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Abstract: In this work, we studied the Green’s functions of the second order differential operators1

with involution. Uniform equiconvergence of spectral expansions related to the second-order2

differential operators with involution is obtained. Basicity of eigenfunctions of the second-order3

differential operator operator with complex-valued coefficient is established.4
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1. Introduction7

In this paper we consider in the Hilbert space L2(−1, 1) a second-order differential8

operator L0 defined by9

L0y = −y′′(x) + αy′′(−x), (1)

with domain D(L0) ⊂ L2(−1, 1) , where −1 < α < 1, α 6= 0. We denoted by AC[−1, 1]10

the space of absolute continuous functions on [−1, 1] and denoted11

AC1[−1, 1] =
{

y(x) ∈ C1[−1, 1] | y′(x) ∈ AC[−1, 1]
}

.

The functions y(x) ∈ D(L0) satisfy the conditions: y(x) belongs to AC1[−1, 1] and12

y(−1) = y(1), y′(−1) = y′(1). (2)

Along with operator L0 we also consider an operator L defined by13

Ly = −y′′(x) + αy′′(−x) + q(x)y(x), (3)

with domain D(L) = D(L0) ⊂ L2(−1, 1) , where q(x) ∈ L1[−1, 1] is complex-valued14

function.15

Uniform equiconvergence of spectral expansions related to the operators L0 and L,16

given by (1), (3) respectively, is studied.17

Differential equations with involution form a special class of linear functional-18

differential equations, with their theory having been developed since the middle of the19

last century. Among a variety of studies in this direction, one can mention the books [1–3].20

The existence of a solution of the partial differential equation with involution has been21

studied in [2] by the separation of variables method. As in the case of classical equations,22

applying the Fourier method to partial differential equations with involution leads to23

the related spectral problems for differential operators with involution. The study of24

spectral problems for differential operators with involution started relatively recently. In25

[4–7] the spectral problems for the first-order differential operators with an involution26

have been studied. In [8] (see also references therein), [9] the spectral problems for27

differential operators with involution in the lower terms have been considered. The28
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spectral problems related to the second-order differential operators with involution29

have been studied in [10–16]. Qualitative analysis of the solutions (Green’s functions) to30

boundary value problems for the differential equations with involution is available in [2,31

3,17–19]. In [14,15,20,21] the Green’s functions of the second-order differential operators32

with involution have been investigated and theorems on basicity of eigenfunctions are33

proved. Theorems on basicity of eigenfunctions of the second order differential operators34

with involution [16] have been used to solving inverse problems in [22–24]. Solvability35

of problems for partial differential equations with involution is discussed in [25–30].36

In this paper the integral Cauchy method [31] (well-known in the spectral theory37

of ordinary differential operators) is modified for the case of differential operators38

with involution. The method is based on proving the equiconvergence of the known39

expansion with the eigenfunction expansion of the considered problem.40

2. Auxiliary Statements41

In this section the boundary value problem42

Ly = −y′′(x) + αy′′(−x) + q(x)y(x) = λy(x),

Ui(y) = ai1y′(−1) + ai2y(−1) + ai3y′(1) + ai4y(1) = 0, (i = 1, 2)

will be first considered. Here λ is a complex parameter.43

We introduce the definition of the Green’s function. Let the boundary value problem44

not has a nontrivial solution. But can be exists a function Gq(x, t, λ) such that:45

1) Gq(x, t, λ) is continuous on the rectangle −1 ≤ x, t ≤ 1;46

2) the function Gq(x, t, λ) has the continuous derivative
(
Gq(x, t, λ)

)′
x for x 6= ∓t47

and satisfies the conditions:48 (
Gq(x, t, λ)

)′
x

∣∣∣
t=−x−0

−
(
Gq(x, t, λ)

)′
x

∣∣∣
t=−x+0

=
α√

1− α2
,

(
Gq(x, t, λ)

)′
x

∣∣∣
t=x−0

−
(
Gq(x, t, λ)

)′
x

∣∣∣
t=x+0

=
−1√

1− α2
;

3) the function Gq(x, t, λ) has the derivative
(
Gq(x, t, λ)

