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1. Introduction

In this paper we consider in the Hilbert space Ly(—1,1) a second-order differential
operator Ly defined by

Loy = —y" (x) +ay” (—x), 1

with domain D(Ly) C Ly(—1,1), where —1 < a < 1, & # 0. We denoted by AC[—1, 1]
the space of absolute continuous functions on [—1, 1] and denoted

AC![-1,1] = {y(x) € Cl[-1,1] |/ (x) € AC[-1, 1}}.

The functions y(x) € D(Ly) satisfy the conditions: y(x) belongs to AC'[—1,1] and

y(—=1) =y(1), y'(-1) =y'(1). )

Along with operator Ly we also consider an operator L defined by

Ly = —y" (x) + ay" (=x) + q(x)y(x), €))

with domain D(L) = D(Ly) C Lp(—1,1), where g(x) € Li[—1,1] is complex-valued
function.

Uniform equiconvergence of spectral expansions related to the operators Ly and L,
given by (1), (3) respectively, is studied.

Differential equations with involution form a special class of linear functional-
differential equations, with their theory having been developed since the middle of the
last century. Among a variety of studies in this direction, one can mention the books [1-3].
The existence of a solution of the partial differential equation with involution has been
studied in [2] by the separation of variables method. As in the case of classical equations,
applying the Fourier method to partial differential equations with involution leads to
the related spectral problems for differential operators with involution. The study of
spectral problems for differential operators with involution started relatively recently. In
[4-7] the spectral problems for the first-order differential operators with an involution
have been studied. In [8] (see also references therein), [9] the spectral problems for
differential operators with involution in the lower terms have been considered. The
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spectral problems related to the second-order differential operators with involution
have been studied in [10-16]. Qualitative analysis of the solutions (Green’s functions) to
boundary value problems for the differential equations with involution is available in [2,
3,17-19]. In [14,15,20,21] the Green’s functions of the second-order differential operators
with involution have been investigated and theorems on basicity of eigenfunctions are
proved. Theorems on basicity of eigenfunctions of the second order differential operators
with involution [16] have been used to solving inverse problems in [22-24]. Solvability
of problems for partial differential equations with involution is discussed in [25-30].

In this paper the integral Cauchy method [31] (well-known in the spectral theory
of ordinary differential operators) is modified for the case of differential operators
with involution. The method is based on proving the equiconvergence of the known
expansion with the eigenfunction expansion of the considered problem.

2. Auxiliary Statements

In this section the boundary value problem

Ly = —y"(x) + ay" (=x) +q(x)y(x) = Ay(x),

Ui(y) = any' (1) +apy(=1) +agy' (1) + ay(1) = 0,(i = 1,2)
will be first considered. Here A is a complex parameter.
We introduce the definition of the Green’s function. Let the boundary value problem
not has a nontrivial solution. But can be exists a function G4(x, t,A) such that:
1) G4(x,t, A) is continuous on the rectangle —1 < x,t < 1;
2) the function Gy (x, £, A) has the continuous derivative (G, (x, f, A))’x for x # Ft
and satisfies the conditions:

/ ' - *
(Gq(x,t, 1)), fe—x—0 (G (8, 2))' t=—x+0 /11— a2’
-1
/ / - - .
(Go(rt ), o= ol b )| o= =

3) the function G,(x,t,A) has the derivative (Gy(x, t,A))”xx, satisfies Ly = Ay
(exceptat x # Ft)and U;(y) =0, (i =1,2).

The function Gq (x,t,A) is called the Green's function of the considered boundary
value problem (of the operator L — A, where L defined by the rule (3) on the functions
for which U;(y) = 0, (i = 1,2), I is identity operator).

