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Abstract: Recent advance in electric propulsion systems have demonstrated that these engines can be used
for for long-duration interplanetary voyages. Constant specific impulse engine described as a thrust-limited
engine is an example of this type of engine, processing the ability to operate at a constant level of impulse.
The determination of minimum-fuel, planar heliocentric Earth-to-Mars low-thrust trajectories of spacecraft
using a constant specific impulse is discussed considering the first-order necessary conditions derived from
Lawden’s primer vector theory. The minimum-fuel low-thrust Earth-to-Mars optimization problem is then
solved in two-dimensional, heliocentric frame using both indirect and direct methods. In the indirect method,
two-point-boundary-value problems are derived to solve boundary value problems for ordinary differential
equations. In the direct method, a general-purpose optimal control software called GPOPS-II is adopted to solve
these optimal control problems. Numerical examples using two different optimization methods are presented to
demonstrate the characteristics of minimum-fuel planar low-thrust trajectories with on-off-on thrust sequences
at three chosen flight times and available maximum powers. The results are useful for broad trajectory search
in the preliminary phase of mission designs.

Keywords: Low-thrust trajectories, bang-bang control, electric propulsion, constant specific impulse, indirect
method; direct method

1. Introduction
Electric propulsion systems have demonstrated that low-thrust engines have the capability

to be used for long-duration travels by the planetary and interplanetary space missions. Electric
propulsion has been used by NASA’s Deep space 1 [1] and Dawn [2], ESA’s SMART-1 [3], and
JAXA’s Hayabusa and Hayabusa 2 [4]. Electric propulsion systems have demonstrated that low-
thrust engines can be used for long-duration travels by the planetary and interplanetary space
missions [5]. Low-thrust electric propulsion spacecraft is known to have a greater payload capability
than conventional chemical propulsion spacecraft. Low-thrust trajectory optimization generally
accompanies determining the control variables, which may include thrust magnitude, and direction
and parameter, and the corresponding trajectories while minimizing a given performance index
(propellant consumption or time-of-flight) and satisfying boundary conditions (departure and arrival
orbits), mid-point conditions, and path constraints.

Low-thrust trajectory optimization problems can be generally solved by either indirect or direct
method [6]. The optimization of low-thrust trajectories have been mathematically formulated as
an Optimal Control Problem (OCP) [7]. Indirect methods solve the optimal control problem by
obtaining the solution to the corresponding two-point boundary value problem (TPBVP) which
results from the calculus of variations. The application of the Lagrange multipliers (costates)
doubles the number of differential equations that have to be integrated along the trajectory. However,
the solution to the TPBVP is very sensitive to initial guess for costate variables which do have
any intuitive physical meanings. To overcome the disadvantage in the indirect methods, heuristic
and/or evolutionary techniques have been developed [8,9]. In contrast, direct methods solve the
optimal control problem by converting it into a nonlinear programming (NLP) problem with various
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transaction schemes applied to either states and controls, or both states and controls. Since the
control variables are explicitly parameterized, a good initial control guess for direct methods can be
easily produced. In direct methods, the modifications of the performance index, equality constraints,
state and control inequality constraints can easily made for different problem formulations while
they should result in a new derivation of TPBVP in indirect methods.

This paper presents indirect and direct methods for obtaining fuel-optimal planar Earth-to-Mars
trajectories using CSI engines where the differential equations of motion are numerically integrated
and the continuous- time control is parameterized. Thus, the purpose of this paper is to develop an
indirect and direct optimization methods to solve minimum-fuel planar low-thrust Earth-to-Mars
trajectories in the heliocentric frame with bang-bang control structure. In addition, the solutions
of this problem using the indirect and direct methods will be validated by comparing them at the
different flight time and maximum powers of the spacecraft and analyzing the optimization results. A
performance index representing propellant consumed for CSI engines is formulated to minimize its
total propellant consumption, resulting in on-off-on thrusting sequence by Lawden’s primer vector
theory [10,11]. Minimizing the performance index is equivalent to maximizing the final mass of
the spacecraft. The formulation of the problem treats the spacecraft mass as a state variable, thus
updating the spacecraft mass to the optimal trajectory design. For both optimization methods, the
equations of the motion are normalized for the fundamental distance, velocity, mass and time to
streamline the numerical computations. In the the indirect method, the analytical formulations of the
problem are presented to set up TPBVP using the primer vector theory, and the necessary conditions
for an optimal solution are discussed. In the direct method, the bounds of the states, the flight time,
and the control including the maximum available power, the equality constraint and the boundary
conditions are explicitly specified. The optimal control problem is then converted to the parameter
optimization problem that can be solved by nonlinear programming (NLP). As the NLP solver, a
general-purpose optimal control software called GPOPS-II [12] is adopted to solve optimal control
problem using variable-order Gaussian quadrature collocation methods where the continuous-time
optimal control problem is transcribed to a large sparse nonlinear programming problem.

