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Abstract—Unmanned aerial vehicles (UAVs)-based communi-
cation system is a promising solution to meet coverage and
capacity requirements of future wireless networks. However,
UAV-enabled communications is constrained with its coverage,
energy consumption, and flying regulations, and the number
of works focusing on the sustainability aspect of UAV-assisted
networking has been limited in the literature so far. In this paper,
we propose a solution to this limitation; particularly, we design a
Q-learning-based UAV positioning scheme for sustainable wire-
less connectivity considering key constraints, that are, altitude
regulations, non-flight zones, and transmit power. The objective
is to find the optimal position of the UAV base station (BS) and
minimize the energy consumption while maximizing the number
of users covered. Moreover, a weighting mechanism is developed,
where the energy consumption and number of users covered
can be prioritized according to network/battery conditions. The
proposed Q-learning-based solution is compared to the baseline
k-means clustering method, where the UAV BS is positioned
at the centroid location that minimizes the cumulative distance
between the UAV BS and the users. The results demonstrate
that the proposed solution outperforms the baseline k-means
clustering-based method in terms of the number of users
covered while achieving the desired minimization of the energy
consumption.

Index Terms—Sustainable wireless connectivity, energy sav-
ing, UAV, communication system, 5G, positioning, reinforcement
learning

I. INTRODUCTION

It has been a truism that the number of subscriptions to

mobile communication networks has been increasing over the

years, and that the newer generations have been becoming

more dominant than the legacy after a few years of their

first deployment. As seen in the report by Ericsson that the

number of subscriptions for the fifth generation of mobile

communications (5G) is projected to be around 3.5 billion

around the world [1]. On the other hand, the mobile data

traffic has also globally been on the rise; such that the same

report reveals that the global mobile data traffic increased by

46% during 2020 and the monthly total global data traffic was

more than 66 exabyte (EB) in the first quarter of 2021 [1].

All these statistics almost reach the same conclusion: the

number of users and the amount of data consumed per user

have been dramatically rising over the years. In 5G, on the

other hand, such increase is more highlighted due to the

fact that there are more demanding emerging applications,

including tactile Internet, 4K video streaming, online gaming,

etc., and the concept of Internet of things (IoT) has been

seriously proliferating, and pervading our daily lives with

a large inclusion in various domains, such as healthcare,

manufacturing, etc. [2]. This means that the two components

of the increase in the data traffic (i.e., number of connected

devices and the amount of data consumed per device) are

more challenging issues in 5G, as the aforementioned data-

hungry applications increases the amount of data consumed

while IoT greatly contributes to the number of connected

devices. Therefore, in 5G, the scale of the challenge is

multiplied compared to that of the legacy networks, and thus

there is more sophisticated solutions needed to tackle such

level of unprecedented challenge.

There have been various concepts and technologies pro-

posed in the literature in order to address the aforementioned

capacity issues. The use of millimeter-wave (mmWave) fre-

quencies, massive multi-input multi-output (mMIMO), and

network densification are some of the most popular and

practical ones among others [3]–[6]. Each of these tech-

nologies has different set of advantages and disadvantages,

however they mainly target capacity enhancement in mobile

communication networks. With mmWave communications,

for example, an additional spectrum added to 5G networks—

it has already been included in 5G New Radio (NR) as fre-

quency range-2 [7]—, and thus the capacity is increased with

this additional bandwidth. The use of higher carrier frequency

also enable smaller antenna sizes, which subsequently enables

mMIMO antenna array, enhancing the capacity further [3],

[5]. Network densification, on the other hand, offers deploy-

ments of smaller base stations (BSs) with comparatively less

antenna transmit power in order to reuse the frequency band,

leading to a great deal of capacity enhancement [3].

Even though all these solutions are quite beneficial in

enhancing the capacity of mobile communication networks,

there is still room for improvements, since the spatio-temporal

changes in wireless networks pose another type of challenges.

More specifically, unusual circumstances, including exposi-

tions, sport competitions, and musical concerts, where much

more people than normal gather together and significantly in-
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crease the demand for wireless communications1 are required

to be tackled in a more sophisticated and intelligent manner.

This is mainly because such kind of events do not happen

pretty often (only few times a year); hence, it is not a good

idea to design the network by taking them into consideration.

In this regard, BS mounted on UAVs (which will be referred

as to UAV BS hereafter) has been a promising solution to

meet the strict user requirements of coverage, capacity, and

quality of service (QoS). With the dawn of 5G network and

related technologies, the user requirements are getting diverse

as the users are from a diverse groups including conventional

user equipments (UEs), IoT devices, machines, vehicles, etc.

The UAV-assisted communication system is a solid use-case

for the next generation of mobile communications given that

UAVs are flexible, easy-to-deploy, and cost-efficient [8]. This

provides a boost to the terrestrial cellular infrastructure as

UAVs can be deployed to provide the extra coverage, or

increase the capacity in the given area.

Indeed, terrestrial mobile BS mounted on terrestrial ve-

hicles, including trucks, vans, and cars, would also offer

flexibility to some extent, as they are also capable of moving

according to the circumstances faced. However, UAV BSs are

deemed as more advantageous than their terrestrial counter-

parts due to multiple additional benefits [3], [9]. First, while

the terrestrial mobile BSs can also move in two dimensions,

due to the fact that UAV BSs can also alter their altitude,

giving them an extra degree-of-freedom [10]. Therefore,

they can provide better connectivity since line-of-sight (LoS)

becomes more likely with the required adjustments in terms

of the altitude. Second, terrestrial mobile BSs are restricted

with traffic regulations and with the planning of the environ-

ment (e.g., city); however, UAV BSs do not have such strict

regulations apart from some altitude restrictions. To this end,

UAV BSs are more suitable and feasible solutions in many

scenarios if they are managed properly.

The primary research challenges regarding the UAV-

assisted communication systems are as follows: i) determining

optimal positions of the UAVs; ii) finding optimal UAV

trajectory; and iii) meeting the regional regulations for UAVs.