If the function Gg4(x,t, A) is the Green’s function of the operator L — AI, then the
function

gives the solution to the problem

" (x) + @y (=x) + q(x)y(x) = Ay(x) + f(x), ~1<x <1,

with boundary conditions U;(y) = 0, (i = 1,2)), for any function f(x) € C[—1,1] (this
statement, existence and uniqueness of the Green’s function can be proved by standard
methods [32]( see chapter 1).

Now write homogeneous equation Loy = Ay(x) according to (1). Let us de-
note by y1(x) = cosagpx, y»(x) = sinajpx, where VA = p,argp € (=7/2,7/2),
ag = /(1 —a)~1, a1 = /(1 +a)~1, the linearly independent solutions of this homo-
geneous equation. Let pg = Imp be the imaginary part of the complex number p. Let


https://doi.org/10.20944/preprints202109.0247.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2021 d0i:10.20944/preprints202109.0247.v1

30f13

a function G(x,t,A) is the Green'’s function of the operator Ly — Al and the function

1
y(x) = [ G(x,t,A)f(t)dt is the solution of problem
1

Loy = Ay(x) + f(x), (4)
with boundary conditions (2), for any function f(x) € C[—1,1].

Lemma 1. If A is not an eigenvalue of the operator Ly, then a function

xp COS xpp
2p sinwapp

1
y(x) = cos(agpx) [ cos(aopt)f (£)dt
-1

1

sin(arpx) | sin(wspt) f(1)dt +go(x)
-1

X1 COS K10
2p sinwaqp

is the solution of non-homogeneous problem (4), (2) for any continuous function f(x), where

—X

Qo(x) = % fl[oco cos(appx) sin(wppt) — aq sin(agpx) cos(agpt)] f(t)dt

+4 T [~mocos(agpt) sin(agox) + ay sin(aypt) cos e px)] £ (£)dt

11
+$ J[—ap cos(xgpx) sin(agpt) + aq sin(agpx) cos(aqpt)] f(t)dt.
X

This Lemma 1 can be proved by direct calculations. From Lemma 1, we get the
following

Corollary 1. The Green’s function of the operator Lo — Al can be represented in the form

& COS xpp
20 sin xpp

X1 COsu1p
20 sinaqp

G(x, t,A) = cos(appx) cos(agpt) — sin(aqpx) sin(aqpt)

1 { g cos(appx) sin(appt) — aq sin(aqpx) cos(aypt), t < —x,
+-—1 —agcos(appx) sin(appt) + a1 sin(agpx) cos(aqpt), t > x,
—ug cos(appt) sin(appx) + a1 sin(aqpt) cos(aypx), —x < t < x.
Green’s function of the operator Ly — Al has the following properties:
1) G(x,t,A) is the symmetric: G(x,t,A) = G(t,x,A), forall -1 < x,t < 1;
2) G(x,t,A) is continuous on the rectangle—1 < x,t < 1;
3) the function G(x, t, A) has the continuous derivative G’y (x,t,A) for x = Ft, and
satisfies the conditions:

14
GL(x, t, M) |t=—x—0 — GL(x, t, A)[t=—x 40 = A
’ ! 1
Gt Mlimx—0 = Gil b Mo = ey

4) the function G(x, t, A) has the derivativeG” v (x, t, A), satisfies Loy = Ay (except
atx = Ft) and (2).

The operator Ly of the form (1) with periodic boundary conditions (2) has the
eigenvalues Ay = (1 —a)(kn)?, k =0,1,2,...; Mo = (1+a)(kn)?, k = 1,2,....
The system of eigenfunctions {yy; = coskmx,y, = sinkmx} of the operator L is
complete and orthogonal in Ly(—1,1) . Denote py; = /(1 —a)km,k = 0,1,2,....,

o= A+akrk=12,....
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Since pr111 —prn = V(1 — )70 k12 — P2 = /(1 4+ &) 71, we denote by

Oc(po1) = {p: lp—po| <&},

Oclpr) =4p:lp—pul <ek=1,2,...;1=1,2,} acircle Cp;,Cy;, k =1,2,...;1 =
1,2, of radius e = Imin((1 — )7, (14 a)7) . Then the circles Coy, Cip, k = 1,2,...;1 =
1,2, with equations p = 5§, p = pi + 5 do not intersect the circles O¢(po1), Oe(px1) for
large k .