Numerical studies show that the fuel-optimal, low-thrust heliocentric Earth-to-Mars trajectories
for the specific arrival time and maximum power are obtained with different thrust magnitudes to
find “on-off-on” thrusting sequence. The primer vector theory is employed to analyze the control
structure by monitoring the variations of the switching functions. Finally, the fuel-optimal planar
Earth-to-Mars trajectories at different flight time and maximum power are validated.

2. Problem Formulation
In this section, the governing equations of motion are given and the scaled equations of motion

are derived. The spacecraft is propelled by electric propulsion.

2.1. Equations of Motion

This trajectory optimization problem is modeled in a two-dimensional, heliocentric (sun-
centered) polar coordinate system to make the NLP problem both efficient and robust instead of
Cartesian coordinates which is the simplest but most disadvantageous choice [13]. All motions are
assumed to be confined to the ecliptic or fundamental plane. Figure 1 illustrates the geometry of this
coordinate system along with the steering angle.

where r is the heliocentric radius of the spacecraft, θ is the phase angle, u and ν are the radial
and transverse velocity components, respectively, and α is the steering or thrust orientation angle.
The steering angle is measured relative to the instantaneous tangential direction and is positive in the
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Figure 1. Geometry of heliocentric coordinate system along with the steering angle.

clockwise direction to the thrust vector. The two-dimensional equations of motion for the spacecraft
in the polar coordinate system [13,14] are given by

ṙ = υr, (1a)

υ̇r =
υ2

θ

r
− µ

r2 +
T
m

u1, (1b)

υ̇θ = −υrυθ

r
+

T
m

u2, (1c)

θ̇ =
υθ

r
, (1d)

ṁ = −T
c

, (1e)

where m is time varying spacecraft mass, u1 and u2 are the unit vector components in the thrust
vector, µ is the solar gravitational constant, which equals to 1.32712441933×1011, T represents
the thrust magnitude and c = Ispg0 is the exhaust velocity. Isp and g0 = 9.80665 m/s2 are the
specific impulse and the standard gravitational acceleration at sea level, respectively. The radial and
tangential acceleration components due to thrust are defined ad

ar =
T
m

sinα (2)

aθ =
T
m

cosα (3)

The boundary conditions and the inequality should be specified for a complete optimization problem.
Here, the initial boundary conditions can be formulated as

r(0) = r0, υr(0) = υr0 = 0, υθ (0) = υθ0 =

√
µ

r0
, θ (0) = θ0 = 0, m(0) = m0. (4)

while the terminal boundary conditions are given by

r(t f ) = r f , υr(t f ) = υr f = 0, υθ (t f ) =

√
µ

r f
. (5)

The first equation in Eq. (5) states that the radial velocity should be zero and the second equation is
a boundary condition is that forces the final velocity to be equal to the local circular velocity at the
final radial distance. The equality path constraint is given by

e = u2
1 + u2

2 = 1 (6)
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2.2. Scaled Equations of Motion

We scale the state variables to remain close to unity to streamline numerical computations. All
heliocentric distances are normalized with respect to the AU (Astronomical Unit) which is equal to
149597870.691 km. Likewise, all velocity values are normalized with respect to the “local circular
velocity”, υθ0 =

√
µ/r0 at the heliocentric distance of the Earth’s circular orbit, r0. Using the initial

orbit radius and initial velocity as reference values, and the normalizing the time by the final time,
we define the new state variables as:

r =
r
r0

, υr =
υr

υθ0

, υθ =
υθ

υθ0

, τ =
t
t f

. (7)

Applying the chain rule to change variables results in the following new non-dimensional equations
of motion:
For r :

dr
dτ

=
dr/r0

dt/t f
=

dr
dt

t f

r0
= υr

t f

r0
=

υr

υθ0

υθ0

t f

r0
= υrζ (8)

where ζ =
υθ0t f

r0
.