Energy efficient networking with UAV BSs is at the core of

the discussion, since the UAVs are battery operated and have

limited energy capacity. This is one of the most important

limitations with UAV-assisted communications, requiring a

proper management; otherwise, the concept can get infea-

sible if the the flight time of UAVs cannot be sufficiently

prolonged2. Furthermore, UAV-based communication systems

represent even a more complex case, because the total energy

consumption depends on both the communication to the

1It has been quite a normal habit that people go online during these events
and broadcast live videos over their social media applications. Therefore, this
critically affects the data traffic in those regions. In other words, the problem
is not only that people accumulate around a specific region increasing the
population intensity, they also tend to consume more bandwidth with these
online video streaming applications.

2The sufficiency mentioned here should be discussed according to the
scenario; i.e., the conditions of the networks and the requirements of mobile
network operators as well as users, and hence it is quite hard to put a formal
and strict definition and/or a numerical value for it. However, the main idea
is to maximize the flight time of UAVs as much as possible.

ground users and flying on a predefined trajectory or simply

hovering over a fixed point. Besides, to cover as much as

users as possible while maintaining the energy efficiency is

an important aspect of UAV-assisted networking, since the

the main objective is to enhance the capacity of the network

in order to serve more users in temporally-dense networks.

Put it another way, energy efficiency is required to realize the

main objective, which is capacity enhancement in this case,

an thus the idea is to keep the UAV BSs more in the air

in order to serve more users in total. Therefore, in order to

capture this phenomena in our work, we consider both the

energy consumption and the total number of users covered as

objective functions of our novel problem formulation.

No-fly-zones (NFZs), which are restricted or prohibited

areas where UAV is not allowed to fly—such as military

bases—, are considered as a practical constraint in the de-

ployment phase of UAV BSs. This is because the optimal

UAV trajectory and positioning are affected from NFZs given

that UAVs will need to avoid those places even if they are

optimal positions. In other words, UAV BSs are supposed

to be positioned considering the NFZ constraints, bringing

additional challenge to the optimization process. In addition,

as aforementioned, there are also regulations on the minimum

and maximum altitude of the UAVs; such that the UAVs are

supposed to be within the allowed range in terms of their

altitude3. In this regard, in order to seize this idea of NFZs

and altitude regulations in this work, we consider them as

constraints in the problem formulation.

Machine learning is a promising solution for various do-

mains, such as agriculture [11], finance [12], healthcare [13],

due to its strong capabilities in terms of convergence, dy-

namism, and agility. It also has a considerable place in opti-

mizing wireless communications networks [14]–[18]. More-

over, it is envisioned that it will play rather a more critical

role in the upcoming generations of mobile communication

networks, such as sixth generation of mobile communication

(6G) [19]–[21]. Reinforcement learning (RL) has a special

place in machine learning, as it is structurally quite differ-

ent than supervised and unsupervised learning methods. RL

consists of a set of policy-based goal-seeking algorithms,

where an agent takes actions in a given environment in

order to maximize its reward or minimize the penalty, and

therefore RL is predominantly used in optimization problems

rather than time-series analysis, classification, or clustering as

supervised and unsupervised learning algorithms do.

RL has unique advantageous characteristics making it more

preferable than other types of optimization methodologies,

including heuristics. First, RL algorithms, such as Q-learning

and SARSA, are predominantly model-free, meaning that they

do not require the model of the environment-of-interest in

advance, they instead interact with the environment in order

to capture its dynamics [22]. Moreover, since RL algorithms

include learning in their body, they do not have to start from

scratch every time there is a change in the environment, they

rather adapt themselves to the changes, giving them a strength

3The altitude regulations vary for different countries and regions.
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of optimization with reasonable time complexity. This is an

essential feature for an optimization algorithm especially for

dynamic scenarios, where network conditions change rapidly

and frequently. To this end, we employ Q-learning, one of

the most common RL algorithms, in this work in order to

take the benefit of above-mentioned features.

A. Related Work

The literature on UAV-assisted communication systems will

be thoroughly evaluated in this subsection. In recent years,

numerous number of studies have been done in the field of

UAV-assisted wireless networking [23]–[32], but only a few

studies have looked at the flying regulations [33], [34]. In [8],

the authors presented a survey on the most recent research

possibilities and problems in the field of UAV aided wireless

networks. The key difficulties in UAV-assisted networking are

investigated, including 3D deployment, performance analysis,

channel modeling, and energy efficiency.

For the coexistence of UAVs and under-laid device-to-

device (D2D) communication networks, a tractable analytical

framework is proposed in [29]. The authors showed that flying

a UAV at the ideal altitude can result in the highest system

sum-rate and coverage probability. Furthermore, an optimal

trajectory design can reduce transmit power; however, net-

working under the UAV altitude regulations has not received

enough attention in the literature. The lowest and maximum

authorized altitudes of flying UAVs vary by country; for

example, European laws for flying UAVs establish the limits

of minimum and maximum allowed altitudes, which may

fluctuate in different regions of the world, and in [33], the

authors looked at the status of UAV-related regulations.

In the previous few years, numerous surveys and tutorials

have been released. The findings reveal that creating air

route networks is a scientifically sound and efficient way

to standardize and improve the efficiency of low-altitude

UAV operations . The most significant approach for UAV

regulation in urban regions, in terms of safety and efficiency,

is to enhance research that heavily relies on urban remote

sensing and Geographic Information System (GIS) technol-

ogy, as well as application demonstrations of low-altitude

public air route networks [33]. In [34], the authors discussed

the standardization initiatives for UAV-assisted UEs, UAV-

assisted BSs, UAV communication prototypes, and UAV-

assisted cellular communications cyber-physical security. The

usage of UAV-assisted communication has been suggested

as a possible approach for Internet of things (IoT) networks

in the literature [8], [35]–[37]. In [35], it was demonstrated

how to collect data in an energy-efficient manner for IoT

networks, and the best way to deploy and move several

UAVs was examined. The authors developed a framework

for concurrently optimizing UAV three-dimensional (3D) po-

sitioning and mobility, device-UAV association, and uplink

power regulation in their paper. First, the ideal UAV location

is identified based on the locations of active IoT devices at

each time instant. Next, the optimal UAV mobility patterns

were studied to dynamically serve the IoT devices in a time-

varying network. The goal is to utilize as little energy as

possible for the UAVs’ mobility while serving IoT devices.

For the coverage and rate analyses, a tractable analytical

framework is developed [28], wherein the UAV’s coexistence

with a D2D communication network is taken into account.