Further we need an estimate of the Green’s function of the operator Lo — Al

Lemma 2. Let p ¢ O¢(py) and |p| > 1. Then the Green’s function G(x,t, A) of the operator
Lo — Al satisfies the uniform with respect to —1 < x,t < 1 estimate

IG(x,t,A)| < co(w,€)[p| 'r(x,t,p)
where

r(x, t,p) = (e*“2|.00|(2*‘x|*|t‘) +e*“2|PO|||x|7‘tH>,p0 = Imp, ay = min{al,ao}_

Proof of Lemma 2. We have to examine threecases: 1 <t < —x, —x <t <x,x <t <1.
Let t > x. Then the Green’s function G(x, {, A) can be rewritten in the form

_ &0 e~ 10r ingp(x+1) | ingp(t—x)
G, 1) = g o [P o ort )]

ei‘xOP . .
S — |:ew‘0p(x_t) + ew‘OP(_x_t):|
0P — p—ifop

eirp
ein1p — p—imip

®1 ei”‘lp

M1 e imgp(xtt) ialp(t—x)}
4ip eit1p — p—in1p [ ¢ te

[eitxlp(x—t) . eilep(—x—t)]

From this and pg = Imp we obtain the inequality

xQ e’XOQO

|G(x,t,A)] < m—k_"‘ﬂgo ~emon)|

[ —aoQo (x+t) 4 e*“oQo(f*x)]
) 67“0Q0

Ko C | ,—mo0o(x—t) *“0@0(*364)}
4]p| e~ ™0 — etoto] [e Te

o g’xl Q0

o —a1Qo(x+t) *algo(t*x)}
4|p| |e—"‘1€'0 — e"‘lgol {e Te

N 37“190

mm {e*lxleo(?‘*t) 4 e*“l@o(*x*t)] (5)

Let pg > 0 and v is arbitrary positive number. For sufficiently large pg > 0, the
estimates

eVPo e~ Po

—_—— e
|e*'ﬂ70 — e'YPO| L |e*'YPO — e'YPO| € ©)

holds. Applying these inequalities (6) to (5) we get

IG(x,t,A)| < % [(e—aopo(x+f) + e—lxopo(f—x)> + (e—l’éoﬁo(2+x—f) + e—lxopo(2—f—x))}

+% [(e—ﬂqpo(x-i'f) + e—lxlpo(f—x)) + (e—“1P0(2+x—f) + e—ﬂlpo(z—f—x))}_
0


https://doi.org/10.20944/preprints202109.0247.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2021 d0i:10.20944/preprints202109.0247.v1

50f13

If t > x > 0, it is obviously that

t+x>t—x>024x—t>2—x—1t>0. (7)

Therefore we obtain the relation

IG(x,t,A)| < ﬂ[e*v&opo(Z*x*t) _|_efotopo(t7x):| n

~ 4|

X

0] [e*alpo(zfxff) + e*“lpo(f*x)] .
P

Hence,

®o + aq
4ol

Let pg < 0 and v is any positive number. For sufficiently large |pp| the estimates
hold:

|G(x,t,A)| < (e_‘”'POl(z_x_t) + e_"‘z‘f’o‘(t_x)), ap = min(ag,a1).  (8)

Y00 ~YPo
€ ~ =270 U |
|g*7Po — e7P0| " le=rP0 — e'YPO'

)

Applying these inequalities (9) to (5)

|G(x, t,)\)| < % {(etxopo(zfx*t) 4 elxopo(t*x)) 4 (elxopo(t*x) 4 e/XoPo(Hx))]

