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Supplementary material 

A. Flow chart for the simulations (page 2).  
B. Python code for the simulations: (page 3 to 9) The code for the core program is given, 

which was modified according to the questions being asked.  
C. Details of symmetry analysis of peaks. (page 10) 
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    """ Importing required modules """
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns 
    from mpl_toolkits.mplot3d import Axes3D
    #np.random.seed(0)

    """ Initialization of required parameters which have constant values """
    N = 5000                                 # Population size
    T = 500                                  # Time interval 
    NN = np.arange(0, N)                      # Population size in array format 
(for plotting purposes)
    TT = np.arange(0, T)                      # Time interval in array format 
(for plotting purposes)
    P_r = 0.2                                 # Probability that an infected 
individual is cured  
    I_mf = 200                                # A constant increment in immunity 
whenever a person is cured of infection. (Units = EU)
    I_sce = 20                                # A constant level of exposure that
ensures subclinical exposure induced immunity with a probability 0.5. (Units = 
EU)
    I_d = 3                                   # A small decrement by which 
immunity decreases every time unit if not exposed or infected. (Units = Eu)
    I_c = 30                                  # Constant Immunity increase due to
cross-immunity
    a = 2                                     # Parameter deciding the sharpness 
of the sigmoid relationship 
    r = 0.1                                   # Restriction parameter
    P_c = 0.1*r                               # Cross immunity parameter
    I_cmax = 30*r                             # Maximum number of infective 
patients with which a normal person can come in contact 
    K = 2500                                  # Half-saturation constant of the 
equation.

    # Creating empty 2D array of P values. This array would represent the 
modified probability of infection for each individual with respect to time.
    Pone = np.zeros((N, T))
    # Creating empty 2D array of P values. This array would represent the 
modified probability of infection for each individual with respect to time.
    Ptwo = np.zeros((N, T))
    # Creating empty 2D array of P_inf(i,t) values. This array would represent 
the probability of infection for each individual with respect to time.
    P_inf = np.zeros((N, T))
    # Creating zeros 2D array of P_sce(i,t) values. This array would represent 
the probability of sub-clinical exposure for each individual with respect to 
time.
    P_sce = np.empty((N, T))
    # Creating 2D array of ID_50(i,t) values and assigning values from the 
standard normal distribution. This array would represent the time evolution of 
the immunity of each of the individuals with respect to time.
    ID_50 = np.zeros((N, 1))                              



    # Creating array of E(i,0) values and assigning values from the normal 
distribution with mean = 70, sd = 30 (for t = 0 case). This array represents the 
expose bias of each of the individuals at initial time.
    E = np.zeros((N, 1))
    # Creating array of S(i,t) values. These are the infective states of the 
individuals with respect to time.
    S = np.zeros((N, 1))
    # Creating Array which will show the time evolution of I (Total infective 
state of the population)  
    I = np.zeros((T,1))   
    # Creating array of SCE_50(i,0) values and assigning values from the normal 
distribution. This array represents the constant level of exposure of each of the
individuals at initial time.
    SCE_50 = np.zeros((N, 1))

    for j in range(N):
        x1 = np.random.choice(np.arange(0, 2), p=[0.95, 0.05])
        S[j, 0] = x1  
        x2 = round(np.random.normal(20*r, 0.01), 3)
        if (x2 < 0):
            x2 = 0.0001
            E[j, 0] = x2
        else: 
            E[j, 0] = x2
        x3 = round(np.random.normal(100, 30), 3)
        if (x3 < 0):
            x3 = 0.0001
            ID_50[j, 0] = x3
        else:
            ID_50[j, 0] = x3
        x4 = round(np.random.normal(20, 5), 3)
        if (x4 < 0):
            x4 = 0.0001
            SCE_50[j, 0] = x4
        else:
            SCE_50[j, 0] = x4
        
    print('Top to bottom - Individuals (0 to N) \nLeft to right - Time steps (0 
to T) \nFirst column contains the values for T = 0 \n')
    print("1. Initial State of the individuals in the population -- S(i,0):")
    print(S)
    print("\n 2. Initial expose bias of the individuals in the population -- 
E(i,0):")
    print(E)
    print("\n 3. Initial distribution of population immunity levels -- 
ID_50(i,0):")
    print(ID_50)

  
    X = np.zeros(T)
    for t in range(T):

      P_inf_temp = np.zeros((N,))
      P_sce_temp = np.zeros((N,))
      P1_temp = np.zeros((N,))