The interfering UAVs are considered in [38], while in [39],

the authors investigated the optimal 3D placement of multiple

UAVs, that use directional antennas, to maximize total cover-

age area. The authors in [40] analyzed the impact of a UAV’s

altitude on the sum-rate maximization of a UAV-assisted

terrestrial wireless network, and the 3D placement of drones

with the goal of maximizing the number of ground users

which are covered by the drone was investigated in [41]. The

minimum number of drones needed for serving all the ground

users within a given area was determined in [42]. In [43],

evolutionary algorithms were employed to find the optimal

placement of low-altitude platforms (LAPs) and portable BSs

for disaster relief scenarios, by deploying the UAVs at the

optimal locations, the number of BSs required to completely

cover the desired area was minimized. The authors in [44]

determined the optimal location of the UAV by maximizing

the average rate while ensuring that the bit error rate will not

exceed a specified.

Different considerations, such as flight time, energy lim-

its, ground user demands, flying regulations, and avoiding

NFZs, have a substantial impact on a UAV’s trajectory. For

maximizing the minimal average rate among ground users,

the authors in [45] proposed a simultaneous optimization

of user scheduling and UAV trajectory. While a number of

jammers with unknown locations sent jamming signals, the

authors in [45] presented a combination UAV and ground

users’ scheduling and transmit power allocation optimization

technique. The optimal trajectory of UAVs with multiple

antenna for maximum sum-rate in uplink communication

was researched [46]. The throughput maximization problem

in mobile relaying systems was investigated in [47] by

optimizing the source/relay transmit power along with the

relay trajectory, subject to practical mobility constraints such

as UAV’s speed and relay locations. The authors in [48]

proposed an E-Spiral algorithm for accurate photogrammetry

that considers the camera sensor and the flight altitude to

apply the overlapping necessary to guarantee the mission

success. This technique used an energy model to deter-

mine different optimal speeds for straight parts of the road,

thereby lowering energy consumption and improving the

energy model’s ability to estimate overall path energy. To

characterize the practical path planning requirements of UAVs

in difficult situations, the authors in [49] developed an energy-

aware multi-UAV multi-area coverage path planning model.

A bipartite cooperative coevolution (BiCC) algorithm was

suggested in this regard, which coevolves inter-area and intra-

area path planning components to generate good solutions.

In [50], the authors proposed a geometric planning-based

iterative trajectory optimization technique. To begin, graph

theory was used to generate all potential UAV-ground BS

association sequences, and candidate association sequences

were chosen based on the topological link between UAV and

ground BSs. Following that, an iterative handover location
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design based on the triangle inequality property is given to

calculate the shortest flying route with quick convergence and

minimal computation complexity. After that, by comparing all

of the possible trajectories, the optimal flight trajectory can be

determined. The authors presented a tradeoff between mission

completion time and flight energy usage [50].

In addition, recent research looks on multi-objective op-

timization of UAV assisted communication [51], [52]. Over

the course of a flight, a multi-objective optimization problem

is constructed to jointly optimize three objectives [52]: 1)

maximization of cumulative data rate, 2) maximization of

total gathered energy, and 3) reduction of UAV energy con-

sumption. Because these goals are incompatible, the authors

suggested an enhanced deep deterministic policy gradient

(DDPG) technique for learning UAV control policies with

multiple goals. In [53], the authors developed a mathematical

propulsion energy model for rotary-wing UAVs with the goal

of minimizing the total energy consumption of the UAV while

keeping all ground node data rates in consideration. The

authors suggested a new path discretization method for con-

verting the original optimization problem into a discretized

equivalent with a finite number of optimization variables, for

which the successive convex approximation technique yielded

a high-quality suboptimal solution.

B. Contributions

In this paper, a smart UAV positioning mechanism is

proposed by taking such regulation constraints into account

to provide sustainable wireless coverage and services to the

ground users under more realistic conditions. In particular,

we propose a Q-learning-based approach for UAV-assisted

communication systems. The optimal position of UAVs are

determined under the constraints of altitude regulations,

NFZs, and transmit power. The main contributions of the

paper are as follows:

• A smart UAV positioning mechanism for a sustainable

UAV communication system is proposed, under certain

constraints.

• A multi-objective optimization model is formulated, that

is, minimizing the energy consumption of UAV, while

maximizing the number of users covered.

• A weighting mechanism is developed in order to prior-

itize the two objectives given in the previous item over

each other for different scenarios.

• Q-learning based algorithm is used to find the optimal

position of UAV. The convergence of the developed

algorithm is first tested, followed by comparing its

performance with the baseline k-means method in terms

of number of users covered and energy consumption.

C. Organization of the Paper

The remainder of this paper is organized as follows. Section

II describes the system model including propagation and

energy consumption models, while Section III presents the

problem formulation. Section IV presents the proposed Q-

learning based UAV positioning mechanism, followed by

discussing the simulation scenario and the results in Section

V. Section VI concludes the the paper.

UE

UAV BS

Ground BS

NFZ

𝑥𝑦𝑧
𝜃

Fig. 1. The considered scenario depicting a ground macro BS that provides
a wide-range coverage and UAV BS that provides additional capacity to
the cellular network. A no-fly zone (NFZ), over which the UAV BSs are
prohibited to fly, is also illustrated.

II. SYSTEM MODEL

In this section, we will elaborate on the system modeling

of the work, including the scenario used, propagation and

energy consumption modeling.

A. Scenario

We consider a UAV mounted BS to provide coverage to nu

ground users distributed over a rectangular geographical area

of size a× b square-meter. Let U = {1, 2, 3, ..., nu} be a set

of nu users, and the UAV can move in any direction (x, y,

or z) to provide coverage to ground users based on the user

density. The total time of service Tt (in mins) is divided into

consecutive time-slots with equal duration of Td (in mins),

such that nts = Tt/Td is the number of time slots, and ~T
becomes a vector containing the consecutive time slots as
~T = [t0, t1, ..., tnts

]. The location of a user is represented by

(xu, yu, zu), where xu ∈ R
+ is in the range of xu = [0, a], and

similarly yu ∈ R
+ is in the range of xu = [0, b]. zu ∈ R

+

is assumed to be a constant number as z = hu, since we

consider the conventional mobile handsets, which are carried

around a similar height. In this work, we assume the height

of UEs to be hu = 1.5 meters.