)′′
xx, satisfies Ly = λy49

(except at x 6= ∓t) and Ui(y) = 0, (i = 1, 2).50

The function Gq(x, t, λ) is called the Green’s function of the considered boundary51

value problem (of the operator L− λI, where L defined by the rule (3) on the functions52

for which Ui(y) = 0, (i = 1, 2), I is identity operator).53

If the function Gq(x, t, λ) is the Green’s function of the operator L− λI, then the54

function55

y(x) =
1∫
−1

Gq(x, t, λ) f (t)dt

gives the solution to the problem56

−y′′(x) + αy′′(−x) + q(x)y(x) = λy(x) + f (x), −1 < x < 1,

with boundary conditions Ui(y) = 0, (i = 1, 2)), for any function f (x) ∈ C[−1, 1] (this57

statement, existence and uniqueness of the Green’s function can be proved by standard58

methods [32]( see chapter 1).59

Now write homogeneous equation L0y = λy(x) according to (1). Let us de-60

note by y1(x) = cos α0ρx, y2(x) = sinα1ρx, where
√

λ = ρ, arg ρ ∈ (−π/2, π/2),61

α0 =
√
(1− α)−1, α1 =

√
(1 + α)−1, the linearly independent solutions of this homo-62

geneous equation. Let ρ0 = Imρ be the imaginary part of the complex number ρ. Let63

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2021                   doi:10.20944/preprints202109.0247.v1

https://doi.org/10.20944/preprints202109.0247.v1


Version September 10, 2021 submitted to Journal Not Specified 3 of 13

a function G(x, t, λ) is the Green’s function of the operator L0 − λI and the function64

y(x) =
1∫
−1

G(x, t, λ) f (t)dt is the solution of problem65

L0y = λy(x) + f (x), (4)

with boundary conditions (2), for any function f (x) ∈ C[−1, 1].66

Lemma 1. If λ is not an eigenvalue of the operator L0, then a function67

y(x) = − α0

2ρ

cos α0ρ

sin α0ρ
cos(α0ρx)

1∫
−1

cos(α0ρt) f (t)dt

− α1

2ρ

cos α1ρ

sin α1ρ
sin(α1ρx)

1∫
−1

sin(α1ρt) f (t)dt + g0(x)

is the solution of non-homogeneous problem (4), (2) for any continuous function f (x), where68

g0(x) = 1
2ρ

−x
∫
−1

[α0 cos(α0ρx) sin(α0ρt)− α1 sin(α1ρx) cos(α1ρt)] f (t)dt69

+ 1
2ρ

x
∫
−x

[−α0 cos(α0ρt) sin(α0ρx) + α1 sin(α1ρt) cos(α1ρx)] f (t)dt70

+
1

2ρ

1
∫
x
[−α0 cos(α0ρx) sin(α0ρt) + α1 sin(α1ρx) cos(α1ρt)] f (t)dt.

This Lemma 1 can be proved by direct calculations. From Lemma 1, we get the71

following72

Corollary 1. The Green’s function of the operator L0 − λI can be represented in the form73

G(x, t, λ) = − α0

2ρ

cos α0ρ

sin α0ρ
cos(α0ρx) cos(α0ρt)− α1

2ρ

cos α1ρ

sin α1ρ
sin(α1ρx) sin(α1ρt)

+
1

2ρ


α0 cos(α0ρx) sin(α0ρt)− α1 sin(α1ρx) cos(α1ρt), t < −x,
−α0 cos(α0ρx) sin(α0ρt) + α1 sin(α1ρx) cos(α1ρt), t > x,
−α0 cos(α0ρt) sin(α0ρx) + α1 sin(α1ρt) cos(α1ρx),−x < t < x.