      P2_temp = np.zeros((N,))
      S_temp = np.zeros((N, 1))
      ID_50_temp = np.zeros((N, 1))
      I_trans_temp = np.zeros((N, 1))
      I[t] = np.sum(S[:,-1])
      for n in range(N):
       I_trans_temp[n] = (I_cmax * I[t])/(K + I[t])
       P_inf_temp[n] = (E[n][0])**a / ((ID_50[n][-1]**a) + 

(E[n][0]**a))
       P1_temp[n] = 1-((1-P_inf_temp[n])**(I_trans_temp[n]))
       P_sce_temp[n] = (E[n][0])**a / ((SCE_50[n][0]**a) + 

(E[n][0])**a)
       P2_temp[n] = 1-((1-P_sce_temp[n])**(I_trans_temp[n]))
       # Condition to be imposed when S(t) = 1
       if S[n][-1] == 1:
        x4 = round(np.random.random(), 3)
        if x4 < P_r:
         S_temp[n] = 0
         ID_50_temp[n] = ID_50[n][-1] + I_mf
        else:
         S_temp[n] = 1
         x5 = round(np.random.random(), 3)
         if x5 < P1_temp[n]:
          S_temp[n] = 1
          ID_50_temp[n] = ID_50[n][-1]
         else:
          S_temp[n] = 0
          x6 = round(np.random.random(), 3)
          if x6 < P2_temp[n]:
           ID_50_temp[n] = 

ID_50[n][-1] + I_sce
          else:
           if (ID_50[n][-1] - I_d < 

0):
            ID_50_temp[n] = 0
           else:
            ID_50_temp[n] = 

ID_50[n][-1] - I_d
       # Condition to be imposed when S(t) = 0
       else:
        x7 = round(np.random.random(), 3)
        if x7 < P1_temp[n]:
         S_temp[n] = 1
         ID_50_temp[n] = ID_50[n][-1]
        else:
         S_temp[n] = 0
         x8 = round(np.random.random(), 3)
         if x8 < P2_temp[n]:
          x9 = round(np.random.random(), 3)
          if x9 < P_c:
           ID_50_temp[n] = 

ID_50[n][-1] + I_sce + I_c
          else:
           ID_50_temp[n] = 



 ID_50[n][-1] + I_sce
         else:
          x9 = round(np.random.random(), 3)
          if x9 < P_c:
           if (ID_50[n][-1] - I_d - 

I_c < 0):
            ID_50_temp[n] = 0
           else:
            ID_50_temp[n] = 

ID_50[n][-1] - I_d + I_c
          else:
           if (ID_50[n][-1] - I_d < 

0):
            ID_50_temp[n] = 0
           else:
            ID_50_temp[n] = 

ID_50[n][-1] - I_d
      ID_50 = np.hstack((ID_50, ID_50_temp))
      S = np.hstack((S, S_temp))
      P_inf[:,t] = P_inf_temp
      P_sce[:,t] = P_sce_temp
      Pone[:,t] = P1_temp
      Ptwo[:,t] = P2_temp
      x = np.mean(ID_50[:,t])
      X[t] = x
      #print('\n')
      #print("Infective state of the population:")
      #print(I[t])
      #print("Altered state of the population:")
      #print(S)

    np.savetxt('ID_50 (0.0, 20*0.0).csv', ID_50, delimiter=',', fmt='%s')
    np.savetxt('Infection state (0.0, 20*0.0).csv', I, delimiter=',', fmt='%s')
    np.savetxt('Mean ID_50 (0.0, 20*0.0).csv', X, delimiter=',', fmt='%s')
    print("\nOverall trend:")
    np.set_printoptions(suppress=True)
    print(I.reshape(1,T))
    print("\nMean Immunity levels:")
    np.set_printoptions(suppress=True)
    print(X)

   
    print(P_inf.shape)
    print(P_sce.shape)
    print(S.shape)
    print(ID_50.shape)
    print(I.shape)

   
    plt.figure(figsize=(10, 7))
    X = np.zeros(T)
    for t in range(T):
        x = np.mean(ID_50[:,t])
        X[t] = x



    plt.plot(TT, X)
    plt.plot(TT, I)
    plt.title("Trend of Infective state and Mean ID50 with time")
    plt.xlabel("Time")
    plt.ylabel("I(t)")
    plt.legend(["Mean ID50", "$I(t)$ vs $t$"])
    plt.grid(linewidth=0.5)
    plt.show()