The altitude of the UAV hd ∈ R
+ is in the range

of [hmin, hmax] where hmin and hmax are the minimum and

maximum allowed altitude4 of the UAV, respectively. For

instance, according to the European regulations for flying

UAV, hmin and hmax are 30 and 120 meters, respectively.

B. Propagation Model

The propagation model is inspired from [26], [31], wherein

the average path loss model for air-to-ground communication

can be characterized in terms of LoS links and non-LoS

(NLoS) links, given as

Lk
LoS = 20 log

(

4πfcdk
2

)

+ ηLoS,

Lk
NLoS = 20 log

(

4πfcdk
2

)

+ ηNLoS,

(1)

4According to the regulations of concerning country/region.
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where fc is the carrier frequency and dk is the Euclidian

distance between the UAV and user k, c is the speed of light,

ηLoS and ηNLoS are the mean value of the excessive path loss

(in addition to the free-space path loss) for LoS and NLoS,

respectively. The LoS link probability is given as

P k
LoS(ϑk) =

1

1 + ψ exp(−ς(ϑk − ψ))
, (2)

where ψ and ς are constant values depend on the environment,

ϑk = 180

π
arcsin( hd

dk
) is the elevation angle. Besides, the

NLOS link probability can be calculated as

P k
NLoS(ϑk) = 1− P k

LoS(ϑk). (3)

Therefore, the average path loss can be expressed as

Lk(hd, ϑk) = 20 log

(

4πfcdk
2

)

+ P k
LoS(ϑk)ηLoS+

P k
NLoS(ϑk)ηNLoS.

(4)

C. Energy Consumption Model

The energy consumption model is inspired from [31] where

it is modeled as a combination of the energy consumption

resulting from communication, UAV hovering, and UAV

mobility.

1) Communication Energy Consumption: The communi-

cation energy is needed to communicate with the ground

users; i.e., transmit/receive the signals to/from the users. As

such, the communication energy consumption of UAV EC can

be calculated as follows:

EC(tj) = (nu,tjPt + Pcu)tcm, (5)

where Pt is transmission power, Pcu is the on-board circuit

power, tcm is the duration to communication of UAV to user

j, and nu,tj is the number of users served by UAV during

time slot tj .

D. Hovering Energy Consumption

The hovering energy is required to keep the UAV up in

the air and stay at the right altitude, and the hovering energy

consumption of the UAV during time slot tj can be given as

EH(tj) = PHtH, (6)

where tH is the duration of hovering of UAV. PH (in Watts)

is the instantaneous hovering power consumption that can be

determined by

PH =
MG 3

2
√

2ρπβ2
, (7)

where M is the number of rotors of the helicopter, G is the

thrust (in Newton), ρ is the fluid density of the air, and β is

the rotor disk radius.

E. Mobility Energy Consumption

The mobility energy is needed to move the UAV to the

optimal position in order to serve the ground users. From

[31], the mobility energy consumption of the UAV can be

given as

EM(tj) = Ph

d(tj)

vh

+ I(∆h(tj))Pa

∆h(tj)

va

−(1− I(∆h(tj)))Pd

∆h(tj)

vd

,

(8)

where Ph is instantaneous power consumption for mobility

in the horizontal direction, Pa is the ascending power, Pd is

descending power. d(tj) the horizontal moving distance at

tj , while ∆h(tj) is the changes in the altitude of the UAV

at tj . vh, va, and vd are the horizontal, vertical (ascending),

and vertical (descending) velocities of the UAV, respectively5.

I(∆h(tj)) is the indicator function, such that [31]

I(∆h(tj)) =

{

1 ∆h(tj) > 0,

0 ∆h(tj) < 0.
(9)

Lastly, the power consumption of the horizontal direction is

as follows:

Ph = PP + PI, (10)

where PP is the parasitic power for overcoming the parasitic

drag due to the aircraft’s skin friction [31].

III. PROBLEM FORMULATION

The primary objective of this work is to maximize the

number of connected users while minimizing the total energy

consumption of the UAV BS in order to prolong its flight

time. In this regard, we aim at finding the optimal position

of the UAV BS and associate the ground users, which are

normally out-of-service due to the congestion in the terrestrial

network, to it so that the number of unconnected users are

reduced; however, it is important to consider the total energy

consumption of the UAV BS in order to maximize the service

duration given they they are battery operated and have limited

flight time. We also consider certain constraints, including

the NFZs (e.g., the UAV BS cannot fly over those forbidden

regions), the altitude regulations for UAVS, etc., thereby

determining the optimal positioning of the UAV BS by taken

into account both the requirements and constraints becomes

a non-trivial objective.

Theorem 1. The number of connected users, nc, can be

controlled by the altitude of the UAV BS, hd.

Proof. Let K be a rectangular prism with the base area of

AK = xKyK, xK and yK are the x and y dimensions of the

base of K that is placed on z = 0 plane. If we place the UAV

BS—with a directivity angle of θ—at any point inside K, the

radius of the footprint of the UAV BS can be calculated as

follows [23]:

Rd = hd tan

(

θ

2

)

, (11)

5For the details on the calculations of these velocities, please refer to [31].
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where hd is determined by

hd = |~N|, (12)

where |~N| is the length of the normal vector, ~N, from UAV

BS to the z = 0 plane. Then, the footprint of the UAV BS

can be found as

Ad = πR2
d . (13)

If a random point is selected on z = 0 plane, then the

probability of falling inside the footprint of the UAV BS can

be given as

pf =
Ad

AK

=
πR2

d

xKyK

, (14)

where AK is the base area of the rectangular prism K. Let pq

is the probability of receiving sufficient signal-to-noise ratio

(SNR6) for a UE, such that

pq = P (Sr ≥ Tmin), (15)

where Sr is the received SNR, while Smin is the minimum

required SNR value to establish a connection between the

UAV BS and the UE. We assume the ground BS uses a

different frequency band than the UAV BS, thereby it does

not create any interference to the UAV BS. Therefore, SNR

is a better choice here. Moreover, note that Ts captures

the receiver sensitivity of the user equipment (UE), and

pq encompasses small-scale and large-scale fading effects.

