

167 Skip row irrigation is another practice followed by some farmers on clay-textured soils in the  
 168 MS Delta. Every other row is irrigated in the skip row irrigation strategy to save water and increase  
 169 irrigation water use efficiency. Reducing the amount of water applied will result in lower fuel costs  
 170 and higher net returns.

171 Cover crops can help with water conservation and improving soil health. Additionally, this  
 172 practice can also increase water infiltration in soil, reduces evaporation losses, increase soil water  
 173 holding capacity, reduces runoff and nutrient losses, and can increase nitrogen supply to the succeeding  
 174 crop. Cover crops can reduce soil crusting and compaction, which are major constraints for crop  
 175 production in the MS delta area. All these benefits of cover crops can reduce reliance on MRVAA for

176 irrigation water needs. Improvements in irrigation water use efficiency with the use of cover crops  
 177 have been reported by DeLaune *et al.* [29], Currie and Klocke [30].

178 *2.2. Positive Mathematical Programming*

179 Data on individual farm or farmer crop choices, practices, input or resource use, crop yields, and  
 180 cost structures is generally unavailable in Mississippi but observed at the county level. Consequently,  
 181 the ability of the PMP methodology to model micro-economic behavior capable of reproducing the  
 182 activity levels at the county level of aggregation is well suited to bridge the interdisciplinary and data  
 183 availability barriers to basin-wide implications of agricultural experimental outcomes (see Figure 3).

184 The PMP-based dynamic simulation process is to:

- 185 1. use observed county-level data to formulate a constrained linear profit maximization model in  
 186 which resource and input use as well as other resource, environmental or policy limitations are  
 187 represented as constraints and the choice variable is crop acreage;
- 188 2. reformulate the problem as a nonlinear constrained optimization problem that calibrates almost  
 189 exactly to the observed levels;
- 190 3. calibrate a quadratic function to capture desired production features (e.g.; water use) not included  
 191 in the data or modelled explicitly;
- 192 4. implement a quadratic program including the estimated cost function as part of the objective  
 193 function;
- 194 5. solve a dynamic model iteratively by updating aquifer levels based on periodic solutions to the  
 195 quadratic program to produce the optimal land and water use choices.

196 **The first step** consists in using observed data to obtain the shadow prices on land use acres by  
 197 solving the following problem for the observed period:

$$\max_{x_{rj}} \pi = \sum_r \sum_j (p_{rj} \times y_{rj} - c_{rj}) \times x_{rj}; \quad (1)$$

$$\text{s.t.} \quad \sum_j x_{rj} \leq A_r = \sum_j a_{rj} \quad \forall r; \quad (2)$$

$$a_{rj} - \epsilon \leq x_{rj} \leq a_{rj} + \epsilon \quad \forall r, j; \quad (3)$$

198 where  $p_{rj}$  indicates the price of commodity  $j$  in region  $r$  at the time of the observed data;  $y_{rj}$  indicates  
 199 the observed yield level;  $c_{rj}$  is the per-acre production costs;  $x_{rj}$  is the choice variable for crop land  
 200 allocation and  $a_{rj}$  is the observed acreage for each crop; and  $\epsilon > \approx 0$  is a small perturbation on the  
 201 observed acreage to produce calibrating shadow prices. Additional subscripts can be used to represent  
 202 different production systems for which data is observed (e.g. different irrigation systems) or if only  
 203 one region is analyzed, the  $r$  subscript can be used for that purpose. Crop prices are generally available  
 204 from United States Department of Agriculture's Economics, Statistics and Market Information System  
 205 (USDA ESMIS) for specific elevators; acreage and average yield data is available from USDA NASS at  
 206 the county level; and per acre cost of production by crop and production system are usually available  
 207 via Crop Planning Budgets from the Extension Service at Land Grant Universities– in our case, [the Department of Agricultural Economics at Mississippi State University](#).

208 The Lagrangean and first order conditions for the problem for each region at the initial state are:

$$\mathcal{L}_{0r} = \sum_j (p_j \times y_{0j} - c_{0j}) \times x_j + \lambda \left( A - \sum_j x_j \right) + \sum_j \mu_j (a_j + \epsilon - x_j); \quad (4)$$

$$\frac{\partial \mathcal{L}_r}{\partial x_j} = p_j \times y_{0j} - c_{0j} - \lambda - \mu_j = 0, \quad \forall j; \quad (5)$$

$$\frac{\partial \mathcal{L}_r}{\partial \lambda} = A - \sum_j x_j = 0; \quad (6)$$

$$\mu_j (a_j + \epsilon - x_j) = 0, \quad \forall j; \quad (7)$$

210 for which the solutions  $x_j^*$  would be very close to the observed levels  $a_j$  by construction.