For υr :

dυr

dτ
=

d(υr/υθ0)

dt
dt
dτ

= υ̇r
t f

υθ0

=

(
υ2

θ

r
− µ

r2 +
Tu1

m0 + ṁt

)
t f

υθ0

=

(
υ

2
θ

r
− 1

r2

)
ζ +

(
2ηP
mc

t f

υθ0

)
u1, (9)

where a =

(
2ηP
mc

t f

υθ0

)
.

For υθ :

dυθ

dτ
=

dυθ /υθ0

dt/t f
=

dυθ

dt
t f

υθ0

= υ̇θ

t f

υθ0

=

(
−υθ υθ

r
+

Tu2

m

)
t f

υθ0

,

dυθ

dτ
= − υr υθ

r
ζ +

(
2ηP
mc

t f

υθ0

)
u2. (10)

For θ :

dθ

dτ
=

dθ

dt
dt
dτ

=
dθ

dt
t f =

υθ

r
t f =

υθ

r
ζ .

For m̃ :

dm̃
dτ

=
dm
dt

t f

m0
=

(
−T

c

)(
t f

m0

)
=

(
−2ηP

c2
t f

m0

)
.
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In summary, newly scaled equations of the motion are:

dr
dτ

= υrζ , (11a)

dυr

dτ
=

(
υ

2
θ

r
− 1

r2

)
ζ +

(
2ηP
mc

t f

υθ0

)
u1, (11b)

dυθ

dτ
= −υrυθ

r
ζ +

(
2ηP
mc

t f

υθ0

)
u2, (11c)

dθ

dτ
=

υθ

r
ζ , (11d)

dm̃
dτ

=

(
−2ηP

c2
t f

m0

)
. (11e)

The scaled initial boundary conditions can be formulated as

r(0) = 1, υr(0) = υr0 = 0, υθ (0) = υθ0 = 1, θ0 = 0, m̃(0) = 1. (12)

while the scaled terminal boundary conditions are given by

r(t f ) = r f /r0, υr(t f ) = υr f = 0, υθ (t f ) =

√
r0

r f
. (13)

3. Low-Thrust Trajectory Optimization
The trajectory is controlled by the thrust magnitude and direction. The thrust level

T =
2ηP

c
, (14)

is obtained by selecting exhaust velocity and the engine input power P (thruster efficiency η is
assumed constant throughout), taking the operational constraints int account. The input power is
always limited by the availability of the solar power (P≤ Pmax) and the exhaust velocity is constant.
The payload is the performance index to be maximized. For the minimum-fuel problem with CSI
engines, the performance index can be established as

J = −m̃ f (15)

It is obvious from Eq. (15) that minimizing J is equivalent to maximizing the final mass m f or the
payload.

3.1. Indirect method

The Hamiltonian is formulated based on the Pontryain’s minimum principle (PMP):

H =λrυr +λυr

(υ
2
θ

r
− 1

r2

)
+ au1

+λυθ

(
−υrυθ

r
+ au2

)
+λθ

υθ

r
+λm̃

(
−2ηP

c2
t f

m0

)
,

(16)

where λ = [λr, λυr , λυθ
, λθ ]

T are the costate vectors adjoint to the radius, radial velocity, transverse
velocity, θ , and mass, respectively.

H =λrυr +λυr

(
υ

2
θ

r
− 1

r2

)
−λυθ

(
υrυθ

r

)
+λθ

υθ

r

+

[
aλT

υrυθ
u+λm̃

(
−2ηP

c2
t f

m0

)]
, (17)
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where λυrυθ
= [λυr , λυθ

]T and u = [u1, u2]T . The optimal control law is derived to minimize the
Hamiltonian. Thus, the direction of the thrust is opposite to the adjoint vector λυrυθ

and the primer
vector p(t) is defined, so that

λT
υrυθ

u = −λυrυθ
= −p(t). (18)

for which

u? =
−λυrυθ

λυrυθ

=
p(t)
p(t)