Green’s function of the operator L0 − λI has the following properties:74

1) G(x, t, λ) is the symmetric: G(x, t, λ) = G(t, x, λ), for all −1 ≤ x, t ≤ 1;75

2) G(x, t, λ) is continuous on the rectangle−1 ≤ x, t ≤ 1;76

3) the function G(x, t, λ) has the continuous derivative G′x(x, t, λ) for x = ∓t, and77

satisfies the conditions:78

G′x(x, t, λ)|t=−x−0 − G′x(x, t, λ)|t=−x+0 =
α√

1− α2
,

G′x(x, t, λ)|t=x−0 − G′x(x, t, λ)|t=x+0 =
−1√

1− α2
;

4) the function G(x, t, λ) has the derivativeG′′xx(x, t, λ), satisfies L0y = λy (except79

atx = ∓t) and (2).80

The operator L0 of the form (1) with periodic boundary conditions (2) has the81

eigenvalues λk1 = (1 − α)(kπ)2, k = 0, 1, 2, . . . ; λk2 = (1 + α)(kπ)2, k = 1, 2, . . . .82

The system of eigenfunctions {yk1 = coskπx, yk2 = sinkπx} of the operator L0 is83

complete and orthogonal in L2(−1, 1) . Denote ρk1 =
√
(1− α)kπ, k = 0, 1, 2, . . . . ,84

ρk2 =
√
(1 + α)kπ, k = 1, 2, . . . .85
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Since ρk+1,1 − ρk1 =
√
(1− α)π; ρk+1,2 − ρk2 =

√
(1 + α)π , we denote by86

Oε(ρ01) = {ρ : |ρ− ρ01| < ε,},87

Oε(ρkl) = {ρ : |ρ− ρkl | < ε, k = 1, 2, . . . ; l = 1, 2,} a circle C01, Ckl , k = 1, 2, . . . ; l =88

1, 2, of radius ε = 1
4 min((1− α)π, (1 + α)π) . Then the circles C01, Ckl , k = 1, 2, . . . ; l =89

1, 2, with equations ρ = ε
2 , ρ = ρkl +

ε
2 do not intersect the circles Oε(ρ01), Oε(ρkl) for90

large k .91

Further we need an estimate of the Green’s function of the operator L0 − λI.92

Lemma 2. Let ρ /∈ Oε(ρkl) and |ρ| > 1. Then the Green’s function G(x, t, λ) of the operator93

L0 − λI satisfies the uniform with respect to −1 ≤ x, t ≤ 1 estimate94

|G(x, t, λ)| ≤ c0(α, ε)|ρ|−1r(x, t, ρ)

where95

r(x, t, ρ) =
(

e−α2|ρ0|(2−|x|−|t|) + e−α2|ρ0|||x|−|t||
)

, ρ0 = Imρ, α2 = min{α1, α0}.96

Proof of Lemma 2. We have to examine three cases: 1 ≤ t < −x, −x < t < x, x < t ≤ 1.97

Let t > x. Then the Green’s function G(x, t, λ) can be rewritten in the form98

G(x, t, λ) =
α0

4iρ

{
e−iα0ρ

eiα0ρ − e−iα0ρ

[
eiα0ρ(x+t) + eiα0ρ(t−x)

]

+
eiα0ρ

eiα0ρ − e−iα0ρ
+
[
eiα0ρ(x−t) + eiα0ρ(−x−t)

]}

+
α1

4iρ
eiα1ρ

eiα1ρ − e−iα1ρ

[
−eiα1ρ(x+t) + eiα1ρ(t−x)

]
+

eiα1ρ

eiα1ρ − e−iα1ρ

[
eiα1ρ(x−t) − eiα1ρ(−x−t)

]
.

From this and ρ0 = Imρ we obtain the inequality99

|G(x, t, λ)| ≤ α0

4|ρ|
eα0$0

|e−α0$0 − eα0$0 |

[
e−α0$0(x+t) + e−α0$0(t−x)

]
+

α0

4|ρ|
e−α0$0

|e−α0$0 − eα0$0 |

[
e−α0$0(x−t) + e−α0$0(−x−t)

]
+

α1

4|ρ|
eα1$0

|e−α1$0 − eα1$0 |

[
e−α1$0(x+t) + e−α1$0(t−x)

]
+

α1

4|ρ|
e−α1$0

|e−α1$0 − eα1$0 |

[
e−α1$0(x−t) + e−α1$0(−x−t)

]
. (5)

Let ρ0 > 0 and γ is arbitrary positive number. For sufficiently large ρ0 > 0, the100

estimates101

eγρ0

|e−γρ0 − eγρ0 | ∼ 1,
e−γρ0

|e−γρ0 − eγρ0 | ∼ e−2γρ0 (6)

holds. Applying these inequalities (6) to (5) we get102

|G(x, t, λ)| ≤ α0

4|ρ|

[(
e−α0ρ0(x+t) + e−α0ρ0(t−x)