211 For the second step, a cost function  $C(w_{rj}, x_{rj}; \alpha_{rj}, \gamma_{rj}, \delta_{rj})$  to replace  $c_{rj}$  in equation (1) is estimated  
212 to incorporate additional desired features—i.e., water use,  $w_j$ . Additionally, we would be interested in  
213 calibrating a crop yield function  $Y_j(\cdot)$  that captures the crop's response to irrigation water application  
214 (or other inputs of interest) such that  $Y_j(w_{rj}) = y_{rj}$  at the observed levels in the initial period.

215 A function that captures crop yield response to irrigation water applied can be specified as  
proposed by Martin *et al.* [31] and calibrated to reflect observed yields and water use [14,18]:

$$Y_j(w_{rj}) = Y_{mrj} + (Y_{frj} - Y_{mrj}) \left[ 1 - \left( 1 - \frac{w_{rj}}{GIR_{rj}} \right)^{-IE_{rj}} \right]; \quad (8)$$

216 where  $Y_{mrj}$  is the minimum crop yield before irrigation water is applied;  $Y_{frj}$  is the fully-watered  
217 yield;  $GIR_{rj}$  is the crop's gross irrigation water requirement to achieve fully watered yield (given  
218 observed seasonal weather); and  $IE_{rj}$  is the irrigation application efficiency. This function is estimated  
219 to reflect the initial observed levels of yield and water use.

220 The arguments for the function  $Y_j(w_{rj})$  is the first instance in which results from the plot or  
221 field level research can be introduced. Practices that affect minimum yields (for example dryland),  
222 fully-watered yields, irrigation efficiency or irrigation requirements can be incorporated in this  
223 formulation. In fact, the entire yield response function can be supplied by agronomic or plant  
224 physiology modeling as a component of the program.

225 Next, a cost function can be formulated as a linear function of the inputs and acreage [1,14,18]:

$$C(w_{rj}, x_{rj}; \alpha_{rj}, \gamma_{rj}, \delta_{rj}) = (w_{rj} - wo_{rj})\delta_{rj} + \alpha_{rj} + 0.5\gamma_{rj}x_{rj}; \quad (9)$$

226 where  $wo_{rj}$  is the initially observed rate of irrigation water application per acre. At the initial  
observation levels, the function collapses to

$$C(wo_{rj}, x_{rj}; \alpha_{rj}, \gamma_{rj}, \delta_{rj}) = \alpha_{rj} + 0.5\gamma_{rj}x_{rj} = co_{rj}. \quad (10)$$

227 The nonlinear program is now expressed as follows for the calibration problem:

$$\max_{x_{rj}, w_{rj}} \pi_r = \sum_j (p_j \times Y_j(w_j) - C(w_j, x_j; \alpha_j, \gamma_j, \delta_j)) \times x_j; \quad (11)$$

228 and first order conditions:

$$\frac{\partial \pi_r}{\partial x_j} = p_j \times Y_j(w_{rj}) - C(w_{rj}, x_{rj}; \alpha_{rj}, \gamma_{rj}, \delta_{rj}) = 0, \quad \forall j; \quad (12)$$

$$\frac{\partial \pi_r}{\partial w_j} = p_j \times \frac{\partial Y_j(w_{rj})}{\partial w_{rj}} - \frac{\partial C(w_{rj}, x_{rj}; \alpha_{rj}, \gamma_{rj}, \delta_{rj})}{\partial w_{rj}} = 0, \quad \forall j. \quad (13)$$

