Epidemiology: gray immunity model gives qualitatively different predictions

Milind Watve ${ }^{1 *}$, Himanshu Bhisikar ${ }^{2}$, Rohoni Kharate ${ }^{\mathbf{3}}$, Srashti Bajpai ${ }^{4}$
${ }^{1}$ Independent researcher, E-1-8, Girija Shankar Vihar, Karve Nagar Pune 411052, India. milind.watve@gmail.com
${ }^{2}$ Indian Institute of Science Education and Research, Homi Bhabha Road,Pune 411008, India. himanshu.bhisikar@students.iiserpune.ac.in
${ }^{3}$ Independent researcher, 4, Shivratri Soc., Model colony, Shivaji nagar, Jail road, Nasik, India. 422101. rohinikharate1712@gmail.com
${ }^{4}$ School of Biology, MIT-World Peace University, 124 Paud Road, Kothrud, Pune 411038, India bajpai.srashti23@gmail.com

Short title: Gray immunity model of epidemiology

*For correspondence: milind.watve@gmail.com

E-1-8, Girija Shankar Vihar, Karve Nagar Pune 411052, India

Supplementary material
A. Flow chart for the simulations (page 2).
B. Python code for the simulations: (page 3 to 9) The code for the core program is given, which was modified according to the questions being asked.
C. Details of symmetry analysis of peaks. (page 10)


```
    """ Importing required modules """
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from mpl_toolkits.mplot3d import Axes3D
    #np.random.seed(0)
    """ Initialization of required parameters which have constant values """
    N = 5000 # Population size
    T = 500 # Time interval
    NN = np.arange(0, N) # Population size in array format
(for plotting purposes)
    TT = np.arange(0, T) # Time interval in array format
(for plotting purposes)
    P_r = 0.2 # Probability that an infected
individual is cured
    I_mf = 200 # A constant increment in immunity
whenever a person is cured of infection. (Units = EU)
    I_sce = 20 # A constant level of exposure that
ensures subclinical exposure induced immunity with a probability 0.5. (Units =
EU)
    I_d = 3 # A small decrement by which
immunity decreases every time unit if not exposed or infected. (Units = Eu)
    I_c = 30 # Constant Immunity increase due to
cross-immunity
    a = 2 # Parameter deciding the sharpness
of the sigmoid relationship
    r = 0.1 # Restriction parameter
    P_c = 0.1*r # Cross immunity parameter
    I_cmax = 30*r # Maximum number of infective
patients with which a normal person can come in contact
    K = 2500 # Half-saturation constant of the
equation.
    # Creating empty 2D array of P values. This array would represent the
modified probability of infection for each individual with respect to time.
    Pone = np.zeros((N, T))
    # Creating empty 2D array of P values. This array would represent the
modified probability of infection for each individual with respect to time.
    Ptwo = np.zeros((N, T))
    # Creating empty 2D array of P_inf(i,t) values. This array would represent
the probability of infection for each individual with respect to time.
    P_inf = np.zeros((N, T))
    # Creating zeros 2D array of P_sce(i,t) values. This array would represent
the probability of sub-clinical exposure for each individual with respect to
time.
    P_sce = np.empty((N, T))
    # Creating 2D array of ID_50(i,t) values and assigning values from the
standard normal distribution. This array would represent the time evolution of
the immunity of each of the individuals with respect to time.
    ID_50 = np.zeros((N, 1))
```

\# Creating array of $\mathrm{E}(\mathrm{i}, 0)$ values and assigning values from the normal distribution with mean $=70$, $s d=30$ (for $t=0$ case). This array represents the expose bias of each of the individuals at initial time.
$E=n p \cdot z e r o s((N, 1))$
\# Creating array of $S(i, t)$ values. These are the infective states of the individuals with respect to time.

S = np.zeros((N, 1))
\# Creating Array which will show the time evolution of I (Total infective state of the population)

I = np.zeros ($(\mathrm{T}, 1)$)
\# Creating array of SCE_50(i,0) values and assigning values from the normal distribution. This array represents the constant level of exposure of each of the individuals at initial time.