, (19)

where p(t) = −λυrυθ
is the primer vector and λυrυθ

=
√

λ 2
υr
+λ 2

υθ
. Thus, the unit vector u? is

given by

u? =


−λυr√

λ 2
υr
+λ 2

υθ

−λv√
λ 2

υr
+λ 2

υθ

. (20)

The terms in the bracket of the Hamiltonian in Eq. (17) is written as H ′ using a in (9)

H ′ = −ap−λm̃

(
2ηP
c2

t f

m0

)
= −p

(
2ηP
mc

t f

υθ0

)
−λm̃

(
2ηP
c2

t f

m0

)

= −

(
p

mυθ0

+
λm̃

cm0

)(
2ηPt f

c

)
(21)

During a constant Isp operation where c is constant, the input power, or equivalently, is the only
control. Equation (21) is usually rewritten as

H ′ = −

(
p

mυθ0

+
λm̃

cm0

)
× (Tt f ) = −SF × (Tt f ) (22)

and the sign of the switching function SF determines when the thruster is turned on or off. The choice
of the input power, P, that minimizes the Hamiltonian in Eq. (21) is then given by the bang-bang
control law:

P =

Pmax for SF > 0

0 for SF < 0
(23)

The maximum available power is adopted when SF < 0, whereas the engine is switched off when
SF < 0 to minimize H ′, according to the PMP. In addition, the thrust magnitude for 0≤ T ≤ Tmax

will also depend on the algebraic sign of the switching function SF .
The Euler-Lagrange equations yield:

dλr

dτ
= −∂H

∂ r
= λυr

(
υ

2
θ

r2 −
2
r3

)
ζ −λυθ

υrυθ

r2 ζ +λθ

(
υθ

r2

)
ζ (24a)

dλυr

dτ
= − ∂H

∂υr
= −λrζ +λυr

υθ

r
(24b)

dλυθ

dτ
= − ∂H

∂υθ

= −λυr

2υθ

r
ζ +λυθ

υr

r
ζ −λθ

1
r

ζ (24c)

dλθ

dτ
= −∂H

∂θ
= 0 (24d)

dλm̃

dτ
= −∂H

∂ m̃
= −m0

m2

(
2ηPt f

cυθ0

)
p (24e)
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From the known initial conditions in Eq. (12) with the known initial time t0 = 0 s and the known
final conditions in Eq. (13) with the known final time t f , we can get 10 boundary conditions. We
apply the transversality condition to pose a well-defined TBPVP.

H f dt f −λT
f dy f + dφ = 0 (25)

subject to dΨ = 0.

dΨ =

 dr f

dυr f

dυθ f

= 0. (26)

Expanding the nonzero terms in Eq. (26) while noting that we have a Mayer form of the performance
index, where φ = J = −m̃ f :

H f dτ f −λθ f dθ f −λm̃ f dm̃ f −dm̃ f = 0 (27)

Using the the terminal boundary conditions, we get the following boundary conditions:

λθ f = 0 (28a)

λm̃ f + 1 = 0 (28b)

All differential equations and boundary conditions give the well-defined TPBVP:

dr
dτ

= υrζ , (29a)

dυr

dτ
=

(
υ

2
θ

r
− 1

r2

)
ζ +

(
2ηP
mc

t f

υθ0

) −λυr√
λ 2

υθ
+λ 2

υr

, (29b)

dυθ

dτ
= −υr υθ

r
ζ +

(
2ηP
mc

t f

υθ0

) −λυθ√
λ 2

υθ
+λ 2

υr

, (29c)

dθ

dτ
=

υθ

r
ζ , (29d)

dm̃
dτ

=

(
−2ηP

c2
t f

m0

)
(29e)

dλr

dτ
= λυr

(
υ

2
θ

r
− 2

r3

)
ζ −λυθ

υr υθ

r2 ζ +λθ

(
υθ

r2

)
ζ , (29f)

dλυr

dτ
= −λrζ +λυθ

υθ

r
, (29g)

dλυθ

dτ
= −λυr

2υθ

r
ζ +λυθ

υθ

r
−λθ

1
r

ζ , (29h)

dλθ

dτ
= 0, (29i)

dλm̃

dτ
=

m0

m2

(
2ηP

c
t f

υθ0

)
(p−1) (29j)

τ0 = 0, r0 = 1, υr0 = 0, v0 = 1, θ0 = 0, m̃0 = 1 (29k)