229 The third step consists in combining the conditions from the two previous steps to match the  
initial observed levels of the variables of interest. From equations (5) and (12) we obtain:

$$\alpha_j + \gamma_j a_j = co_j + \mu_j; \quad (14)$$

230 and equation 10 is a second equality which can be used to solve for the two calibrating parameters  
231 ( $\alpha_j, \gamma_j$ ) since the value of the shadow prices ( $\lambda, \mu_j$ ) were obtained from the original program. The  
232 solutions are:

$$\alpha_j = 2 \frac{\mu_j}{x_j^*}; \quad \text{and} \quad (15)$$

$$\gamma_j = co_j - \mu_j. \quad (16)$$

The remaining calibrating parameter,  $\delta_j$ , can be found from equation (9) and first order condition (13) by taking the derivative of the yield response function  $Y_j(w_j)$  specified in equation (8) :

$$\delta_j = p_j \left( \frac{Yf_j - Ym_j}{IE_j \times GIR_j} \right) \left( 1 - \frac{wo_j}{GIR_j} \right)^{(IE^{-1}-1)}. \quad (17)$$

**The fourth step** consists in preparing the cost function to adjust based on updated aquifer status. In this case, the pumping lift affects the pumping costs at time  $t$ [18]:

$$\Theta_t = \theta_{et} \times 0.114 \times \frac{TDH_t}{EF_t}; \quad (18)$$

where  $\theta_{et}$  is the price per unit of energy source  $e$ ;  $TDH_t$  is total dynamic head at time  $t$ ; and  $EF_t$  is energy efficiency of source  $e$ .  $TDH$  is the sum of pumping lift  $L_t$ , which depends on aquifer levels at the end of period  $t-1$ ; and pumping head which converts the irrigation system pressurization requirement to feet of additional lift.

The resulting cost function takes the following form:

$$C(w_{jt}, x_{jt}) = (w_{jt} - wo_j)(\delta_j + \Theta_t) + \alpha_j + 0.5\gamma_j x_{jt}. \quad (19)$$

A similar approach can be followed to study the effect of changing costs of other inputs or resources.

**The final step** consists in simulating the effects over time by the following aquifer equation of motion:

$$Lift_t = Lift_{t-1} + \frac{\sum_j w_{jt} \times x_{jt} - R}{A_s}; \quad (20)$$

where  $R$  is the rate of net natural recharge of the aquifer and  $A_s$  is the area in the region that overlays the aquifer times the aquifer specific yield. This aquifer formulation can be interpreted as a "localized" aquifer impact on the areas covered by the crops considered in the program. The change in lift distance over time is the amount of aquifer depletion (positive difference) or replenishment (negative change).

A word of caution with respect to PMP is that simulations should not be over very long time horizons because the calibration procedure seeks to fit results to the original conditions as much as possible. Over long periods of time, farmers can adapt in ways that make the original period observations become less relevant.

### 3. Illustrative example: improved soybean dryland yields in Sunflower County, MS.

To illustrate the methodology, we present a case study based on a hypothetical plot-level research that shows a 33 percent improvement in dryland soybean yields that do not involve changes in production costs relative to baseline conditions. Most agronomic studies do not include an economic analysis of this type of result and few include only the partial budget analysis for the practice that tends to indicate how dryland soybean farmers would benefit from the practice. However, the PMP framework is able to expand the impact of the effect more systemically. For instance, an impact on irrigated soybean is easily detectable via equation (17). The yield improvement level is applied on the dynamic simulation state to both dryland soybean yields and to the minimum yield,  $Ym_{soy}$ , levels for soybean.

#### 3.1. Sunflower County, MS

To setup the model, we start with baseline information available from publicly accessible sources. County-level parameters are summarized in tables 1 and 2. It fully overlies an acute depression of

**Table 1.** Model parameters for Sunflower County, MS.

| Component  | Parameter                        | Value   |
|------------|----------------------------------|---------|
| Aquifer    | Surface elevation (FASL)         | 118     |
|            | Initial water table elev. (FASL) | 77.91   |
|            | Aquifer base elevation (FASL)    | -18.49  |
|            | Net recharge ( $R$ , acre-ft)    | 231,802 |
|            | Acres x specific yield ( $A_S$ ) | 89,344  |
| Crop mix   | Soybean share                    | 77%     |
|            | Corn share                       | 12%     |
|            | Rice share                       | 4%      |
|            | Cotton share                     | 7%      |
| Irrigation | Application efficiency ( $IE$ )  | 0.54    |
| Discount   | Rate                             | 0.03    |

255 the MRVAA water table<sup>1</sup> that has drawn concern from producers as well as federal and state agencies  
 256 [32]. Because of concerns about MRVAA depletion, Mississippi Governor Phil Bryant established the  
 257 Governor's Delta Sustainable Water Resources Task Force in November of 2011 to ensure the future  
 258 sustainability of water resources in the Delta[33].

