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Abstract: Compartmental models that dynamically divide the host population in categories such as 

susceptible, infected and immune constitute the mainstream of epidemiological modelling. Effec-

tively such models treat infection and immunity as binary variables. We constructed an individual 

based stochastic model that considers immunity as a continuous variable and incorporates factors 

that bring about small changes in immunity. The small immunity effects (SIE) comprise cross im-

munity by other infections, small increments in immunity by sub clinical exposures and slow decay 

in the absence of repeated exposure. The model makes qualitatively different epidemiological pre-

dictions including repeated waves without the need for new variants, dwarf peaks (peak and de-

cline of a wave much before reaching herd immunity threshold), symmetry in the upward and 

downward slopes of a wave, endemic state, new surges after variable and unpredictable gaps, new 

surge after vaccinating majority of population. In effect the SIE model raises alternative possible 

causes of the universally observed dwarf and symmetric peaks and repeated surges, observed par-

ticularly well during the Covid-19 pandemic. We also suggest testable predictions to differentiate 

between the alternative causes for repeated waves. The model further shows complex interactions 

of different interventions that can be synergistic as well as antagonistic. The model suggests that 

interventions that are beneficial in the short run can also be hazardous in the long run. 
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1. Introduction 

Mainstream epidemiological models use a compartmental approach in which the 

population is dynamically distributed into compartments, typically three compartments 

namely susceptible, infected and removed (Tang et al 2020, Tolles and Luong 2020, Fu-

dolig and Howard 2020) or at times more depending upon the question being addressed 

(Leung et al 2020, Giordano et al 2020, Carcione et al 2020). While this family of models is 

simple and useful towards some objectives, they are inadequate to capture certain features 

of real life epidemiological patterns as revealed by the Covid-19 pandemic (Moein 2021). 

Often the predictions of the model are not empirically testable (Agarwal et al 2021). In the 

current pandemic some of the commonly observed features were not adequately ex-

plained by the mainstream models. During the Covid-19 pandemic in any of the surgees 

in any country, the peak appears to be achieved followed by decline substantially before 

reaching the herd immunity threshold expected at the estimated parameters. The question 

why the peaks are so dwarf has not been carefully addressed by prior literature. If a non 

pharmaceutical interventions (NPIs) or preventive restrictions (PRs) restricted the peaks, 

we should see significant and consistent decline in transmission rates after imposition of 

the measures. However, preventive restrictions have largely failed show an 
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accompanying change in transmission rates throughout the pandemic (Kharate and 

Watve 2021, Yanovskiy and Sokol 2022, Herby et al 2022). Therefore whether the dwarf 

peaks are explained by the PRs is questionable.  

A number of factors have been identified that can potentially give rise to stable en-

demic states and/or repeated waves of infection without involving new variants (May and 

Anderson 1979, Hoe et al 1999, Kyrychko, Y. N., & Blyuss 2005, Heffernan and Keeling 

2009, Clancy and Mendy 2010, Mummert et al 2013, Hoen et al 2015, Ehrhardt 2019, Yang 

et al 2020) and specifically with respect to the Covid 19 pandemic (Epstein et al 2021, 

Tkachenko et al 2021). Nevertheless the most popular perception during the pandemic 

has been that the waves are mainly caused by emergence of immunity evading new vari-

ants (Thakur et al 2022, Kumar et al 2022, Dutta 2022, El-Shabasy et al 2022, Kupferschmidt 

2021Fudolig and Howard 2020). Which of these factors or a combination of them explain 

the repeated occurrence, dwarfness, symmetry and other features of the peaks is also an 

open question.  

We show here that considering immunity as a binary variable puts serious limits on 

the model and relaxing this limit by treating immunity as a continuous variable can ex-

plain the dwarfness and many other features of the pandemic. Many of the compartment 

models incorporate waning immunity (Heffernan and Keeling 2009, Clancy and Mendy 

2010, Yang et al 2020), but the binary treatment makes the waning process rather unreal-

istic. These models haven’t predicted the typical dwarf waves observed during the pan-

demic. Incorporation of intermediate shades of immunity and dynamic population distri-

bution of it necessitates an individual based model where the immunity level of each in-

dividual is affected by a number of factors. We only incorporate factors for which there is 

empirical evidence, at least qualitatively. Infection of an individual is a probabilistic phe-

nomenon. In our approach immunity is measured in terms of the dose of infectious agent 

required to infect an individual with a probability of 0.5 (ID50). The concept of ID50 is 

classical and well known (Antilla et al 2013, Regoes et al 2002, McLean and Bostoc 2000, 

Gadagkar and Call 2015) and the relationship between dosage of pathogen and probabil-

ity of infection is of sigmoid nature with ID50 lying at the point of inflection. In our model 

we treat ID50 not as a population parameter but as a property of an individual depicting 

his probability of getting infected at a given level of exposure to the pathogen at a given 

time (figure 1). Higher the level of immunity, higher is the ID50, i.e. higher the dose of 

pathogen required to cause infection. An individual’s ID50 is a dynamic variable of the 

model that can vary between zero to infinity and that is under continued flux being af-

fected by a natural infection or vaccination, which leads to a large quantum jump in ID50. 

This contrasts with many small immunity modulators. Some immunity is contributed as 

cross immunity from infection by other viruses in the form of antibodies to conserved 

epitopes (Mallajosyula 2021), interferons and other non-specific mechanisms (Dee et al 

2021) and as a result some level of pre-immunity exists in a population before facing an 

epidemic (Sette and Crotty 2020, Doshi 2020, Ng et al 2020). A negative correlation be-

tween background level viral infection and the severity of Covid-19 pandemic is sug-

gested by some studies (Haridas and Prathap 2020). Resistance to infection also involves 

subtle factors such as physical integrity of mucous membranes or other concerned tissues, 

the proportion of senescent cells in the target tissue (Humphreys et al 2020) and so on. 