τ f = 1, r f =
r f

r0
, υr f = 0, v f =

√
1
r f

, λθ f = 0, λm̃ f + 1 = 0 (29l)
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3.2. Direct Method

The same minimum-fuel problem is solve with the direct method. Minimize the performance
index in Eq. (15) subject to the dynamics constraints which is the scaled equation of motion in
Eq. (11) The continuous-time state variables y and control variables u are given, respectively as

y(t) =
[
r(t) υr(t) υθ (t) θ (t) m̃(t)

]
∈ R5, u(t) =

[
u1(t) u2(t) P

]
∈ R3, (30)

The equality path constraint function

e = u2
1(t)+ u2

2(t) = 1. (31)

and boundary condition function are given as

b1 = r0−1 = 0, b2 = υr0 = 0, b3 = v0−1 = 0, b4 = θ0 = 0, b5 = m̃0,

b5 = r f −
r f

r0
= 0, b6 = υr f = 0, b7 = v f =

√
1
r f

. (32)

The right-hand side function of the dynamics, the path constraint function, and the boundary
functions are written, respectively, as

a(y(t), u(t), t) =



υr

υ
2
θ

r
− 1

r2 + au1

−υrυθ

r
+ au2

υθ

r
˙̃m


(33)

e(y(t),u(t), t) = u2
1(t)+ u2

2(t)−1 (34)

b(y(t0), t0 y(t f ), t f ) =



r0−1
υr0

v0−1
θ0

m̃0−1

r f −
r f

r0
υr f

v f −
√

1
r f


. (35)

Finally, the lower and upper bounds on the path constraints and boundary conditions are all zero.
Finally, the lower and upper bounds on the path constraints and boundary conditions are all zero.
Because the first five boundary conditions, (b1, ...,b7), are simple bounds on the initial and final
continuous-time state, they will be enforced in the NLP as simple bounds on the NLP variables
corresponding to the initial and terminal state. The 7th boundary condition, b7, on the other hand,
is a nonlinear function of the terminal state and, thus, will be enforced in the NLP as a nonlinear
constraint.

4. Numerical Results
In this section, the mission scenarios of the planar Earth-to-Mars orbit transfer at five different

input powers and the flight time are given to validate minimum-fuel low-thrust trajectory optimization
with the constant specific impulse engines. Both the indirect and direct methods are used to solve
the same problem and their solutions are compared. The initial and final orbital parameters are
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displayed in Table 1. It is observed that the final position in the mission orbit (Mars orbit) is not
specified since the purpose of the simulation is to reach the orbit not the planet. As the forces acting
on the spacecraft, the Sun’s gravity and the thrust produced by the engines are considered. The
spacecraft is assumed to have initial mass 1500 kg and the CSI engines with the Isp = 3300 s and
the constant thruster efficiency, η = 0.7. The used input powers and the corresponding flight time
are listed in Table 2. The input powers and flight time conditions of the scenario 1, 2 and 3 are listed
in Table 2. The scenario 1 has 19 kw of input power and 240 days of flight time, the scenario 1 has
7.5 kw of input power and 365 days of flight time, and the scenario 3 has 3.6 kw of input power and
2 years of flight time. In these scenarios, the indirect method solutions are obtained by solving the
well-defined TPBVP in Eq. (29) with bvp4c function in MATLAB while the direct method solutions
are obtained with GPOPS-II in the Section 3.2. In addition, SNOPT [15] is used as a NLP solver in
GPOPS-II.

Table 1. Intial (Earth) and tareget (Mars) orbits to test the optimization methods

Initial orbit: Earth Target orbit: Mars

Radius, r (AU) 1 1.525588896382880
Orbital speed, υ (km/s) 29.7847 29.494
Location, θ (deg) 0 —

Table 2. Input powers (P) and flight time (t f )

Scenario Input power (kW) Flight time (days)