259 Sunflower County, MS, is in the center of the Delta area of Mississippi (red contour in fig. 2). The  
 260 row-crop agriculture in the county is widely representative of the Delta. Consequently, the area is ideal  
 261 for a representative agent type of model such as this, as it is big enough to draw conclusions about the  
 262 aquifer but small enough that a simplified aquifer model is capable of capturing its most important  
 263 dynamics [34].

264 Table 2 summarizes the selected variables in the model for Sunflower County, MS. USDA NASS  
 265 data for 2017 is the latest available so we match the rest of the data to observations for that year.  
 266 Price and cost information was obtained from the Mississippi State University, [2017 Delta Crop](#)  
 267 [Planning Budgets](#). Crop acreage and average yields were obtained from USDS NASS [35]. Information  
 268 on minimum and maximum yields was obtained from expert opinion and from Mississippi State  
 269 University various variety trials in 2017. Average irrigation water use by crop was calculated from  
 270 Mississippi Department of Environmental Quality's (MDEQ) voluntary well metering program and  
 271 verified with information from experimental on-farm NCAAR data. Average irrigation efficiency was  
 272 based on Bryant *et al.* [9], and Spencer *et al.* [11]. Parameters to calculate gross irrigation requirements  
 273 (GIR) were obtained from Tang *et al.* [36].

274 The calibrated problem was modified, and the results simulated over 20 years and compared to  
 275 the baseline results. The results of the calibrated problem updated only for aquifer depletion is called  
 276 the "calibrated" scenario and the modified program to reflect the increase in dryland soybean yields is  
 277 called the "shock" scenario.

### 278 3.2. Results and discussion for an illustrative example

279 The dynamic simulation is run under the two scenarios over 20 years. The "calibrated" scenario  
 280 is the modified program that includes the ability to update the status of the aquifer which affects  
 281 pumping lifts over time which in turn affects costs. The "shock" scenario is also modified to update  
 282 pumping lift but also incorporates an improvement in the level of dryland soybean yields (affecting  
 283 minimum yield as well). Table 3 summarizes select results by crop.

1 The area is referred to colloquially, and by USGS [32] as the "cone of depression;" a potentially confusing misnomer as a cone of depression occurs at any well actively pumping.

**Table 2.** Summary of observed and estimated parameters for Sunflower County, MS.

| Crop    | Irrigation     | Min. yield | Full-water yield | Average yield | Water use (ft/acre) | Cost (\$/acre) | Acres   |
|---------|----------------|------------|------------------|---------------|---------------------|----------------|---------|
| Corn    | Furrow Dryland | 114 bu/a   | 280 bu/a         | 220 bu/a      | 0.83                | 680            | 27,857  |
|         |                |            |                  | 170 bu/a      |                     | 585            | 8,343   |
| Soybean | Furrow Dryland | 26 bu/a    | 82 bu/a          | 77 bu/a       | 1.16                | 498            | 158,144 |
|         |                |            |                  | 57 bu/a       |                     | 404            | 76,356  |
| Cotton  | Furrow Dryland | 1090 lb/a  | 1800 lb/a        | 1479 lb/a     | 0.5                 | 924            | 16,958  |
|         |                |            |                  | 1261 lb/a     |                     | 833            | 3,747   |
| Rice    | Flood          | 99 bu/a    | 253 bu/a         | 228 bu/a      | 2.7                 | 817            | 13,830  |

