Table 1. Examples of studies that used assessment of seed viability and germination at the end of the experiment to estimate initial viability.

Species tested	Method of determining initial viability from end-	Experimental conditions	Differing initial	Reference
	of-experiment data		viability between	
			treatments	
21 woody native species of	Viability calculated as: those germinated during	Moist absorbent paper in petri dishes at	Yes (3 species), but	Gómez-
Chilean matorral	the monitoring period plus non-germinated seeds	20/10°C with 12/12 h light/dark for 36 d	data not adjusted	González et
	identified as viable by tetrazolium test		for viability	al. (2017)
13 native and one introduced	Viability determined as the sum of germinated	1% water agar at 10/20°C with a 12 h light	Yes (at least 2	Hall et al.
species (Acacia saligna) of	seeds and seeds appearing fresh on dissection of	and dark cycle for 91 d	species)	(2017)
South African fynbos	ungerminated seeds			
65 species commonly occurring	Seeds that did not germinate, but looked viable,	Moist pad in dish at 25/15°C with a 12/12	Probably (as used	Clarke et al.
on New England tableland	were analysed using tetrazolium test. Viability	h light/dark for 28 or 56 d	highest viability	(2000)
(NSW Australia)	based on treatment with highest germination plus		levels between	
	any seeds that remained dormant but viable		treatments)	
Asterolasia buxifolia, riparian	Embryo dissected from 20 seeds that did not	Moist filter paper in petri dishes at 11/3°C	Data not adjusted	Collette and
habitat of SE Australia	germinate and viability confirmed if embryo and	with 12/12 h in light/dark for 77 d	for viability*	Ooi (2017)
	endosperm intact			
33 herb and small shrub	Embryo of seeds that did not germinate examined	0.8% agar in Petri dishes at 20°C in dark for	Data adjusted for	Serter Çatav
species in fire-prone Turkey	and viability confirmed if embryo intact	35 d	viability	et al. (2017)
46 legumes species of tropical	Initial viability equals the sum of germinated and	Moist filter paper in petri dishes at 27°C	No data given at	Daibes et al.
savanna, Brazil	dormant seeds in control	with 12/12 h light/dark for 28 d	treatment level	(2019)
13 species of West African	Cut test – condition of embryo,	Moist filter paper in bell jars at 25°C light	No data given at	Dayamba et

of grasslands and woodlands of	seeds post-trial	light/dark for 56 d	treatment level	al. (2019)
SE Australia				
2 alien and 2 indigenous	Germination level of scarified seeds conducted at	0.02% benomyl solution in petri dishes at	No data given at	Jeffery et al.
legume species in S African	same time as other treatments	20°C with 12/12 h light/dark for 30 or 60 d	treatment level	(1988)
fynbos				
3 species of <i>Acronychia</i> in E	Ungerminated seeds checked for firmness by	0.8% water agar in petri dishes at 25/10°C	No data given at	Liyange et
Australian rainforest	pressing seed with forceps. Then firm seeds	with a 12/12 h light/dark for 28 d	treatment level	al. (2020)
	checked for viability via cut test			
9 herbaceous species in	Tetrazolium test on ungerminated seeds	Moist filter paper in petri dishes at 20°C or	No data given at	Overbeck et
Brazilian grassland		25°C at 16/8 h in light/dark for 21 d	treatment level	al. (2005)
Brassica napus	Cotyledon condition of ungerminated seeds post-	Moist filter paper in petri dishes at 20°C in	No	Shayanfar
	trial. Necrotic cotyledons = nonviable, yellow-	dark for 35 d		et al. (2020)
	milky cotyledons = viable			

^{*}Viability 80% at 100°C but only 65% at the lower temperature of 80°C appears anomalous and might indicate an unexpected treatment effect on viability (they should have been the same or the reverse if there was a heat effect on viability) but no statistical analyses were undertak