SCE_50 = np.zeros((N, 1))
for j in range(N):
$x 1=n p . r a n d o m . \operatorname{choice(np.arange(0,2),~} p=[0.95,0.05])$
$\mathrm{S}[\mathrm{j}, 0]=\mathrm{x} 1$
$x 2=$ round(np.random.normal(20*r, 0.01), 3)
if (x2 < 0) :
$x 2=0.0001$
$E[j, 0]=x 2$
else:
$E[j, 0]=x 2$
$x 3=\operatorname{round}(n p . r a n d o m . n o r m a l(100,30), 3)$
if (x3 < 0):
$x 3=0.0001$
ID_50[j, 0] = x3
else:
ID_50[j, 0] = x3
$x 4=\operatorname{round}(n p$. random.normal $(20,5), 3)$
if (x4<0):
$x 4=0.0001$
SCE_50[j, 0] = x4
else:
SCE_50[j, 0] = x4
print('Top to bottom - Individuals (0 to N) \nLeft to right - Time steps (0
to T) \nFirst column contains the values for $\left.T=0 \backslash n^{\prime}\right)$
print("1. Initial State of the individuals in the population -- S(i,0):")
print(S)
print("\n 2. Initial expose bias of the individuals in the population --
E(i,0):")
print(E)
print("\n 3. Initial distribution of population immunity levels --
ID_50(i,0):")
print(ID_50)
$X=n p \cdot z e r o s(T)$
for t in range (T) :
P_inf_temp $=n p . z e r o s((N)$,
P_{-}sce_temp $=n p \cdot \operatorname{zeros}((N)$,
P1_temp $=n p \cdot \operatorname{zeros}((N)$,


```
ID_50[n][-1] + I_sce
    else:
        x9 = round(np.random.random(), 3)
        if x9 < P_c:
        if (ID_50[n][-1] - I_d -
I_c < 0):
ID_50[n][-1] - I_d + I_c
                                    ID_50_temp[n] = 0
else:
ID_50_temp[n] =
    else:
        if (ID_50[n][-1] - I_d <
0):
                                    ID_50_temp[n] = 0
    else:
                            ID_50_temp[n] =
ID_50[n][-1] - I_d
                            ID_50 = np.hstack((ID_50, ID_50_temp))
                            S = np.hstack((S, S_temp))
    P_inf[:,t] = P_inf_temp
    P_sce[:,t] = P_sce_temp
    Pone[:,t] = P1_temp
    Ptwo[:,t] = P2_temp
    x = np.mean(ID_50[:,t])
    X[t] = x
    #print('\n')
    #print("Infective state of the population:")
    #print(I[t])
    #print("Altered state of the population:")
    #print(S)
np.savetxt('ID_50 (0.0, 20*0.0).csv', ID_50, delimiter=',', fmt='%s')
np.savetxt('Infection state (0.0, 20*0.0).csv', I, delimiter=',', fmt='%s')
np.savetxt('Mean ID_50 (0.0, 20*0.0).csv', X, delimiter=',', fmt='%s')
print("\nOverall trend:")
np.set_printoptions(suppress=True)
print(I.reshape(1,T))
print("\nMean Immunity levels:")
np.set_printoptions(suppress=True)
print(X)
```

```
print(P_inf.shape)
```

print(P_inf.shape)
print(P_sce.shape)
print(P_sce.shape)
print(S.shape)
print(S.shape)
print(ID_50.shape)
print(ID_50.shape)
print(I.shape)
print(I.shape)
plt.figure(figsize=(10, 7))
X = np.zeros(T)
for t in range(T):
x = np.mean(ID_50[:,t])
X[t] = x

```
```

 plt.plot(TT, X)
 plt.plot(TT, I)
 plt.title("Trend of Infective state and Mean ID50 with time")
 plt.xlabel("Time")
 plt.ylabel("I(t)")
 plt.legend(["Mean ID50", "$I(t)$ vs t"])
 plt.grid(linewidth=0.5)
 plt.show()
 plt.figure(figsize=(10, 7))
 X = np.zeros(T)
 for t in range(T):
 x = np.mean(ID_50[:,t])
 X[t] = x
 fig, ax2 = plt.subplots()
 ax1 = ax2.twinx()
 ax1.plot(TT, X, color = 'darkorange', label = 'Mean ID50')
 ax2.plot(TT, I, color = 'green', label = '$I(t)$ vs t')
 ax1.set_xlabel('Time')
 ax1.set_ylabel('ID_50(i,t)')
 ax2.set_ylabel('I(t)')
 # Adjust axis limits based on estimates from abve graph
 ax1.set(xlim =(-1, 150), ylim = (0, 200), autoscale_on = False)
 ax2.set(xlim =(-1, 150), ylim =(0, 700), autoscale_on = False)
 ax2.set_yticks(range(0, 700, 100))
 ax2.grid(linestyle='-', linewidth=0.5)
 fig.legend(loc='upper right')
 ax1.title.set_text('Trend of I(t) and Mean $ID_{50}(i,t) \ for \ (1.0,
 100)\$')
plt.show()
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111, projection='3d')
nbins = 50
color = ['orange','green', 'red', 'gold', 'magenta', 'blue']
time_step = [500, 400, 300, 200, 100, 0]
for c, t in zip(color, time_step):
arr = ID_50[:, t]
thresh = 200
true_vals = arr > thresh
true_sum = np.sum(true_vals)
false_vals = np.array([i for i in arr if i < thresh])
hist, xbins = np.histogram(false_vals, bins=nbins)
new_hist = np.append(hist, t)
new_bins = np.append(xbins, 225)
xs = (new_bins[:-1] + new_bins[1:])/2
ax.bar(xs, new_hist, zs=t, zdir='y', color=c, alpha=1.0)
ax.title.set_text('Histogram of ID_{50} for various time steps (CI
parameter = 0.0)')
plt.xticks(range(0, 250, 25))

```
```