**Table 3.** Salient Positive Mathematical Programming results simulated for 20 years, by crop and practice.

| Crop           | Irrigation | Acres   |         | Water use (acre-ft) |         | Profits (\$/year) |         |
|----------------|------------|---------|---------|---------------------|---------|-------------------|---------|
|                |            | year 1  | year 20 | year 1              | year 20 | year 1            | year 20 |
| Corn/calib.    | Furrow     | 27,873  | 27,620  | 23,135              | 22,789  | 22.8M             | 22.5M   |
|                | Dryland    | 8,343   | 8,343   | 0                   | 0       | 5.3M              | 5.3M    |
| Corn/shock     | Furrow     | 23,752  | 23,775  | 19,715              | 19,757  | 19.4M             | 19.4M   |
|                | Dryland    | 4,995   | 4,971   | 0                   | 0       | 3.19M             | 3.18M   |
| Soybean/calib. | Furrow     | 158,142 | 157,490 | 184,077             | 182,783 | 117.2M            | 116.6M  |
|                | Dryland    | 76,356  | 76,356  | 0                   | 0       | 43.8M             | 43.8M   |
| Soybean/shock  | Furrow     | 144,668 | 144,707 | 168,393             | 168,536 | 107.2M            | 107.3M  |
|                | Dryland    | 109,167 | 109,094 | 0                   | 0       | 83.2M             | 83.2M   |
| Cotton/calib.  | Furrow     | 16,913  | 16,592  | 8,457               | 8,235   | 16.4M             | 16.1M   |
|                | Dryland    | 3,747   | 5,110   | 0                   | 0       | 3.1M              | 4.3M    |
| Cotton/shock   | Furrow     | 9,811   | 9,827   | 4,905               | 4920    | 9.5M              | 9.5M    |
|                | Dryland    | ≈ 0     | ≈ 0     | 0                   | 0       | 0                 | 0       |
| Rice/calib.    | Flood      | 13,859  | 13,723  | 37,420              | 36,799  | 14.9M             | 14.8M   |
| Rice/shock     | Flood      | 12,841  | 12,861  | 34,670              | 34,772  | 13.9M             | 13.9M   |

284 As expected, dryland soybean acreage and profitability increase with the shock. This result is  
 285 the limit of the typical economic analysis of agronomic research. However, PMP allows to identify  
 286 additional implications with respect to the calibrated baseline. The increase in soybean dryland acreage  
 287 comes at the expense not only of the irrigated soybean acreage, but also from all other crops including  
 288 virtually eliminating dryland cotton cultivation.

289 An actual analysis of the idiosyncrasies of cotton production would caution against this  
 290 implication due to the level of specialization involved in cotton production which would make  
 291 it hard for a cotton farmer to immediately convert to another row crop. Notice that in the calibrated  
 292 scenario, the program allocates more acreage to dryland cotton (see year 1 vs. year 20 land allocation).

293 With the significant increase in profitability of dryland soybean, the corresponding increased land  
 294 allocation to its cultivation result in a net replenishment of the localized aquifer (see table 4). This  
 295 aquifer replenishment allows a sustainable increase in all the irrigated acreage over time, although  
 296 never reaching those under the calibrated scenario.

297 The other important extension of the analysis is with respect to the aggregate results that allow to  
 298 draw insights at regional or basin-wide scales. Table 4 summarizes the aggregate producer welfare  
 299 results expressed as the net present value (NPV) of the sum of the stream of profits under the two  
 300 scenarios. The NPV is calculated using a discount factor that incorporates the current FSA Loan rate  
 301 for Farm Ownership loans of 3 percent.

302 The yield shock introduced produces almost \$200 million more in producer welfare while reducing  
 303 aggregate water use by over 400k acre-ft. The health of the aquifer is substantially better under the  
 304 shock scenario which results in a slightly replenished aquifer. The implications for sustainability are  
 305 important as they indicate a substantial amount of sustainable available water to expand irrigated  
 306 agriculture (remember that the program constrains the total acreage to the initially observed). The  
 307 aquifer level presents a difference of over 6.4 ft between the two scenarios after 20 years. Given the  
 308 improvement in both producer welfare and aquifer levels, research to improve dryland yields and  
 309 provide incentives for conversion to dryland varieties appear as an attractive target for public policy  
 310 and funds.

**Table 4.** Farmer welfare, aggregate water use and localized change in groundwater levels (in 20 years).

| Scenario             | Net present value of farm profits | Aggregate water use (acre-ft) | Change in aquifer level (ft) |
|----------------------|-----------------------------------|-------------------------------|------------------------------|
| Calibrated scenario  | \$3.42 billion                    | 5 million                     | 4.5 ft decrease              |
| Yield shock scenario | \$3.62 billion                    | 4.6 million                   | 0.9 ft increase              |

#### 311 4. Conclusion

312 Positive Mathematical Programming offers the ability to integrate compartmentalized disciplinary  
 313 research to produce deeper insights on the effects and repercussions experimental plot or field level  
 314 research can have on regional or basin wide producer welfare and natural resource conditions. The  
 315 typical economic analysis of agronomic research is limited to the partial budget analysis associated  
 316 with implementing an experimental practice. PMP includes and extends the analysis by showing  
 317 implications on the wider agricultural system including input and resource use allocations across  
 318 crops and practices.