Scenario 1 19 240
Scenario 2 7.5 365
Scenario 3 3.6 2×365

Figures 2, 3, and 4 present the results of a transfer from Earth to Mars orbit in the heliocentric
reference frame in astronomical units (AU) using the indirect and direct methods for the scenarios 1,
2 and 3, respectively. The dashed inner circle represents the Earth’s orbit while the dashed outer
circle represents the Mars’ orbit. The curves represent the spacecraft trajectory while the arrows
represent the thrust unit vectors. Since the indirect method uses 10000 mesh points, the thrust unit
vectors in the Earth-to-Mars trajectories are not obviously indistinguishable. On the other hand, the
direct method obvious thrust unit vectors along the trajectories because the number of nodes adjusted
in the the optimization calculation. However, the Earth-to-Mars trajectories using the indirect method
and direct methods are matching with no remarkable difference. These numerically matching results
are verified in the control acceleration and the thrust angle as shown in Figs. 5, 6 and 7. In these
results, the control accelerations by the thrust on-off-on thrusting sequences are obtained by the
ban-bang control law (23) for the CSI engines. The thrust on-off-on thrusting sequences are also
analyzed using the primer vector theory, which appear in the next figures. The control accelerations
and thrust angle (α) are also almost matching except the thrust off phases. It is due to some
numerical difference in the indirect and direct methods. However, the numerical differences in the
results are not remarkable enough to result in different optimization results. Figures 8 and 9 present
time histories of thrust and acceleration magnitudes, and time histories of the propellant mass and
total mass using the indirect and direct methods for scenario 1. Numerically matching results are
also obtained for scenario 1. Table 3 shows the ∆v and the propellant masses for scenario 1, 2
and 3, respectively using the indirect and direct methods. The numerical integration of the control
acceleration is computed as ∆v using

∫ t f
0 (T /m)dt. They are almost numerically matching in both

methods. The propellant mass mp are almost numerically matching in both methods. As the flight
time increases in the scenario 1, 2 and 3, Deltav and the propellant mass (mp) get smaller. Thus,
the fuel consumption could be more saved in the longer flight time and smaller input power.
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Figure 2. Planar Earth-to-Mars low-thrust trajectory for the scenario 1, (a) Indirect method, (b) Direct method
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Figure 3. Planar Earth-to-Mars low-thrust trajectory for the scenario 2, (a) Indirect method, (b) Direct method

Table 3. Comparisons of the optimization solutions for scenario 1, 2 and 3.

Scenario
∆v (km/s) mp (kg)

Indirect method Direct method Indirect method Direct method

Scenario 1 9.470 9.469 380.558 380.559
Scenario 2 7.001 7.005 292.010 292.028
Scenario 3 5.694 5.693 241.970 241.970

Figures 10, 11 and 12 present the switching functions and thrust profiles for scenario 1, 2
and 3, respectively. They show on-off-on thrusting sequences corresponding to the bang-bang
control law in (23). The thrust magnitude switches its limiting values of 0 (null-thrust arc) and
Tmax (maximum-thrust arc) each time SF (t) passes through 0 according to Eq. (22). The left side of
Figs. 10, 11 and 12 are obtained in the indirect method while the right side of them are obtained
in GPOPS-II. In general, the costate vectors are computed in indirect method. However, GPOP-II
can provide the computed costate vectors in the optimization algorithm. With these costate vectors,
the switching function SF and the thrust magnitude (T ) are also obtained in the right side of Figs.
10, 11 and 12. The switching functions and thrust profiles using the indirect and direct methods for
scenario 1, 2 and 3 present matching results. Thus, minimum-fuel planar Earth-to Mars low-thrust
trajectories using bang-bang control for the CSI engines have been validated by both the indirect
method and direct method. In addition, it has been demonstrated that ∆v and the propellant mass mp

can be saved in longer flight time and smaller input power through three selected mission scenarios.
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Figure 4. Planar Earth-to-Mars low-thrust trajectory for the scenario 3, (a) Indirect method, (b) Direct method
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Figure 5. Time history of control variables for scenario 1, (a) Indirect method, (b) Direct method

5. Conclusion
In this paper, minimum-fuel planar heliocentric Earth-to-Mars low-thrust trajectories using

bang-bang control for constant specific impulse engines of spacecraft have been studied. For the
problem formulation, the derivation of the scaled equations of motion is described in detail. A
well-defined TPBVP is derived for the indirect method while GPOPS-II is emoyed to solve the
problem. Using the three selected mission scenarios with different flight time and input powers,
minimum-fuel planar low-thrust trajectories with on-off-on thrust sequences are validated with both
the indirect and direct methods. Numerically matching optimization results are obtained by both
methods with the same on-off-on thrust sequence. The results are useful for broad trajectory search
using the CSI engine in the preliminary phase of mission designs.
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Figure 6. Time history of control variables for scenario 2, (a) Indirect method, (b) Direct method
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Figure 7. Time history of control variables for scenario 3, (a) Indirect method, (b) Direct method