Therefore, for a UE, the probability of being served by the

UAV BS can be determined as

pc = pfpqpr, (16)

where pr is the probability of having enough resource for the

UE at the UAV BS, such that pr = P (BL ≥ BR), where BL

is the remaining radio resources at the UAV BS and BR is

the required radio resources for the UE. By substituting (11),

(13), and (14) into (16), we get:

pc = pqpr

πz2d tan
2
(

θ
2

)

xKyK

. (17)

Hence, it is obvious from (17) that the probability of being

served by the UAV is a function of the height of the UAV

BS and they have a direct proportionality.

Theorem 2. The total energy consumption of the UAV BS,

ET, can be controlled by the altitude of the UAV BS, hd.

Proof. Let ET be the total energy consumption of the UAV

BS, EC be the communication energy, EM be the energy

consumption during the UAV mobility. Suppose UAV moves

to the optimal position and attain optimal altitude to serve the

ground users.

The total energy consumption of the UAV BS can be

calculated as follows:

ET = EC + EH + EM. (18)

6It is worth noting that we assumed that the UAV BS is operating at an
out-of-band spectrum, and thus it does not cause any interference to the
terrestrial networks, or vice versa.

By substituting the EM from (8) into (18), we get

ET = EC + EH + Ph

d(tj)

vh

+ I(∆h(tj))Pa

∆h(tj)

va

−(1− I(∆h(tj)))Pd

∆h(tj)

d

.

(19)

It is obvious from (19) that the total energy consumption of

the UAV directly depends on the changes in the height of the

UAV as well as the movement in the horizontal direction.

A. Optimization Problem Formulation

There are two primary objective functions considered in

this work; namely, i) maximization of the number of served

users by the UAV BS (nc) and ii) minimization of the total

energy consumption of the UAV BS (ET). Therefore, these

two objective functions can be formulated as follows:

1) Maximization of Number of Served Users: The number

of served users by the UAV, nc is supposed to be maximized at

each time slot. Let F be the NFZ and a non-self-intersecting

convex quadrilateral that is defined by its vertices as ~Vi =
(xi, yi, zi), where i = 1, 2, 3, 4. Moreover, let ~C3d ∈ R

3 be

a vector containing the 3-dimensional (3-D) coordinates of

the UAV, and C2d be a point in xy-plane, representing the

projection of the UAV on the xy-plane, and imagine we draw

straight lines from each vertex of F to the point C2d. Then,

the optimization problem can be modeled as follows:

max
~C3d∈R3

f( ~C)

s. t. C1 : hmin ≤ hd ≤ hmax,

C2 : ∠A1 + ∠A2 + ∠A3 + ∠A4 < 2π,

C3 : θ < π,

C4 : Pt ≤ Ptmax
,

(20)

where ∠A1 = ∠V1C2dV2, ∠A2 = ∠V2C2dV3, ∠A3 =
∠V3C2dV4, and ∠A4 = ∠V1C2dV4. f : R

3 → R is the

objective function, and f( ~C) = nc in this case.

a) Explanations of Constraints in (20):

• C1: The altitude of the UAV (hd) is regulated in many

countries and regions, such that the maximum (hmax) and

minimum (hmin) altitudes that UAVs can flight are de-

termined. Therefore, in this work, the UAV is supposed

to obey these limitations in terms of the altitude.

• C2: Since F is defined as the NFZ, it means that the

UAV BS cannot fly over it. As such, this constraint

confirms that the UAV BS is flying out of F , such that

the projection of the UAV BS on the xy-plane, C2d, is

not within F .

• C3: The directivity angle of the antenna of the UAV

BS can be π at maximum7, but practically it should be

less than that in order to have a better antenna gain.

Though this could be normally not a hard constraint, in

this work we deal with the case where the antenna angle

7The use of an isotropic antenna is not a good idea for UAV BSs as they
are serving to the users under them in terms of height, and there is no sense
to provide a radiation above the UAV BS. Therefore, we assume that the
maximum antenna angle for the UAV BSs should be π.
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is less than π, thereby this becomes a constraint for the

optimization problem.

• C4: Given that the maximum transmit power of the BSs

are regulated, this constraint captures such regulations,

meaning that the transmit power of the UAV BS has an

upper bound.

2) Minimization of Energy Consumption: It is crucial to

minimize the energy consumption of the UAV BS in order for

it to stay in the air for a longer time so that the service that

the ground users get is prolonged. Put it another way, the

optimization objective elaborated in Section III-A1 focuses

on maximizing the number f connected users, nc, however,

such objective is instantaneous (i.e., for a duration of a single

time slot, Td) and does not aim to maximize nc for a period

of time. The total number of connected users over a period

of time considered can be calculated by

nc,t =

nts
∑

i=1

nc,i, (21)

where nc,i indicated the number of served users by the UAV

BS during time slot i from ~T . In (21), nts is a function of

Ts, such that nts = f(Ts), thereby although Ts is assumed

to be fixed here, normally it is dependent on the energy

stored in the UAV battery (i.e., battery capacity) as well as

the energy consumption of the UAV BS. Since the battery

capacity is fixed8, the only way left to prolong the UAV

flight time is reducing the energy consumption. Therefore,

the second objective of our problem formulation becomes

the minimization of the total energy consumption of the UAV

BS (ET), and that can be modeled as follows:

min
~C3d∈R3

g( ~C)

s. t. C1 : hmin ≤ hd ≤ hmax,

C2 : ∠A1 + ∠A2 + ∠A3 + ∠A4 < 2π,

C3 : θ < π,

C4 : Pt ≤ Ptmax
,

(22)

where g : R3 → R is the objective function, and g( ~C) = ET

in this case.

3) Multi-objective Problem Formulation: As detailed in

Sections III-A1 and III-A2, there are two distinctive objec-

tives included in our problem; i.e., maximization of connected

users—as given in (20)—and minimization of the energy

consumption of the UAV BSs—as given in (22). In this work,

we aim at optimizing the both objectives—(20) and (22),

simultaneously. In this regard, we developed the following

8We acknowledge that different UAVs have different battery capacities,
but here we mean that once a UAV is selected out of various options, the
battery capacity becomes something that cannot be changed/controlled.

optimization model:

max
~C3d∈R3

h( ~C)

s. t. C1 : hmin ≤ hd ≤ hmax,

C2 : ∠A1 + ∠A2 + ∠A3 + ∠A4 < 2π,

C3 : θ < π,

C4 : Pt ≤ Ptmax
,

(23)

where h : R3 → R is the objective function, and h( ~C) =
w1f( ~C) − w2g( ~C) = w1nc − w2ET in this case. Here,

w1, w2 ∈ R are coefficients used for two purposes:

• To prioritize one objective over the other. For example,

a mobile network operator may not be interested in the

energy consumption much, and focuses only on covering

as much as users as possible for a short duration,

and it would choose w1 ≫ w2. On the other hand,

if the operator ranks both objectives equally, then it

would choose w1 = w2. Therefore, w1 and w2 allow

the operators to rank the objectives according to their

requirements.