)
+
(

e−α0ρ0(2+x−t) + e−α0ρ0(2−t−x)
)]

+
α1

4|ρ|

[(
e−α1ρ0(x+t) + e−α1ρ0(t−x)

)
+
(

e−α1ρ0(2+x−t) + e−α1ρ0(2−t−x)
)]

.
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If t > x > 0, it is obviously that103

t + x > t− x > 0, 2 + x− t > 2− x− t > 0. (7)

Therefore we obtain the relation104

|G(x, t, λ)| ≤ α0

4|ρ|

[
e−α0ρ0(2−x−t) + e−α0ρ0(t−x)

]
+

α1

4|ρ|

[
e−α1ρ0(2−x−t) + e−α1ρ0(t−x)

]
.

Hence,105

|G(x, t, λ)| ≤ α0 + α1

4|ρ|

(
e−α2|ρ0|(2−x−t) + e−α2|ρ0|(t−x)

)
, α2 = min(α0, α1). (8)

Let ρ0 < 0 and γ is any positive number. For sufficiently large |ρ0| the estimates106

hold:107

eγρ0

|e−γρ0 − eγρ0 | ∼ e−2γρ0 ,
e−γρ0

|e−γρ0 − eγρ0 | ∼ 1. (9)

Applying these inequalities (9) to (5)108

|G(x, t, λ)| ≤ α0

4|ρ|

[(
eα0ρ0(2−x−t) + eα0ρ0(t−x)

)
+
(

eα0ρ0(t−x) + eα0ρ0(t+x)
)]

+
α1

4|ρ|

[(
eα1ρ0(2−x−t) + eα1ρ0(t−x)

)
+
(

eα1ρ0(t−x) + eα1ρ0(t+x)
)]

.

Now if we recall (7), we get109

|G(x, t, λ)| ≤ α0

4|ρ|

[
eα0ρ0(2−x−t) + eα0ρ0(t−x)

]
+

α1

4|ρ|

[
eα1ρ0(2−x−t) + eα1ρ0(t−x)

]
.

From this we obtain the inequality110

|G(x, t, λ)| ≤ α0 + α1

4|ρ|

(
eα2ρ0(2−x−t) + eα2ρ0(t−x)

)
, α2 = min{α0, α1}. (10)

The estimates (8), (10) implies the inequality111

|G(x, t, λ)| ≤ α0 + α1

4|ρ|

(
e−α2|ρ0|(2−x−t) + e−α2|ρ0|(t−x)

)
, α2 = min(α0, α1). (11)

Thus, for t > x > 0 the Green’s function satisfies the estimate (11). In the case−x < t < x112

the Green’s function G(x, t, λ) can be rewritten appropriately:113

G(x, t, λ) =
α0

4iρ

{
e−iα0ρ

eiα0ρ − e−iα0ρ

[
eiα0ρ(x+t) + eiα0ρ(x−t)

]

+
eiα0ρ

eiα0ρ − e−iα0ρ
+
[
eiα0ρ(t−x) + eiα0ρ(−x−t)

]}

+
α1

4iρ

{
e−iα1ρ

eiα1ρ − e−iα1ρ

[
−eiα1ρ(x+t) + eiα1ρ(x−t)

]
+

eiα1ρ

eiα1ρ − e−iα1ρ

[
eiα1ρ(t−x) − eiα1ρ(−x−t)

]}
.
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From this we obtain the inequality

G(x, t, λ) =
α0

4iρ

{
e−iα0ρ

eiα0ρ − e−iα0ρ

[
eiα0ρ(x+t) + eiα0ρ(x−t)

]
+

eiα0ρ

eiα0ρ − e−iα0ρ

[
eiα0ρ(t−x) + eiα0ρ(−x−t)

]}
+

α1

4iρ

{
e−iα1ρ

eiα1ρ − e−iα1ρ

[
−eiα1ρ(x+t) + eiα1ρ(x−t)

]
+

eiα1ρ

eiα1ρ − e−iα1ρ

[
eiα1ρ(t−x) − eiα1ρ(−x−t)

]}
. (12)

Let ρ0 > 0 . Applying (6) to (12) we get114

|G(x, t, λ)| ≤ α0

4|ρ|

[(
e−α0ρ0(x+t) + e−α0ρ0(x−t)

)
+
(

e−α0ρ0(2+t−x) + e−α0ρ0(2−x−t)
)]

+
α1

4|ρ|

[(
e−α1ρ0(x+t) + e−α1ρ0(x−t)

)
+
(

e−α1ρ0(2+t−x) + e−α1ρ0(2−x−t)
)]

.