_}_% KEMPO(Z*X*Q + eﬂflpo(t*x)> + (ealpo(ffx) + e“lpo(f+x))] .
P

Now if we recall (7), we get

X0 [ wopo(2—x—t) aopo(t—x) X1 [ aqypg(2—x—t) a1 00(t—2x)
< 000 000 14 o .
|G(x,t,A)| < 2[p] [e +e } + Tp) {e +e }

From this we obtain the inequality

®o + &
4lp]
The estimates (8), (10) implies the inequality

|G(x,t,A)| < (6“290(27"7"‘) + e"‘zp(’(tf")), ay = min{ag, a7 }. (10)

xg + xq
4/p|

Thus, fort > x > 0the Green’s function satisfies the estimate (11). In the case —x < < x
the Green’s function G(x, t, A) can be rewritten appropriately:

IG(x, £ /\)| < (e*“Z‘PO‘(zfx*t) + e*"‘2|PO|(t7x)>, Ny = min(aol “1)- (]1)

_ %o eimop ingo(x+t ingo(x—t
G(x,t,}\)_m{w{e D) 4 itnts-]

ei'XoP

gl A AL }

ei’xlp

—in
Lo0) {_emlp<x+t> " eivqp(xft)} e
einp — p—inip

E . . |:ei1x1p(t7x) o eitxlp(fxft)} }
ip eip — p—igp


https://doi.org/10.20944/preprints202109.0247.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2021 d0i:10.20944/preprints202109.0247.v1

6 of 13

From this we obtain the inequality

Glr Ay = S0 f M0 lisaplert) 4 ginop(x—)
4ip | eftop — g—iop

e'top eiop(t=x) 4 pikop(—x—t)
eitop — p—iagp

—in
ﬂ ‘ e 1P‘ |:_ei,x1p(x+t) +ei0¢1p(3€*t)i|
4ip | e*1P — g—01P
ei’xlp
eit1p — p—inp

et —aime-0] L1z

Let pg > 0. Applying (6) to (12) we get

IG(x,t,A)] < —% [(e—ﬂopo(x+f) + e—lxopo(x—t)> + (e—“opo(2+f—x) + e—“oPo(2—x—t))}

+ﬂ [(e—alpo(x“) + e‘“lPO(x_t)) + (e—f%lpo(z-i'f—x) + e—ﬂlﬂo(z—x—f))} .

Infact, 0<t+x<x—t2+t—x<2—t—xfort>0,and
O<t+x<x—t2+t—x<2—t—xfort <O0. From this and the last inequality
we obtain

ﬂ —& (xf‘t‘) 7“0P0(2*x*|t|) ﬂ *Délpo(x*|f|) 7”‘1.‘70(2*"*“‘)
< 000
|G(x,t,7)] 4] (e +e )—|—4|p|(e +e )

This implies the estimate

1G(x,t,A)] < % (efazpo(xfltl) + e*“zPO(Z*X*\t\)» ap = min(ag,a1).  (13)

Let pg < 0. Next, using (9) in (12) we get

G(x, 1, \)| < M(Eazpowt\) +ea2po<zfxf\t|>), tr = min(ag, a1).  (14)

4lp|

From inequalities (13) and (14) it follows that the estimate

a
lo|

holds. Let us consider the case t < —x. Then the Green’s function G(x,{,A) can be
rewritten in the form

G(x, £, A)] < (e*“2|Po|(2*\x|*|f\)_|_e*“z|P0|(x*\t\)>,aZ:min{aO,al}, (15)