    plt.figure(figsize=(10, 7))
    X = np.zeros(T)
    for t in range(T):
        x = np.mean(ID_50[:,t])
        X[t] = x
    fig, ax2 = plt.subplots()
    ax1 = ax2.twinx()
    ax1.plot(TT, X, color = 'darkorange', label = 'Mean ID50')
    ax2.plot(TT, I, color = 'green', label = '$I(t)$ vs $t$')
    ax1.set_xlabel('Time')
    ax1.set_ylabel('ID_50(i,t)')
    ax2.set_ylabel('I(t)')
    # Adjust axis limits based on estimates from abve graph
    ax1.set(xlim =(-1, 150), ylim =(0, 200), autoscale_on = False)   
    ax2.set(xlim =(-1, 150), ylim =(0, 700), autoscale_on = False)
    ax2.set_yticks(range(0, 700, 100))
    ax2.grid(linestyle='-', linewidth=0.5)
    fig.legend(loc='upper right')
    ax1.title.set_text('Trend of I(t) and Mean $ID_{50}(i,t) \ for \ (1.0, 
100)$')
    plt.show()

    fig = plt.figure(figsize=(10, 10))
    ax = fig.add_subplot(111, projection='3d')
    nbins = 50
    color = ['orange','green', 'red', 'gold', 'magenta', 'blue']
    time_step = [500, 400, 300, 200, 100, 0]
    for c, t in zip(color, time_step):
        arr = ID_50[:, t]
        thresh = 200
        true_vals = arr > thresh
        true_sum = np.sum(true_vals)
        false_vals = np.array([i for i in arr if i < thresh])
        hist, xbins = np.histogram(false_vals, bins=nbins)
        new_hist = np.append(hist, t)
        new_bins = np.append(xbins, 225)
        xs = (new_bins[:-1] + new_bins[1:])/2
        ax.bar(xs, new_hist, zs=t, zdir='y', color=c, alpha=1.0)
        ax.title.set_text('Histogram of $ID_{50}$ for various time steps (CI 
parameter = 0.0)')
        plt.xticks(range(0, 250, 25))



        #labels = ('0', '25', '50', '75', '100', '125', '150', '175', '200', 
'200')
        #plt.xticks(labels)
        ax.set_xlabel('$ID_{50}$')
        ax.set_ylabel('Time')
        ax.set_zlabel('Frequency of values')
        print(true_sum)
    plt.show()

    #fig = plt.figure(figsize=(15, 15))
    fig = plt.figure()
    ax = fig.add_subplot(3, 3, 1)
    sns.kdeplot(ID_50[:, 0], fill=True, ax = ax)
    ax = fig.add_subplot(3, 3, 2)
    sns.kdeplot(ID_50[:, 100], fill=True, ax = ax)
    ax = fig.add_subplot(3, 3, 3)
    sns.kdeplot(ID_50[:, 200], fill=True, ax = ax)
    ax = fig.add_subplot(3, 3, 4)
    sns.kdeplot(ID_50[:, 300], fill=True, ax = ax)
    ax = fig.add_subplot(3, 3, 5)
    sns.kdeplot(ID_50[:, 400], fill=True, ax = ax)
    ax = fig.add_subplot(3, 3, 6)
    sns.kdeplot(ID_50[:, 500], fill=True, ax = ax)
    plt.show()

    f, ax = plt.subplots(3, 3)
    ax[0, 0].hist(ID_50[:, 0])
    ax[0, 1].hist(ID_50[:, 100])
    ax[0, 2].hist(ID_50[:, 200])
    ax[1, 0].hist(ID_50[:, 300])
    ax[1, 1].hist(ID_50[:, 400])
    ax[1, 2].hist(ID_50[:, 500])
    plt.show()

    t = 0
    n = 11          # Number of time steps for which histogram is to be plotted 
(t = 0 included)
    #T = 500        # To be defined in accordance with the value at the beginning
of the program
    x = 50          # Increment of time steps. x = T/(n-1) is to be followed
    bins = 20
    for i in range(n):
        arr = ID_50[:, t]
        thresh = 200
        true_vals = arr > thresh
        true_sum = np.sum(true_vals)
        false_vals = np.array([i for i in arr if i < thresh])
        sns.histplot(false_vals, bins=bins, color='b')
        #plt.ylim(0, 700)
        plt.bar([205], [true_sum], width=10, color='b')



        plt.show()
        t += x



Analysis of symmetry of peaks in the incidence curves

The dwarf peaks, i.e. peaks and decline at a much smaller height than the expected herd immunity 
threshold can be potentially explained by two alternative hypotheses. (i) The NPIs being responsible 
reducing the R to a value <1. (ii) The SIE as in our model. The differential predictions of the two 
alternative hypotheses are that by hypothesis (i) no symmetry around the peak is predicted whereas 
hypothesis (ii) predicts that a steeper upward slope 