319 We present a clear step-by-step guide to implement the methodology employing straight-forward  
 320 mathematical optimization techniques and including ways in which the programs can be modified to  
 321 incorporate unobserved features of interest. The application of this methodology would make highly  
 322 disciplinary research more relevant across disciplines and to various stakeholders who could more  
 323 easily assess the implications of the agricultural experimental practices proposed and the eventual  
 324 technology transfer as producers adopt them.

325 A caveat of PMP is that the resulting programs, by design, try to produce allocations that mimic  
 326 as much as possible those observed in the initial period on which the program is calibrated. But as  
 327 evidenced by the hypothetical case presented, the directions of change are readily identified.

328 The procedure described in section 2.2 can be implemented in any quantitative or statistical  
 329 analysis software. The results for the example presented were produced using *MatLab's linprog* and  
 330 *quadprog* optimization tools.

331 **Author Contributions:** Conceptualization, N.Q.; methodology, N.Q.; validation, N.Q., G.K., G.S. and D.G.; formal  
 332 analysis, N.Q.; investigation, N.Q., G.K., G.S., S.H., D.G. and C.D.; resources, C.D. and J.K.; writing—original draft  
 333 preparation, N.Q., G.K., G.S., C.D.; writing—review and editing, N.Q., G.K., G.S., C.D., S.H., D.G. and J.K.; funding  
 334 acquisition, C.D. and J.K.

335 **Funding:** This publication is a contribution of the National Center for Alluvial Aquifer Research and the  
 336 Mississippi Agricultural and Forestry Experiment Station. This material is based upon work that is funded jointly  
 337 by the Agricultural Research Service, United States Department of Agriculture, under Cooperative Agreement  
 338 number 58-6001-7-001.

**Acknowledgments:** The authors acknowledge and thank Amilcar Vargas, PhD student, Department of Plant and Soil Sciences, Mississippi State University, for plot-level research images.

**Conflicts of Interest:** The authors declare no conflict of interest.

## Abbreviations

The following abbreviations are used in this manuscript:

|        |                                                                      |
|--------|----------------------------------------------------------------------|
| ARS    | USDA Agricultural Research Service                                   |
| BMP    | Best Management Practice                                             |
| bu/a   | Bushels per acre                                                     |
| C2VSim | California Central Valley Groundwater-Surface Water Simulation Model |
| CVPM   | California Central Valley Production Model                           |
| DREC   | Mississippi State University Delta Research and Extension Center     |
| ECR    | Early Career Researcher                                              |
| EF     | Energy efficiency                                                    |
| ESMIS  | USDA Economics, Statistics and Market Information System             |
| ft     | Feet                                                                 |
| FSA    | USDA Farm Service Agency                                             |
| GIR    | Gross irrigation requirement                                         |
| GMD3   | Kansas Groundwater Management District 3                             |
| GW     | Groundwater                                                          |
| IE     | Irrigation water use efficiency                                      |
| lb/a   | Pounds per acre                                                      |
| LMRB   | Lower Mississippi River Basin                                        |
| LP     | Linear program                                                       |
| MDEQ   | Mississippi Department of Environmental Quality                      |
| MRVAA  | Mississippi River Valley Alluvial Aquifer                            |
| NASS   | USDA National Agricultural Statistics Service                        |
| NCAAR  | National Center for Alluvial Aquifer Research                        |
| NPV    | Net present value                                                    |
| NRCS   | USDA Natural Resources Conservation Service                          |
| PMP    | Positive Mathematical Programming                                    |
| SW     | Surface water                                                        |
| SWAP   | California State-wide Agricultural Production economic model         |
| TDH    | Total dynamic head                                                   |
| USA    | United States of America                                             |
| USD    | U.S. dollar                                                          |
| USDA   | U.S. Department of Agriculture                                       |