in,
Gl Ay = 20 L [inap(atn) y pinoplt—)
4ip | e'*oP — g~i%0p
e_i“0p

eitop — p—inop

[eiaop(x*f) + eitxoP(*x*f)} }

ingp . . —inyp . .
a [ 8NP p(ert) | gimpt-x)] € [imp(e—t) _ gingp(—x—1)
4ip elmp — p—ityp elin1p — p—inip '
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From this it follows the estimate
G(x,t,A) < Mo [ et [e—“opo(x+f) +e—“0Po(f—x)}
r - 4|P| |e*"‘OPO — g‘"OP0|
+ |e_"‘05:0poe"‘(¥’0] {eﬂxopo(x*t) + e*“opo(*x*t)} }
% % [e*txmo(“f) i e*“lpo(tfx)]‘
% % [eﬂxlpo(xft) i e—alpovxft)} (16)
Let pg > 0. Using (6) in (16) we get
IG(x,,A)| < % [(e—aopo(2+x+t> n e—aopo<z+t—x>) " (e—aopo(x—o n e-“oﬂo(—x—f))}
P

_,_% [(e—a1po(2+x+t) + e—MPo(Z-H—x)) + (e—f%lpo(x—f) + e—alpo(—x—f))] )
P

This implies the following inequality

IG(x,t,A)| < Ao <87a0p0(2+t—x) + e*“opo(*x*f)> L (e*“1P0(2+t*x) + e*“lﬁo(*x*f)).

4fp| 4)p|

Thus, we have established the estimate

®o +
4/p|

IG(x,t,A)| < (e—“zﬂo@“—")+e—“2P0(—x—f>), ay = min{ag, a1},  (17)

fort < —xand pg > 0. If py < 0 then using (9) in (16) we get the inequality

®o +
Glx,t,A) < 0t
| T

From inequalities (17) and (18) it follows that the estimate

(ea2p0(2+t—x) n elxzpo(—x—t)), ty = min{ag, a1} (18)

G(x,t,A)| < %(E*MPOW*M*@ +e*“2|Po|(\f|*x)>, (19)

holds. Combining (11), (15) and (19), we get

%0 1 &1 [ —aalpol(2|x|=1t]) | p—salpol||x|~ I
< 2100 2100 .
|G(x,t,A)] < 2lp) [e +e }
Lemma 2 is proved. O

Let Ly be the differential operator defined by (1), (2) and let L be the differential
operator defined by (3)—(2). Let G4(x, t, A) denote the Green’s function of the operator

L — AL, where I is identity operator. Denote by G(x,t,A) the Green’s function of the
operator Ly — Al It is easy to see that the function G, (x,t, A) satisfies

LGy(x,t,A) = AGy(x,t,A)

and the function G(x, t, A) satisfies the equation

d0i:10.20944/preprints202109.0247.v1
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LoG(x,t,A) = AG(x,t,A).
Then the difference G4(x,t,A) — G(x,t,A) satisfies the equation

Lo[Gy(x,t,A) — G(x,t,A)] = A[Gy(x,t,A) — G(x,t,A)] — q(x)Gy(x,t, 1), x # Ft,
and boundary conditions (2). From this it follows that, except at the poles of functions
G(x,t,A) and Gy(x,t,A)

1
Gy(x,,A) — G(x,£,A) = — / G(x,5,A)4(s)Gy(s, £, A)ds. 20)
41

Then a solution of the equation (20) is the Green's function of the operator L — Al. Let us
assume that all eigenvalues of the operator L are simple. Further we need the following

Lemma 3. Suppose all assumptions of Lemma 2 hold true. Then for all sufficiently large p,
p & Oc(or) = {p: | — pri| < €}, there exists the solution of the integral equation (20).

Proof of Lemma 3. We apply the method of successive approximations. Let us introduce
the following functions

1
Go(X, ) =0, Gyusr(x,t,A) = G(x,t,A) — / G(x,5,1)q(5) Gy (s, t, A)ds.
-1

By Lemma 2

|G(x,t,A)] < ;r(x, t), r(x,t,p) = (efvczlpol(zf\xlfltl) +efvcz|po|||xlf\tH>, ap = min{ay, ag}.