In fact, 0 < t + x < x− t, 2 + t− x < 2− t− x for t > 0, and115

0 < t + x < x− t, 2 + t− x < 2− t− x for t < 0. From this and the last inequality116

we obtain117

|G(x, t, λ)| ≤ α0

4|ρ|

(
e−α0ρ0(x−|t|) + e−α0ρ0(2−x−|t|)

)
+

α1

4|ρ|

(
e−α1ρ0(x−|t|) + e−α1ρ0(2−x−|t|)

)
.

This implies the estimate118

|G(x, t, λ)| ≤ α0 + α1

4|ρ|

(
e−α2ρ0(x−|t|) + e−α2ρ0(2−x−|t|)

)
, α2 = min(α0, α1). (13)

Let ρ0 < 0. Next, using (9) in (12) we get119

|G(x, t, λ)| ≤ α0 + α1

4|ρ|

(
eα2ρ0(x−|t|) + eα2ρ0(2−x−|t|)

)
, α2 = min(α0, α1). (14)

From inequalities (13) and (14) it follows that the estimate120

|G(x, t, λ)| ≤ c1

|ρ|

(
e−α2|ρ0|(2−|x|−|t|) + e−α2|ρ0|(x−|t|)

)
, α2 = min{α0, α1}, (15)

holds. Let us consider the case t < −x. Then the Green’s function G(x, t, λ) can be121

rewritten in the form122

G(x, t, λ) =
α0

4iρ

{
eiα0ρ

eiα0ρ − e−iα0ρ

[
eiα0ρ(x+t) + eiα0ρ(t−x)

]

+
e−iα0ρ

eiα0ρ − e−iα0ρ

[
eiα0ρ(x−t) + eiα0ρ(−x−t)

]}

+
α1

4iρ

{
eiα1ρ

eiα1ρ − e−iα1ρ

[
−eiα1ρ(x+t) + eiα1ρ(t−x)

]
+

e−iα1ρ

eiα1ρ − e−iα1ρ

[
eiα1ρ(x−t) − eiα1ρ(−x−t)

]}
.
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From this it follows the estimate123

G(x, t, λ) ≤ α0

4|ρ|

{
e−α0ρ0

|e−α0ρ0 − eα0ρ0 |

[
e−α0ρ0(x+t) + e−α0ρ0(t−x)

]
+

eα0ρ0

|e−α0ρ0 − eα0ρ0 |

[
e−α0ρ0(x−t) + e−α0ρ0(−x−t)

]}

+
α1

4|ρ|
e−α1ρ0

e−α1ρ0 + eα1ρ0

[
e−α1ρ0(x+t) + e−α1ρ0(t−x)

]
.

+
α1

4|ρ|
eα1ρ0

e−α1ρ0 + eα1ρ0

[
e−α1ρ0(x−t) + e−α1ρ0(−x−t)

]
(16)

Let ρ0 > 0 . Using (6) in (16) we get124

|G(x, t, λ)| ≤ α0

4|ρ|

[(
e−α0ρ0(2+x+t) + e−α0ρ0(2+t−x)

)
+
(

e−α0ρ0(x−t) + e−α0ρ0(−x−t)
)]

+
α1

4|ρ|

[(
e−α1ρ0(2+x+t) + e−α1ρ0(2+t−x)

)
+
(

e−α1ρ0(x−t) + e−α1ρ0(−x−t)
)]

.

This implies the following inequality125

|G(x, t, λ)| ≤ α0

4|ρ|

(
e−α0ρ0(2+t−x) + e−α0ρ0(−x−t)

)
+

α1

4|ρ|

(
e−α1ρ0(2+t−x) + e−α1ρ0(−x−t)

)
.