We examine the symmetry of peaks as follows. In the daily new incidence curve on the 7 day running 
average data between March 2020 to 15
compared to the higher of the two baselines (figure 1) are taken for analysis. Smaller curves are avoided 
since stochastic noise is likely to be stronger. The height is divided into the lower 20%, middle 70% and 
upper 10%. It is commonly observed that in the lower 20 % 
whereas in the middle 70% a linear fit is reasonable. We fit a linear regression to the middle 70% of 
height for the upward trend as well as downward trend and this pair from all the 
correlation. Since the slopes span over three orders of magnitude we 
the log (- downward slope). Both the plot
respectively. The log log plot has a slope close to unity (0.932) 
indicating that it is a linear relationship

Figure 1: Incidence curve of India
quantification of peak symmetry. The baseline is the stable incidence phase, higher
taken for a given peak. A linear trend is fitted to the middle 70 % of the peak height. The two peaks 
exemplify the symmetry, the first peak rises as well as declines slowly in contrast with the second which 
rises as well as falls sharply. The rise and fall slopes of the 
inclusion criteria are correlated, a good correlation indicating symmetry.

Analysis of symmetry of peaks in the incidence curves:  

The dwarf peaks, i.e. peaks and decline at a much smaller height than the expected herd immunity 
threshold can be potentially explained by two alternative hypotheses. (i) The NPIs being responsible 
reducing the R to a value <1. (ii) The SIE as in our model. The differential predictions of the two 
alternative hypotheses are that by hypothesis (i) no symmetry around the peak is predicted whereas 
hypothesis (ii) predicts that a steeper upward slope will be followed by a steeper downward slope. 

We examine the symmetry of peaks as follows. In the daily new incidence curve on the 7 day running 
between March 2020 to 15th Aug 2022, all peaks with an effective height of 1000 as 

e higher of the two baselines (figure 1) are taken for analysis. Smaller curves are avoided 
since stochastic noise is likely to be stronger. The height is divided into the lower 20%, middle 70% and 
upper 10%. It is commonly observed that in the lower 20 % and upper 10% the slope changes rapidly 
whereas in the middle 70% a linear fit is reasonable. We fit a linear regression to the middle 70% of 
height for the upward trend as well as downward trend and this pair from all the 

Since the slopes span over three orders of magnitude we also plot the log upward slop with 
). Both the plots show strong correlations with R2 0.876 and 0.816 

respectively. The log log plot has a slope close to unity (0.932) and intercept close to zero (0.055) 
indicating that it is a linear relationship with near perfect symmetry.  

Figure 1: Incidence curve of India using 7 day running average of daily new cases
quantification of peak symmetry. The baseline is the stable incidence phase, higher
taken for a given peak. A linear trend is fitted to the middle 70 % of the peak height. The two peaks 
exemplify the symmetry, the first peak rises as well as declines slowly in contrast with the second which 

. The rise and fall slopes of the 288 peaks across all countries
inclusion criteria are correlated, a good correlation indicating symmetry. 

The dwarf peaks, i.e. peaks and decline at a much smaller height than the expected herd immunity 
threshold can be potentially explained by two alternative hypotheses. (i) The NPIs being responsible for 
reducing the R to a value <1. (ii) The SIE as in our model. The differential predictions of the two 
alternative hypotheses are that by hypothesis (i) no symmetry around the peak is predicted whereas 

will be followed by a steeper downward slope.  

We examine the symmetry of peaks as follows. In the daily new incidence curve on the 7 day running 
, all peaks with an effective height of 1000 as 

e higher of the two baselines (figure 1) are taken for analysis. Smaller curves are avoided 
since stochastic noise is likely to be stronger. The height is divided into the lower 20%, middle 70% and 

and upper 10% the slope changes rapidly 
whereas in the middle 70% a linear fit is reasonable. We fit a linear regression to the middle 70% of 
height for the upward trend as well as downward trend and this pair from all the 288 peaks is subject to 

the log upward slop with 
0.876 and 0.816 

and intercept close to zero (0.055) 

 

of daily new cases, demonstrating the 
quantification of peak symmetry. The baseline is the stable incidence phase, higher of the two being 
taken for a given peak. A linear trend is fitted to the middle 70 % of the peak height. The two peaks 
exemplify the symmetry, the first peak rises as well as declines slowly in contrast with the second which 

across all countries satisfying 