For brevity, let us introduce the notations
-1 _
7?2(21‘@1(& t,A)|lplr(x, t) = G,
LA) — LA |lolr Hx t) = 21
max |Gyt (4,8, A) = Gon(x, 8, M) lplr ™ (x,8) = Ca, (21)

for fixed t and sulfficiently large p, p ¢ Oc(px;). Now let us show that

C
Ci<opi=012....n (22)
For j = 0 the estimate (22) directly follows from Lemma 2 and the relation (21). Let us
assume that the assertion is true for j = n and prove its validity for j = n + 1. Using the

relations (20), (21) and Lemma 2 we obtain

1
Cpi1 < C-Cylo|™ max/r(x,s)r(s, Hr—(x, t)]q(s)|ds. (23)
-1

In fact,
r(x,s) - r(s, t) = e—0lpol (4—[x|=2s|—[¢]) + e—%0lpol(2—[x|=[s|+Is| -1t

e olpol 2=I[s[=[t[+[[x[=[s[l) 4 p=aolpol (Ilx]=Is[[+[Is| =)

d0i:10.20944/preprints202109.0247.v1
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Since ||x| — [¢]| <'[|x[ — |s[| + [Is| — [£]], the relation [¢] = [¢] 4 |s| — |s| > s —[|¢| —

|s|| implies |x| + [t| > |x| + |s| — ||t| — |s||- The inequality |x| > |s| — ||x| — |s|| implies
%[+ [t =[] 4 [s| = [|x[ = |s]]-
In fact
x| =1t =||x] =1T+1—t]] <T—|x|+1—|t| <T—|x|+1—[t| +2—-2]s| =
=[x = [t] = 2[s].

From these relations it follows that r(x, s) - r(s, f) < 2r(x,t). Therefore, from (23)
follows the estimate

1
Cur €22 CCalo] ! [ lg(s)]ds. (24)
-1

For sufficiently large |p| , the inequality

N =

1
2CIp| " [ Iq(s)lds <
-1

holds true. Applying this inequality in (24) we conclude that (22) remains valid for all
integer n. From the estimate (22) it follows that the series

Z g1 (Xt A) = Gan(x, t,A))
1
converges uniformly. The partial sums of this series is

Xm(x) = Ggurm(x,t,A) — qu(x, £A)

and the sequence Gy (x,t,A) converges uniformly. Its limit G4(x,t,A) satisfies the
equation (20). Lemma 3 is proved. O

3. Main Results

Now, we are ready to prove our main result. Denote by

1
Sulf) = =57 | | [ Gatt,A)20d0 | F(0),

-1 Gy

sm(f) = — Zm/ /me) £t | dA.

ml

the partial sums of eigenfunction expansions for the operators L and Ly respectively,
f(x) € L1(—1,1). This representation holds true in the case when all eigenvalues of the
operator L and Ly are simple. Note that all eigenvalues of the operator Ly are simple if
;é 1y and ;é vy for any integer v, v;.
We say that the sequence S, (f) equiconverges with s, (f) on the interval —1 <
x <1if Sy — s, — 0 uniformly on this interval as m — co. Now, we are ready to state
our main results.

Theorem 1. Let all eigenvalues of operator L are simple, 5 L # v and 7t L # vy for any integer

vo, v1. Then for any function f(x) € L1(—1,1) the sequence Sm(f) eqmconverges with sy, (f)
on the interval —1 < x < 1.

Proof of Theorem 1. To prove Theorem 1, we consider the difference
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1
Sun(f) = sml(f) = — = / {/ [Gq(x,t,)\)—G(x,t,)\)]f(t)dt}Zpdp.

27t
Cu \—1

It follows from Lemma 3 that
2
1Gy(x,1,A)] < |;:|r(x, b).