• To make the units of both f( ~C) (unitless) and g( ~C) (in

Joules) the same, since h( ~C) includes the summation of

f( ~C) and g( ~C). To this end, while w1 is chosen to be

unitless, w2 is in (1/Joules).

IV. PROPOSED Q-LEARNING BASED UAV POSITIONING

MECHANISM

In RL, there is an agent taking actions to find the optimum

policy for a given problem. Based on the action of the agent,

first, corresponding state is observed, followed by evaluating

the subsequent penalty/reward function. Then, the action-

value function, storing calculated penalty/reward values for

all the states and actions, is updated [22]. The agent takes

action in two different ways: explore and exploit. In the initial

phases of the implementation, the agent is expected to explore

more in order to discover the environment better. However,

after a sufficient exploration, the agent should start exploiting

the available information to be able to focus on finding the

best policy.

We adopted OpenAI Gym [54] tool for building envi-

ronment for this study. It is based on episodic RL, where

experience of each agent is divided into episodes. In initial

state of each episode, we randomly localize the UAV BS

and the users in a grid, and learning proceeds until the

environment reaches one of the stopping criteria (this will

be detailed in the following paragraphs). The main goal here

is to maximize the total reward per episode and to decrease

the number of episodes for achieving desired performance.

RL steps in each episode are given in Algorithm 1, where st
and st+1 are the current and next states, respectively, and at
is the current state while Rt+1 is the expected value of the

reward function.

In this study, states refer to the position of the UAV in the

grid. The agent in the developed Q-learning algorithm has

seven action values for each state, which denote the agent

action at in UAV state of st at time t. The possible actions for
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Algorithm 1: Q-learning algorithm [22]

1 Initialise Q(s, a);
2 for each episode do

3 Initialise s
4 done ← False ⊲ A variable is introduced for a stopping criteria check

5 for each iteration do

6 while not done do

7 Select at ⊲ Action is chosen according to the adopted policy

8 Take action, at ⊲ The selected action is taken within the environment

9 Determine Rt+1 ⊲ Expected numeric value of the reward function is calculated

10 Obtain st+1 ⊲ The next state is determined

11 Update Q(st, at) ⊲ The action-value function (Q-table) is updated

12 st ← st+1 ⊲ The next state is assigned as the current state Check the stopping criteria

13 if Stopping criteria then

14 done ← True ⊲ If the stopping criteria is met, then execute the iterations and go the next episode

15 end

16 end

17 end

18 end

each state st are hold, move up, move down, move left, move

right, move forward, and move backward. The agent follows

ǫ-greedy [22] policy to take random actions initially—which

is referred to as exploring— and decays ǫ through iterations—

which is referred to as exploiting— for decreasing random

actions. Given that the main goal of this study is to optimize

energy consumption of the UAV along with maximizing user

coverage, the reward function in the proposed method is inline

with the objective function in (23), and depends on the energy

consumption and coverage.

The components of the developed Q-learning algorithm

for the problem of UAV BS positioning are detailed in the

following paragraphs.

A. Environment

We create discrete environment with finite size (grid)

representing the state of UAV in OpenAI-Gym. The size

of the grids in the environment-of-interest in this study is

(25, 25, 12), which is simulated with 10 meter-resolution

in each axis. Therefore, the real environment size becomes

(250, 250, 120) in meters. These certain dimensions of the en-

vironment are chosen by considering both the computational

burden and the reality of the work; such that, the environment

should be in a size of some realistic area (and the UAV

BS should be able to have sufficient degree of freedom in

movement) while not bringing much computational burden

(the simulation time should be reasonable for us to make

some tuning during the design of the algorithm). However, we

intuitively confirm that the developed algorithm would work

in any environment size, as the UA BS can only move slightly

at one iteration thereby extending the size of the environment

would not affect the performance of the algorithm other than

prolonging the simulation time.

B. Agent

The UAV BS in the state st corresponds to the agent

in this study. It will take an action, at, in state st, and it

receives an observation and reward from the environment.

Accordingly, it updates Q-table in order to learn the dynamics

of the environment, and adapt itself to the changes. It is

quite convenient to choose the UAV BS as the agent in the

developed Q-learning algorithm, as it is the only one taking

different actions; e.g., moving in different directions.

C. Actions

We consider seven different actions that agents can take.

Let ~C3d = (xu, yu, zu) be the current position of the UAV

BSs and
~̂
C3d be the position after an action taken, while r (in

meters) denotes the step size in any direction. Then the list

of the actions that the agent takes is as follows:

•
~̂
C3d = (xu, yu, zu + r) : Move up (in z direction)

•
~̂
C3d = (xu, yu, zu − r) : Move down (in z direction)

•
~̂
C3d = (xu + r, yu, zu) : Move left (in x direction)

•
~̂
C3d = (xu − r, yu, zu) : Move right (in x direction)

•
~̂
C3d = (xu, yu + r, zu) : Move forward (in y direction)

•
~̂
C3d = (xu, yu − r, zu) : Move backward (in y direction)

•
~̂
C3d = (xu, yu, zu) : Hold

D. States

We denote state s as the position of the UAV in a 3D

space. We divide 3D space into grids (i.e., we discretized the

state space) for having finite set of state that can be used in

Q-learning. This state selection is inline with the criterion

given in [22], such that the state should be affected by the

actions that the agent takes. As such, the actions of the agent

is fundamentally altering the 3D position of the UAV BS,

which changes the state of the agent, which is also defined

to be the 3D position of the agent.
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E. Reward

In order to avoid the limitations of the work (or respect

the constraints, in other words), a penalty mechanism is

developed, such that the agents obtains a reward of -1 when

the UAV BS

• goes beyond the dimensions of the environment,

• flies on the NFZ,

• does not respect any other constraint in (23).