 #labels = ('0', '25', '50', '75', '100', '125', '150', '175', '200',
 '200')
\#plt.xticks(labels)
ax.set_xlabel('ID_{50}')
ax.set_ylabel('Time')
ax.set_zlabel('Frequency of values')
print(true_sum)
plt.show()
\#fig = plt.figure(figsize=(15, 15))
fig = plt.figure()
ax = fig.add_subplot(3, 3, 1)
sns.kdeplot(ID_50[:, 0], fill=True, ax = ax)
ax = fig.add_subplot(3, 3, 2)
sns.kdeplot(ID_50[:, 100], fill=True, ax = ax)
ax = fig.add_subplot(3, 3, 3)
sns.kdeplot(ID_50[:, 200], fill=True, ax = ax)
ax = fig.add_subplot(3, 3, 4)
sns.kdeplot(ID_50[:, 300], fill=True, ax = ax)
ax = fig.add_subplot(3, 3, 5)
sns.kdeplot(ID_50[:, 400], fill=True, ax = ax)
ax = fig.add_subplot(3, 3, 6)
sns.kdeplot(ID_50[:, 500], fill=True, ax = ax)
plt.show()
f, ax = plt.subplots(3, 3)
ax[0, 0].hist(ID_50[:, 0])
ax[0, 1].hist(ID_50[:, 100])
ax[0, 2].hist(ID_50[:, 200])
ax[1, 0].hist(ID_50[:, 300])
ax[1, 1].hist(ID_50[:, 400])
ax[1, 2].hist(ID_50[:, 500])
plt.show()
t = 0
n = 11 \# Number of time steps for which histogram is to be plotted
(t = 0 included)
\#T = 500
\# To be defined in accordance with the value at the beginning
of the program
x = 50 \# Increment of time steps. x = T/(n-1) is to be followed
bins = 20
for i in range(n):
arr = ID_50[:, t]
thresh = 200
true_vals = arr > thresh
true_sum = np.sum(true_vals)
false_vals = np.array([i for i in arr if i < thresh])
sns.histplot(false_vals, bins=bins, color='b')
\#plt.ylim(0, 700)
plt.bar([205], [true_sum], width=10, color='b')

```
plt.show()
\(\mathrm{t}+=\mathrm{x}\)

\section*{Analysis of symmetry of peaks in the incidence curves:}

The dwarf peaks, i.e. peaks and decline at a much smaller height than the expected herd immunity threshold can be potentially explained by two alternative hypotheses. (i) The NPIs being responsible for reducing the R to a value \(<1\). (ii) The SIE as in our model. The differential predictions of the two alternative hypotheses are that by hypothesis (i) no symmetry around the peak is predicted whereas hypothesis (ii) predicts that a steeper upward slope will be followed by a steeper downward slope.

We examine the symmetry of peaks as follows. In the daily new incidence curve on the 7 day running average data between March 2020 to \(15^{\text {th }}\) Aug 2022, all peaks with an effective height of 1000 as compared to the higher of the two baselines (figure 1) are taken for analysis. Smaller curves are avoided since stochastic noise is likely to be stronger. The height is divided into the lower 20\%, middle 70\% and upper \(10 \%\). It is commonly observed that in the lower \(20 \%\) and upper \(10 \%\) the slope changes rapidly whereas in the middle \(70 \%\) a linear fit is reasonable. We fit a linear regression to the middle \(70 \%\) of height for the upward trend as well as downward trend and this pair from all the 288 peaks is subject to correlation. Since the slopes span over three orders of magnitude we also plot the log upward slop with the \(\log\) (- downward slope). Both the plots show strong correlations with \(\mathrm{R}^{2} 0.876\) and 0.816 respectively. The log log plot has a slope close to unity ( 0.932 ) and intercept close to zero ( 0.055 ) indicating that it is a linear relationship with near perfect symmetry.


Figure 1: Incidence curve of India using 7 day running average of daily new cases, demonstrating the quantification of peak symmetry. The baseline is the stable incidence phase, higher of the two being taken for a given peak. A linear trend is fitted to the middle \(70 \%\) of the peak height. The two peaks exemplify the symmetry, the first peak rises as well as declines slowly in contrast with the second which rises as well as falls sharply. The rise and fall slopes of the 288 peaks across all countries satisfying inclusion criteria are correlated, a good correlation indicating symmetry.```