This inequality and expression (20) yields the estimate

1
|Gg(x,t,A) — G(x,t,A)| < 2C2|p|72/r(x,s)|q(s)|r(s,t)ds.
|

Since r(x,s) - r(s,t) < 2r(x, t), the latter inequality can be rewritten in the form

1
|Gy(x,t,A) = G(x,t,A)| < 4C2|p| 2r(x, t) / lg(s)]|ds.
-1

From this inequality and relation (20) we obtain the estimate

7T

/ [jr(x,t)|f(t)|dt} ‘d;’ .

Co L1

2 1 1
S () —sm(F)l < 25 [ / r(x,t)lf(t)\dt] “hdp- [ lats)s
Cot ]

4c?
= [la(s)lds
-1
, 1
Let us denote C; = & [ |g(s)|ds. Then we have
-1

Su(f) —su(P <C1 [ [ / r(x,t>|f<t>|dt]\if’]. @)

Cou L1

Further we split the interval of integration into two parts:
A =(-146—-x—-0)U(—x+6x—-06)U(x+05,1-9),
A= (-1,-14+0)U(—x—6,—x+)U(x=5x+6)U(1-9,1),

thus (—1,1) = A; + Ay and 6 > 0 is a sufficiently small number. Now the inequality (25)
takes the form

1S () — sm()| Scl//<e—“0|ﬁo|||x—f|_|_e—txo|Po|(2—X|—|f||))|f(t)|dt'd;‘

le A1
+ 2C17r/|f(t)|dt. (26)
Ay

The identity
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-1+ —x+0 xX+0 1
[irwiae= [ rowe+ [ ipolde+ [f@ae [
JAY) -1 —x—0 x—06 1-6

yields the inequality
2C17'£/ £(6)lde < .
Ay

Let r,,; be the radius of the circle C,,;;. Then the relation

s 3n 51
p 1 1 1
/e*“0|90|5|7p| — /6*“05pml|sinf\dt_._/e*“05PmI|COSf\dt+/e*“o5pml|smt\dt
P
Coul 0 % %Tn

%ﬂ 27
¥ / o209l costl gy / e~ 0% sint] ¢
51 7
4 4
gives the inequality

G
|rml‘5.

dp
P

/ o—%0lpol

ml

<

With sufficiently large value of m , the first term in (26) can be made less than 5. The
Theorem 1 is proved. [

From Theorem 1 we derive the following assertion.

Theorem 2. Suppose all assumptions of Theorem 1 hold true. Then the system of eigenfunctions
of the operator L forms the basis in Ly(—1,1).

Proof of Theorem 2. To prove Theorem 2 it suffices to show that ||f — S|, < ¢ for
any function f(x) € Ly(—1,1) . But it easily follows from the basicity of the system
of eigenfunctions for operator Ly and the equiconvergence result of Theorem 1. The
Theorem 2 is proved. [

There arises the question of whether this basis is also unconditional basis. The
answer to this question is given by the following theorems.

Theorem 3. Suppose all assumptions of Theorem 1 hold true. If the coefficient q(x) € L1(—1,1)
in (3) is the real-valued function, then the system of eigenfunctions of the operator L forms
orthonormal basis in Lo(—1,1).

Since the operator L is self-adjoint, Theorem 3 follows directly from Theorem 2.

Theorem 4. Suppose all assumptions of Theorem 1 hold true. Then the system of eigenfunctions
. for the operator L forms the Riesz basis in Ly(—1,1).

From the estimate for the Green’s function G4 (x,t,A) of the operator L (see proof of
Theorem 1), results of Theorem 2, and the theorems in [11] Theorem 4 follows.

Remark 1. Note that in the case « = O the question of the basis property of eigenfunctions of
the classical periodic problem is open problem.
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4. Conclusions

Summarizing the investigation carried out, we note that the Green’s function of the
second order differential operator with involution was constructed. Theorems on the
basicity of eigenfunctions to the problems under consideration were proven. These theo-
rems might be useful in the theory of solvability mixed problems for partial differential
equations with involution. In the future, we plan to investigate these operators with the
general boundary conditions.
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