On the other hand, a reward function is designed for the

cases where the UAV BS is not in one of the states listed

above. Since the main goal is to optimize energy consumption

along with maximizing number of user covered, the reward

is defined inline with the optimization objective in (23), such

that

Rt+1 = h( ~C) = w1nc − w2ET. (24)

The selection of the reward function as in (24) (i.e.,

making it equal to h( ~C)) is a legitimate decision, because

the the objective of the developed Q-learning algorithm is to

maximize the reward, R, and the objective function in (23)

is the maximization of h( ~C). Thus, making the reward equal

to h( ~C) is completely inline with the model in (23).

F. Policy

We follow an ǫ-greedy policy [22] in order to explore the

environment by taking random actions in earlier iterations

(exploration phase). As the iterations proceed (e.g., the num-

ber of the iterations get larger), we turn the exploration phase

into the exploitation phase by decreasing ǫ with a decay-rate

of 0.01. This is done in order to allow the agent explore and

acquire new experiences during the exploration phase, while

in the exploitation phase it uses the obtained experience to

converge to an optimal value.

G. Q-table Update

We update the Q-table according the action at in the state

st using:

Q(s, a) =: Q(s, a)+

α[Rt+1 + γmax(Q(st+1))−Q(s, a)]
(25)

where α is the learning-rate, and γ is the discount rate. Q-

table update is crucial in storing the obtained experience as

well as modifying it with the new data.

H. Initialization

In each episode, the UAV BS and the users are located

randomly in the grid, so that the agent does not “memorize”

(or it is called as overfitting in more technical terminology) a

certain environment, instead produce a more generic model.

I. Episodes

The episode is considered as a snapshot of the environment

in the problem formulation. The agent takes random actions

in each episode and learn the environment using Q-table

with (25) by evaluating the reward, R, through (24). When

the the agent reaches stopping criteria, a new episode begins.

TABLE I
SIMULATION PARAMETERS

Parameter Value

General

Carrier frequency, fc 1 GHz
Antenna directivity angle, θ 60◦

Minimum UAV height, hmin 30 m
Maximum UAV height, hmax 120 m

Urban Area 250 times 250 m2

Total number of users, nt 100
Height from ground for all UEs 1.5 m
Speed of light, c 3e8 m/s
ηLoS 1.6 dB
ηNLoS 23 dB
Parameter of A2G path loss model, Ψ 12.08
Parameter of A2G path loss model, ζ 0.11
Number of rotors, M 4

Fluid density of the air, ρ 1.2 Kg/m3

Rotor disk radius, β 0.25 m
Weight of the frame 1.5 Kg
Weight of the battery and payload 2 Kg
Bandwidth 180 kHz
Transmit power, Pt 30 dBm (1 W)
On-board circuit power, Pcu 0.01 W
Duration of hovering of UAV, th 1 s
Duration to communication of UAV, tcm 1 s
Velocity of the UAV, v 30 m/s
Angular velocity, ω 40 rad/s
Drag coefficient 0.025
Rotor chord, cb 0.022 m

Reference frontal area of the UAV 0.192 m2

Q-learning

Discount rate, γ 0.9
Epsilon, ǫ 1
Epsilon decay, ǫ-decay 0.95
Learning rate, α 0.9
Learning rate decay, α-decay 1e-4

J. Stopping Criteria

If the predefined maximum number of iterations is reached

or all the users are covered by the UAV BS, the current

episode is terminated, and the algorithm goes into a new

episode. The maximum number of iteration is set to 2000

in this work.

V. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of

the proposed methodology. After describing the simulation

scenario, we introduce the benchmark method as well as

the performance metrics, followed by presenting the obtained

results and corresponding discussions. The parameters used

in the simulation campaigns are given in Table I.

A. Simulation Scenario

We implement a simulation scenario in order to evaluate the

proposed Q-learning algorithm. An urban area of 250× 250
m2—which is discretized by means of square-shaped grid—

and nt = 100 total number of users (that are normally

out-of-service from the terrestrial network) are considered.

Consequently, the UAV can move in the discretized 3D space

in terms of x, y, and z coordinates. Furthermore, due to the

regulations, we impose a minimum and a maximum altitude
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of hmin = 30 and hmax = 120 meters, respectively, and

a certain number of NFZs, corresponding to specific not

allowed grids. As regards to the user mobility, we consider a

random walk model, and the height from ground for all UEs

is fixed to 1.5 meters. Furthermore, we assume the directivity

angle θ = 60◦ and the carrier frequency fc = 1 GHz. An

initialization procedure is performed in order to explicate the

initial conditions. In particular, the values for all the involved

parameters are determined, considering arbitrary positions for

the UAV BS and the users. An outage threshold is calculated

considering a required minimum received power to establish

and maintain with a certain QoS a connection between the

UE and the UAV BS, called Prmin
. For a given transmitted

power for the UAV BS, Pt—lower than the maximum allowed

value, Ptmax
—, and the above-mentioned Prmin

, the path loss

experienced by the UE, L, can be expressed by the following

relation, L = Pt − Prmin
. Considering the 2D position of

the UAV BS (C2d), the QoS constraint can be expressed in

terms of L lower than Lmax [26], where Lmax is the path loss

experienced by edge users. The footprint of the UAV BS, on

the other hand, can be considered as a circle centered in the

2D position of the UAV BS (C2d).

B. Benchmark and metrics

In this work, k-means algorithm is employed as a bench-

mark method, since it has been widely used in similar prob-

lems [23]. k-means is an unsupervised clustering algorithm,

where the data points are clustered according to certain

features. In k-means, a centroid is assigned to each cluster and

the objective is to place the centroids to the position which

yields minimum cumulative distance to the data points. In

particular, in the initialization of the algorithm, the centroids

are placed randomly and the data points are assigned to each

centroid to form a cluster, and the assignment is done in a

way that each data point is assigned to the cluster that is

closest to it in terms of Euclidian distance. Then, the centroids

are moved towards to the center of their clusters, and this

process iteratively continues until the convergence, where the

centroids cannot be moved anymore.

Therefore, as this algorithm finds the position of the

centroid, where the cumulative distance between the centroid

and the data points is the minimum, it serves as a strong

benchmark for this problem. In particular, if the UAV BS is

considered as the centroid, while the ground users are the

data points, the k-means algorithm positions the UAV BS

at a point where it is closest to the ground users in terms

of distance. Given that the distance is the primary parameter

affecting the link quality between the transmitter and receiver,

k-means algorithm becomes a appropriate benchmark. With

this algorithm, we compute the centroid position related to

the actual ground users’ positions. Consequently, the centroid

corresponds to the best 2D position for UAV, in terms of

respective distances between UAV and ground users.