## References

1. Howitt, R.E. Positive Mathematical Programming. *American Journal of Agricultural Economics* **1995**, *77*, 329–342.
2. Yasarer, L.M.; Taylor, J.M.; Rigby, J.R.; Locke, M.A. Trends in land use, irrigation, and streamflow alteration in the Mississippi River Alluvial Plain. *Frontiers in Environmental Science* **2020**.
3. Quintana-Ashwell, N.E.; Gholson, D.M.; Krutz, L.J.; Henry, C.G.; Cooke, T. Adoption of Water-Conserving Irrigation Practices among Row-Crop Growers in Mississippi, USA. *Agronomy* **2020**, *10*. doi:10.3390/agronomy10081083.
4. Quintana-Ashwell, N.E.; Anapalli, S.S.; Pinnamaneni, S.R.; Kaur, G.; Reddy, K.N.; Fisher, D.K. Profitability of twin-row planting and skip-row irrigation in a humid climate. *Agronomy Journal* **in production**.
5. Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; others. Constraints and potentials of future irrigation water availability on agricultural production under climate change. *Proceedings of the National Academy of Sciences* **2014**, *111*, 3239–3244.

359 6. Pinnamaneni, S.R.; Anapalli, S.S.; Reddy, K.N.; Fisher, D.K.; Quintana Ashwell, N.E. Assessing irrigation  
360 water use efficiency and economy of twin-row soybean in the Mississippi Delta. *Agronomy Journal* **2020**.

361 7. Pinnamaneni, S.R.; Anapalli, S.S.; Reddy, K.N.; Fisher, D.K. Effects of irrigation and planting geometry on  
362 cotton productivity and water use efficiency. *Journal of Cotton Science* **2020**, *24*, 2–96.

363 8. Henry, W.B.; Krutz, L.J. Water in agriculture: Improving corn production practices to minimize climate  
364 risk and optimize profitability. *Current Climate Change Reports* **2016**, *2*, 49–54.

365 9. Bryant, C.; Krutz, L.; Falconer, L.; Irby, J.; Henry, C.; Pringle, H.; Henry, M.; Roach, D.; Pickelmann, D.;  
366 Atwill, R.; others. Irrigation water management practices that reduce water requirements for Mid-South  
367 furrow-irrigated soybean. *Crop, Forage & Turfgrass Management* **2017**, *3*.

368 10. Wood, C.; Krutz, L.; Falconer, L.; Pringle, H.; Henry, B.; Irby, T.; Orlowski, J.; Bryant, C.; Boykin, D.; Atwill,  
369 R.; others. Surge irrigation reduces irrigation requirements for soybean on smectitic clay-textured soils.  
370 *Crop, Forage & Turfgrass Management* **2017**, *3*.

371 11. Spencer, G.; Krutz, L.; Falconer, L.; Henry, W.; Henry, C.; Larson, E.; Pringle, H.; Bryant, C.; Atwill,  
372 R. Irrigation Water Management Technologies for Furrow-Irrigated Corn that Decrease Water Use and  
373 Improve Yield and On-Farm Profitability. *Crop, Forage & Turfgrass Management* **2019**, *5*.

374 12. Heckelei, T.; Britz, W. Models based on positive mathematical programming: state of the art and further  
375 extensions **2005**.

376 13. Qureshi, M.E.; Whitten, S.M.; Kirby, M.; others. A multi-period positive mathematical programming  
377 approach for assessing economic impact of drought in the Murray–Darling Basin, Australia. *Economic  
378 Modelling* **2014**, *39*, 293–304.

379 14. Garay-Armoa, P.V. The impact of climate change on the effectiveness of water conservation policies in  
380 western Kansas and the Ogallala Aquifer. PhD thesis, 2015.

381 15. Koundouri, P. Current issues in the economics of groundwater resource management. *Journal of Economic  
382 Surveys* **2004**, *18*, 703–740.

383 16. Koundouri, P. Potential for groundwater management: Gisser-Sanchez effect reconsidered. *Water resources  
384 research* **2004**, *40*.

385 17. Pulido-Velazquez, M.; Andreu, J.; Sahuquillo, A.; Pulido-Velazquez, D. Hydro-economic river basin  
386 modelling: The application of a holistic surface–groundwater model to assess opportunity costs of water  
387 use in Spain. *Ecological economics* **2008**, *66*, 51–65.

388 18. Clark, M.K. Effects of high commodity prices on western Kansas crop patterns and the Ogallala aquifer.  
389 PhD thesis, Kansas State University, 2009.