0 50 100 150 200 250

0

0.5

1

0 50 100 150 200 250

0

2

4

6

10
-4

Figure 8. Time histories of thrust and acceleration magni-
tudes for scenario 1.
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Figure 10. CSI switching functions and thrust profiles for the scenario 1, (a) Indirect method, (b) GPOPS-II
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Figure 11. CSI switching functions and thrust profiles for the scenario 2, (a) Indirect method, (b) GPOPS-II
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Figure 12. CSI switching functions and thrust profiles for the scenario 3, (a) Indirect method, (b) GPOPS-II

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2021                   doi:10.20944/preprints202109.0226.v1

https://doi.org/10.20944/preprints202109.0226.v1


Journal Not Specified 2021, 1, 0 14 of 14

Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) Grant Funded by the Ministry of Science and

ICT (NRF-2017R1A5A1015311). This work was also supported by Dr. Ehsan Taheri in the Department of Aerospace Engineering,
Auburn University, Auburn, AL, USA.

References
1. Rayman, M.D.; Williams, S.N. Design of the first interplanetary solar electric propulsion Mission. Journal of Spacecraft and Rockets 2002,

39, 589–595.
2. Rayman, M.D.; Fraschettia, T.C.; Raymonda, C.A.; Russell, C.T. Dawn: a mission in development for exploration of main belt asteroids Vesta

and Ceres. Acta Astronautica 2006, 58, 605–616.
3. Kugelberg, J.; Bodin, P.; Persson, S.; Rathsman, P. Accommodating electric propulsion on SMART-1. Acta Astronautica 2004, 55, 121–130.
4. Nishiyama, B.K.; Hosoa, S.; Ueno, K.; Tsukizaki, R.; Kuninaka, H. Development and Testing of the Hayabusa2 Ion Engine System. Trans.

JSASS Aerospace Tech. Japan 2016, 14, 131–140.
5. Chadalavada, P.; Farabi, T.; Dutta, A. Sequential Low-Thrust Orbit-Raising of All-Electric Satellites. Aerospace 2020, 7, 1–27.
6. Betts, J.T. Survey of numerical methods for trajectory optimization. Journal of Guidance, Control and Dynamics 1998, 21, 193–207.
7. Morante, D.; Rivo, M.S.; Soler, M. A Survey on Low-Thrust Trajectory Optimization Approaches. Aerospace 2021, 8, 1–39.
8. Abdelkhalik, O. Dynamic-size multiple populations genetic algorithm for multigravity-assist trajectory optimization. Journal of Guidance,

Control and Dynamics 2012, 35, 520–529.
9. Shirazi, A. Analysis of a hybrid genetic simulated annealing strategy applied in multi-objective optimization of orbital maneuvers. IEEE

Aerospace and Electronic Systems Magazine 2017, 32, 6–22.
10. Lawden, D.F. Optimal Trajectories for Space Navigation. Butterworths, 1963, pp. 54–60.
11. Longuski, J.M.; Guzmán, J.J.; Prussing, J.E. Optimal Control with Aerospace Applications. Springer, 2014, pp. 197–198.
12. Patterson, M.A.; Rao, A.V. GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive

Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming. ACM Transactions on Mathematical Software 2014, 41, 1–37.
13. Topputo, F.; Zhang, C. Survey of direct transcription for low-thrust space trajectory optimization with applications. Abstract and Applied

Analysis 2014, 2014, 1–15.
14. Conway, B.A. Spacecraft Trajectory Optimization. Cambridge, 2010, pp. 16–24, 49–62.
15. Gill, P.E.; Murray, W.; Saunders, M.A. SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization. SIAM Review 2005,

47, 99–131.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2021                   doi:10.20944/preprints202109.0226.v1

https://doi.org/10.20944/preprints202109.0226.v1

	Introduction
	Problem Formulation
	Equations of Motion
	Scaled Equations of Motion

	Low-Thrust Trajectory Optimization
	Indirect method
	Direct Method

	Numerical Results
	Conclusion
	References