Thus, we have established the estimate126

|G(x, t, λ)| ≤ α0 + α1

4|ρ|

(
e−α2ρ0(2+t−x) + e−α2ρ0(−x−t)

)
, α2 = min{α0, α1}, (17)

for t < −x and ρ0 > 0. If ρ0 < 0 then using (9) in (16) we get the inequality127

|G(x, t, λ)| ≤ α0 + α1

4|ρ|

(
eα2ρ0(2+t−x) + eα2ρ0(−x−t)

)
, α2 = min{α0, α1}. (18)

From inequalities (17) and (18) it follows that the estimate128

|G(x, t, λ)| ≤ α0 + α1

4|ρ|

(
e−α2|ρ0|(2−|t|−x) + e−α2|ρ0|(|t|−x)

)
, (19)

holds. Combining (11), (15) and (19), we get129

|G(x, t, λ)| ≤ α0 + α1

4|ρ|

[
e−α2|ρ0|(2−|x|−|t|) + e−α2|ρ0|||x|−|t||

]
.

Lemma 2 is proved.130

Let L0 be the differential operator defined by (1), (2) and let L be the differential131

operator defined by (3)–(2). Let Gq(x, t, λ) denote the Green’s function of the operator132

L− λI, where I is identity operator. Denote by G(x, t, λ) the Green’s function of the133

operator L0 − λI. It is easy to see that the function Gq(x, t, λ) satisfies134

LGq(x, t, λ) = λGq(x, t, λ)

and the function G(x, t, λ) satisfies the equation135
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L0G(x, t, λ) = λG(x, t, λ).

Then the difference Gq(x, t, λ)− G(x, t, λ) satisfies the equation136

L0[Gq(x, t, λ)− G(x, t, λ)] = λ[Gq(x, t, λ)− G(x, t, λ)]− q(x)Gq(x, t, λ), x 6= ∓t,

and boundary conditions (2). From this it follows that, except at the poles of functions137

G(x, t, λ) and Gq(x, t, λ)138

Gq(x, t, λ)− G(x, t, λ) = −
1∫
−1

G(x, s, λ)q(s)Gq(s, t, λ)ds. (20)

Then a solution of the equation (20) is the Green’s function of the operator L− λI. Let us139

assume that all eigenvalues of the operator L are simple. Further we need the following140

Lemma 3. Suppose all assumptions of Lemma 2 hold true. Then for all sufficiently large ρ,141

ρ /∈ Oε(ρkl) = {ρ : |ρ− ρkl | < ε}, there exists the solution of the integral equation (20).142

Proof of Lemma 3. We apply the method of successive approximations. Let us introduce143

the following functions144

Gq0(x, t, λ) ≡ 0, Gq,n+1(x, t, λ) = G(x, t, λ)−
1∫
−1

G(x, s, λ)q(s)Gq,n(s, t, λ)ds.

By Lemma 2145

|G(x, t, λ)| ≤ C
|ρ| r(x, t), r(x, t, ρ) =

(
e−α2|ρ0|(2−|x|−|t|) + e−α2|ρ0|||x|−|t||

)
, α2 = min{α1, α0}.

For brevity, let us introduce the notations146

max
−1≤x≤1

∣∣Gq1(x, t, λ)
∣∣|ρ|r−1(x, t) = C0,

max
−1≤x≤1

∣∣Gq,n+1(x, t, λ)− Gq,n(x, t, λ)
∣∣|ρ|r−1(x, t) = Cn, (21)

for fixed t and sufficiently large ρ, ρ /∈ Oε(ρkl). Now let us show that147

Cj ≤
C
2j , j = 0, 1, 2, . . . , n. (22)

For j = 0 the estimate (22) directly follows from Lemma 2 and the relation (21). Let us148

assume that the assertion is true for j = n and prove its validity for j = n + 1. Using the149

relations (20), (21) and Lemma 2 we obtain150

Cn+1 ≤ C · Cn|ρ|−1 max
1∫
−1

r(x, s)r(s, t)r−1(x, t)|q(s)|ds. (23)

In fact,
r(x, s) · r(s, t) = e−α0|ρ0|(4−|x|−2|s|−|t|) + e−α0|ρ0|(2−|x|−|s|+||s|−|t||)