Two different phases, one for training and one for test-

ing, respectively, are performed in order to demonstrate the

efficiency of the proposed Q-learning algorithm in terms of

coverage and energy consumption. Regarding the coverage,

we count the number of ground users, which are normally out

of service from the terrestrial network, connected to the UAV

BS, and the more users covered means a better performance

in terms of the coverage. In the energy consumption, we

measure the total energy consumption, ET, of the UAV BS

while it is providing service to the users, and the less energy

consumption refers to a better performance in terms of the

energy consumption as the flight time of the UAV BS is

prolonged.

During the training phase of the developed Q-learning

algorithm, the simulation is conducted through a certain

number of episodes, in order to populate the related Q-table

and consequently achieve the needed learning. A trade-off

between coverage and energy consumption prioritization is

considered both in training and testing phases. Specifically,

five different experiments are performed with different values

of the weights (e.g., w1 and w2) that are responsible of

prioritizing the coverage or the energy consumption.

C. Simulation Results

Fig. 2 demonstrates the averaged and normalized results

in terms of energy consumption (orange bars) and covered

users (green bars) for different altitudes through k-means

algorithm. It is worth noting that, since the k-means algorithm

determines the 2D position of the UAV BS, the altitude of

the UAV BS should also be determined. Although there are

different methods in order to determine the altitude, such as

a trigonometric approach is used in [23], those usually do

not consider the altitude regulations for the UAVs. In this

work, on the other hand, considering such regulations, we

used different fixed levels for the altitude of the UAV BS.

In particular, three different altitude levels are considered:

i) minimum allowed altitude (hmin =30), maximum allowed

altitude (hmax =120 m), and the middle point between the

two

(

hmax + hmin

2

)

=75 m.
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Fig. 2. Single UAV positioning for different altitudes through k-means.

From (11) it is understood that the value in the second

case, i.e. with maximum allowed height of 120 meters, can
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be assumed as the upper-bound in terms of coverage, since in

this case the UAV is placed in the best 2D position with the

maximum allowed height, that means the maximum achiev-

able coverage area with respect to the size of the considered

urban area, consequently obtaining the maximum number of

covered users. A similar consideration can be done for this

case (i.e., hmax =120 m) in terms of energy consumption.

Since all ground users are covered at the first iteration, one of

the stopping criteria is readily matched, thereby no movement

is performed by the UAV, resulting in energy consumption due

to mobility equals to zero. For the two remaining cases, with

altitudes of 30 and 75 meters, respectively, the results in terms

of coverage can be considered as lower-bound and median

values, since as previously stated, the coverage area, and sub-

sequently, the number of covered user are highly dependent

on the considered altitude of the UAV BS. Lastly, considering

the energy consumption results, the UAV BS exploits the

maximum number of allowed iterations attempting to match

the stopping criteria for coverage, consequently resulting in

the maximum value for energy consumption due to mobility.
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Fig. 3. Q-learning algorithm convergence in terms of rewards for different
set of weights for 2000 episodes.

Fig. 3 presents the results in terms of achieved rewards,

after an initial phase, the convergence of the Q-learning

algorithm occurs, demonstrating the effectiveness of the Q-

learning algorithm. One of the important takeaway from the

findings in Fig. 3 is that, regardless of the weighting approach

(e.g., for different w1 and w2 values), the designed Q-learning

algorithm converges to the final reward. This confirms the

proper design of the algorithm, and is a clear sign that it can

work in various scenarios.

Following the above assumptions, the efficiency of the

proposed Q-learning algorithm is verified through the testing

phase, with the UAV BS positioning optimization through k-

means as a benchmark. In this phase, the UAV BS is located

in the above-mentioned simulated scenario and an arbitrary

uniform distribution for the ground users is considered. The

testing phase is conducted performing a certain number of

runs, in order to average the results with regard to the

specified parameters. Fig. 4 shows the single UAV BS position

optimization for different set of weights and the results
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Fig. 4. Monte Carlo test results. Single UAV position optimisation compar-
ison for different set of weights.

are the normalized version of the average values between

0 and 1. The goodness of considering a trade-off between

coverage and energy consumption, achieved by means of

the two different weights, is mostly visible in two of the

five experiments. In particular, it can be seen that for the

w1 =0.2 and w2 =0.8, the best average energy consumption

is achieved, whereas for the weights w1 =0.0 and w2 =1.0,

best overall coverage, and rewards are obtained. In other

words, the proper performances of the above-mentioned trade-

off can be observed from the results in Fig. 4. Effectively,

when energy consumption is not prioritized, the UAV BS finds

the optimum position in fewer episodes but at the expense of

a higher energy consumption, conversely in the remaining

cases. Therefore, it is worth mentioning that the designed

weighting mechanism works well, as the performance of the

Q-learning algorithm is deeply affected by the numerical

values of the wights. However, these results does not only

affirm that the weighting mechanism works, but also gives

superiority to the proposed approach, as it can converge

to a solution according to the requirements of the network

operators.

VI. CONCLUSION

In this paper, a smart UAV BS positioning mechanism

was proposed by taking altitude regulations as well as NFZs

into account along with some hard constraints, including

maximum transmit power and directivity of the UAV BS

antenna, to provide sustainable wireless coverage and services

to the ground users under more realistic conditions. As

such, first, two different optimization models were developed

for the minimization of the energy consumption and maxi-

mization of the number of users covered. Then, these two

distinctive models are combined with a weighting mecha-

nism, and a multi-objective optimization problem formulation

was developed. With the developed weighting mechanism,

wireless networks operators become capable of positioning

the UAV BSs according to their requirements by relatively

ranking the energy consumption and the number of users

covered. We proposed a Q-learning-based approach for UAV-

assisted communication systems, and the OpenAI Gym tool

was used to build the RL environment. The objective is

to find the optimal position of the UAV and minimize the
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energy consumption while maximizing the number of users

covered. The results demonstrate that the proposed solution

outperforms the baseline k-means method in terms of covered

users, while achieving the desired minimization of the energy

consumption.
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