390 19. Esteban, E.; Albiac, J. The problem of sustainable groundwater management: the case of La Mancha  
391 aquifers, Spain. *Hydrogeology journal* **2012**, *20*, 851–863.

392 20. Aistrup, J.A.; Buletewicz, T.; Kulcsar, L.J.; Peterson, J.M.; Welch, S.M.; Steward, D.R. Conserving the  
393 Ogallala Aquifer in southwestern Kansas: from the wells to people, a holistic coupled natural–human  
394 model. *Hydrology and Earth System Sciences* **2017**, *21*, 6167–6183.

395 21. MacEwan, D.; Cayar, M.; Taghavi, A.; Mitchell, D.; Hatchett, S.; Howitt, R. Hydroeconomic modeling of  
396 sustainable groundwater management. *Water Resources Research* **2017**, *53*, 2384–2403.

397 22. Dale, L.L.; Dogru, E.C.; Brush, C.F.; Kadir, T.N.; Chung, F.I.; Miller, N.L.; Vicuna, S.D. Simulating the  
398 impact of drought on California’s Central Valley hydrology, groundwater and cropping. *British Journal of  
399 Environment and Climate Change* **2013**, *3*, 271.

400 23. Buletewicz, T.; Allen, A.; Peterson, J.M.; Staggenborg, S.; Welch, S.M.; Steward, D.R. The simple script  
401 wrapper for OpenMI: enabling interdisciplinary modeling studies. *Environmental Modelling & Software*  
402 **2013**, *39*, 283–294.

403 24. Sobey, A.; Townsend, N.; Metcalf, C.; Bruce, K.; Fazi, F.M. Incorporation of Early Career Researchers within  
404 multidisciplinary research at academic institutions. *Research Evaluation* **2013**, *22*, 169–178.

405 25. Parson, E.A. Integrated assessment and environmental policy making: In pursuit of usefulness. *Energy  
406 Policy* **1995**, *23*, 463–475.

407 26. Rotmans, J.; Van Asselt, M. Integrated assessment: a growing child on its way to maturity. *Climatic Change*  
408 **1996**, *34*, 327–336.

409 27. Adams, K.; Kovacs, K. The adoption rate of efficient irrigation practices and the consequences for aquifer  
410 depletion and further adoption. *Journal of Hydrology* **2019**, *571*, 244–253.

411 28. Pindyck, R.; Rubinfeld, D. Microeconomics 7Th Edition, 2009.

412 29. DeLaune, P.; Mubvumba, P.; Ale, S.; Kimura, E. Impact of no-till, cover crop, and irrigation on Cotton yield.  
413 *Agricultural Water Management* **2020**, *232*, 106038.

414 30. Currie, R.S.; Klocke, N.L. Impact of a terminated wheat cover crop in irrigated corn on atrazine rates and  
415 water use efficiency. *Weed science* **2005**, *53*, 709–716.

416 31. Martin, D.L.; Watts, D.G.; Gilley, J.R. Model and production function for irrigation management. *Journal of*  
417 *irrigation and drainage engineering* **1984**, *110*, 149–164.

418 32. Barlow, J.R.; Clark, B.R. *Simulation of water-use conservation scenarios for the Mississippi Delta using an existing*  
419 *regional groundwater flow model*; US Department of the Interior, US Geological Survey, 2011.

420 33. Bryant, P. Mississippi Governor Executive Order 1341, 2014.

421 34. Brozović, N.; Sunding, D.L.; Zilberman, D. On the spatial nature of the groundwater pumping externality.  
422 *Resource and Energy Economics* **2010**, *32*, 154–164.

423 35. USDA-NASS. Mississippi Soybean County Estimates, National Agricultural Statistics Service, United  
424 States Department of Agriculture **2020**.

425 36. Tang, Q.; Feng, G.; Fisher, D.; Zhang, H.; Ouyang, Y.; Adeli, A.; Jenkins, J. Rain water deficit and irrigation  
426 demand of major row crops in the Mississippi Delta. *Transactions of the ASABE* **2018**, *61*, 927–935.

427 © 2021 by the authors. Submitted to *Journal Not Specified* for possible open access publication  
428 under the terms and conditions of the Creative Commons Attribution (CC BY) license  
429 (<http://creativecommons.org/licenses/by/4.0/>).