+e−α0|ρ0|(2−|s|−|t|+||x|−|s||) + e−α0|ρ0|(||x|−|s||+||s|−|t||).
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Since ||x| − |t|| ≤ ||x| − |s||+ ||s| − |t||, the relation |t| = |t|+ |s| − |s| ≥ |s| − ||t| −151

|s|| implies |x|+ |t| ≥ |x|+ |s| − ||t| − |s||. The inequality |x| ≥ |s| − ||x| − |s|| implies152

|x|+ |t| ≥ |t|+ |s| − ||x| − |s||.153

In fact154

||x| − |t|| = ||x| − 1 + 1− |t|| < 1− |x|+ 1− |t| < 1− |x|+ 1− |t|+ 2− 2|s| =155

4− |x| − |t| − 2|s|.156

From these relations it follows that r(x, s) · r(s, t) ≤ 2r(x, t). Therefore, from (23)157

follows the estimate158

Cn+1 ≤ 2 ≤ CCn|ρ|−1
1∫
−1

|q(s)|ds. (24)

For sufficiently large |ρ| , the inequality159

2C|ρ|−1
1∫
−1

|q(s)|ds ≤ 1
2

holds true. Applying this inequality in (24) we conclude that (22) remains valid for all160

integer n. From the estimate (22) it follows that the series161

∞

∑
1

(
Gq,n+1(x, t, λ)− Gqn(x, t, λ)

)
converges uniformly. The partial sums of this series is162

χm(x) = Gq,n+m(x, t, λ)− Gq1(x, t, λ)

and the sequence Gq,n(x, t, λ) converges uniformly. Its limit Gq(x, t, λ) satisfies the163

equation (20). Lemma 3 is proved.164

3. Main Results165

Now, we are ready to prove our main result. Denote by166

Sm( f ) = − 1
2πi

1∫
−1

 ∫
Cml

Gq(x, t, λ)2ρdρ

 f (t)dt,

sm( f ) = − 1
2πi

∫
Cml

 1∫
−1

G(x, t, λ)] f (t)dt

dλ.

the partial sums of eigenfunction expansions for the operators L and L0 respectively,167

f (x) ∈ L1(−1, 1). This representation holds true in the case when all eigenvalues of the168

operator L and L0 are simple. Note that all eigenvalues of the operator L0 are simple if169
α0
α1
6= ν0 and α1

α0
6= ν1 for any integer ν0, ν1.170

We say that the sequence Sm( f ) equiconverges with sm( f ) on the interval −1 ≤171

x ≤ 1 if Sm − sm → 0 uniformly on this interval as m→ ∞. Now, we are ready to state172

our main results.173

Theorem 1. Let all eigenvalues of operator L are simple, α0
α1
6= ν0 and α1

α0
6= ν1 for any integer174

ν0, ν1. Then for any function f (x) ∈ L1(−1, 1) the sequence Sm( f ) equiconverges with sm( f )175

on the interval −1 ≤ x ≤ 1.176

Proof of Theorem 1. To prove Theorem 1, we consider the difference177
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Sm( f )− sm( f ) = − 1
2πi

∫
Cml


1∫
−1

[
Gq(x, t, λ)− G(x, t, λ)

]
f (t)dt

2ρdρ.

It follows from Lemma 3 that178

|Gq(x, t, λ)| ≤ 2C
|ρ| r(x, t).

This inequality and expression (20) yields the estimate179

|Gq(x, t, λ)− G(x, t, λ)| ≤ 2C2|ρ|−2
1∫
−1

r(x, s)|q(s)|r(s, t)ds.

Since r(x, s) · r(s, t) ≤ 2r(x, t), the latter inequality can be rewritten in the form180

|Gq(x, t, λ)− G(x, t, λ)| ≤ 4C2|ρ|−2r(x, t)
1∫
−1

|q(s)|ds.

From this inequality and relation (20) we obtain the estimate181

|Sm( f )− sm( f )| ≤ 2C2

π

∫
Cml

 1∫
−1

r(x, t)| f (t)|dt

2|ρ|
|ρ|2 dρ ·

1∫
−1

|q(s)|ds

=
4C2

π

1∫
−1

|q(s)|ds
∫

Cml

 1∫
−1

r(x, t)| f (t)|dt

∣∣∣∣dρ

ρ

∣∣∣∣.
Let us denote C1 = 4C2

π

1∫
−1
|q(s)|ds. Then we have182

|Sm( f )− sm( f )| ≤ C1

∫
Cml

 1∫
−1

r(x, t)| f (t)|dt

∣∣∣∣dρ

ρ

∣∣∣∣. (25)

Further we split the interval of integration into two parts:183

∆1 = (−1 + δ,−x− δ) ∪ (−x + δ, x− δ) ∪ (x + δ, 1− δ),

∆2 = (−1,−1 + δ) ∪ (−x− δ,−x + δ) ∪ (x− δ, x + δ) ∪ (1− δ, 1),

thus (−1, 1) = ∆1 + ∆2 and δ > 0 is a sufficiently small number. Now the inequality (25)184

takes the form185

|Sm( f )− sm( f )| ≤ C1

∫
Cml

∫
∆1

(
e−α0|ρ0|||x|−|t|| + e−α0|ρ0|(2−||x|−|t||)

)
| f (t)| dt

∣∣∣∣ dρ

ρ

∣∣∣∣
+ 2C1π

∫
∆2

| f (t)|dt. (26)

The identity186
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∫
∆2

| f (t)|dt =
−1+δ∫
−1

| f (t)|dt +
−x+δ∫
−x−δ

| f (t)|dt +
x+δ∫

x−δ

| f (t)|dt +
1∫

1−δ

| f (t)|dt

yields the inequality187

2C1π
∫
∆2

| f (t)|dt <
ε

2
.

Let rml be the radius of the circle Cml . Then the relation188

∫
Cml

e−α0|ρ0|δ|dρ

ρ
| =

π
4∫

0

e−α0δρml | sin t|dt +

3π
4∫

π
4

e−α0δρml | cos t|dt +

5π
4∫

3π
4

e−α0δρml | sin t|dt

+

7π
4∫

5π
4

e−α0δρml | cos t|dt +
2π∫

7π
4

e−α0δρml | sin t|dt

gives the inequality189 ∫
Cml

e−α0|ρ0|δ
∣∣∣∣dρ

ρ

∣∣∣∣ < C2

|rml |δ
.

With sufficiently large value of m , the first term in (26) can be made less than ε
2 . The190

Theorem 1 is proved.191

From Theorem 1 we derive the following assertion.192

Theorem 2. Suppose all assumptions of Theorem 1 hold true. Then the system of eigenfunctions193

of the operator L forms the basis in L2(−1, 1).194

Proof of Theorem 2. To prove Theorem 2 it suffices to show that ‖ f − Sm‖L2 < ε for195

any function f (x) ∈ L2(−1, 1) . But it easily follows from the basicity of the system196

of eigenfunctions for operator L0 and the equiconvergence result of Theorem 1. The197

Theorem 2 is proved.198

There arises the question of whether this basis is also unconditional basis. The199

answer to this question is given by the following theorems.200

Theorem 3. Suppose all assumptions of Theorem 1 hold true. If the coefficient q(x) ∈ L1(−1, 1)201

in (3) is the real-valued function, then the system of eigenfunctions of the operator L forms202

orthonormal basis in L2(−1, 1).203

Since the operator L is self-adjoint, Theorem 3 follows directly from Theorem 2.204

Theorem 4. Suppose all assumptions of Theorem 1 hold true. Then the system of eigenfunctions205

for the operator L forms the Riesz basis in L2(−1, 1).206

From the estimate for the Green’s function Gq(x, t, λ) of the operator L (see proof of207

Theorem 1), results of Theorem 2, and the theorems in [11] Theorem 4 follows.208

Remark 1. Note that in the case α = 0 the question of the basis property of eigenfunctions of209

the classical periodic problem is open problem.210
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4. Conclusions211

Summarizing the investigation carried out, we note that the Green’s function of the212

second order differential operator with involution was constructed. Theorems on the213

basicity of eigenfunctions to the problems under consideration were proven. These theo-214

rems might be useful in the theory of solvability mixed problems for partial differential215

equations with involution. In the future, we plan to investigate these operators with the216

general boundary conditions.217
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