After recovering from a respiratory infection, for example, much of the mucous membrane 

is composed of young cells that have replaced the infected cells. Such a young cell lining 

may be more resistant to a new virus, but this effect is expected to be short lived and wane 

fast as older and effete cells accumulate. It is also possible that exposure to a pathogen at 

sub-infectious level contributes to some immunity (Gold et al 2021, Santos Rocha 2018), 

not comparable in magnitude to that achieved by active infection or by vaccines 

(Krammer 2021). Since immune response is costly, the body has evolved not to give a full 

strength immune response to every attack. Immune response is proportional to the inten-

sity of invasion and virulence of the pathogen (Read 1994, Long et al 2020, Shinde et al 

2021). Therefore the response to a mild exposure without detectable infection is likely to 

be proportionately small. In the absence of repeated exposure, immunity is known to 
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decline gradually (Leino 2000, Sanderson 2021). This phenomenon was well recognized 

by previous models, but they still treated it with the binary immunity state assumption 

(Leung et al 2018). Different components of immunity are known to decline at different 

rates. For example, memory cells have a long life (Turner et al 2021) whereas antibody 

titres decline relatively fast. Some of the other non-specific small contributors mentioned 

above may also decline rapidly. At present there is little empirical work to parameterize 

these subtle factors. Therefore we do not incorporate the differential decline, but assume 

a small constant decline in ID50 with time in the absence of repeated exposure.  

We show here that considering immunity as a continuous variable explains many of 

the previously unexplained features of the epidemic. Allowing gray shades of immunity 

one can get repeated waves without involving new variants, increased rates of transmis-

sion without increased infectivity of the virus, a long term endemic steady state, a peak 

and decline much before the expected herd immunity threshold, breakthrough infections 

after vaccination and new surges after vaccinating majority of the population. The model 

that can explain these phenomena also gives certain non-conventional predictions that can 

be potentially important for designing control measures for future epidemics. Owing to 

lack of empirical data on all the immunity related parameters, it is not possible to make a 

quantitatively predictive model for the Covid-19 pandemic at this stage. But our objective 

is to demonstrate that the SIEs can substantially affect the shape of an epidemic curve and 

therefore they demand more empirical inputs as well as a different class of futuristic mod-

els that will have a greater predictive value.  

2. The Model:  

2.1. Assumptions and basic model 

We conceive an individual based model in which every ith individual in a population 

of N has a dynamic immunity level ID50(i,t) which can change with time. There is a back-

ground population distribution of immunity levels before the epidemic begins which is 

assumed to be normally distributed initially with a mean ID50(0) and s.d. ID50(0). The 

nature of the distribution is allowed to change in time as individuals change their immun-

ity levels. The probability of infection getting transmitted from an infectious person to a 

susceptible one is assumed to be a sigmoid function by the classical principle of ID50 such 

that 

���� =
�(�)�

(��50(�, �)� + �(�)�)
 

Where �(�) is the exposure bias (in arbitrary units) of ith individual to the virus. Individ-

uals differ in their exposure to a pathogen by their profession, locality and behaviour and 

accordingly E(i) also has a population distribution which is assumed to be constant in 

time. The parameter ‘a’ is the power that decides the sharpness of the sigmoid curve.  
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Figure 1. The sigmoid curve relating probability of infection as a function of exposure to infectious 

agent. ID50 or the point of inflection where the probability of infection = 0.5 is a measure of standing 

immune level of an individual. We assume that exposure without causing infection contributes a 

small increment in immunity and this function is also assumed to be sigmoid. 

S(i,t) is a binary state of ith individual at time t that can either be 0 = uninfected and 1 

= infected. With the probability Pinf the state changes from 0 to 1. The infection is sponta-

neously cured with a constant probability Pc by which a state 1 is transformed to state 0 

and simultaneously ID50 (i,t+1) is shot up by a factor Iinf. Apart from the status infected, 

there are no compartments and binary states in the model. Therefore there are no state 

transition equations involved unlike a compartmental model.  

We assume a small chance Pcross with which an individual is infected by other viruses 

contributing cross-immunity. The level of cross immunity offered by such an infection is 

Icross assumed to be one to two orders of magnitude smaller than Iinf. Similarly we assume 

that an exposure to the infectious agent without causing infection also confers a small 

immunity increment Isce and this also works in a similar sigmoid function with Sce50(i) 

(figure 1) corresponding to probability of 0.5. Sce50(i) also has a population distribution 

which has a constant mean and s.d. 

Whenever an individual’s status is 0 and remains so, with neither Icross nor Isce incre-

ments, the immunity is assumed to decline by a small decrement Id which is much smaller 

than Isce and Icross.  

The exposure of individuals to the infectious agent also has multiple components and 

we include three important parameters representing them. One is the exposure bias of an 

individual. Some individuals by their occupation, type of housing, mobility and behav-

iour are more exposed and others relatively isolated. Therefore E(i) is assumed to be the 

distribution of the exposure bias which remains time invariant. Exposure is also a function 

of the prevalent number of infectious individuals I(t), but this need not grow linearly with 

I(t). A society has some degree of viscosity and there is an upper limit ����� to how many 

infectious persons one individual can come in contact. Therefore we consider the number 

of individuals from which a person can get infection as a saturating function of I(t) such 

that,  

��(�) =  
�����. �(�)

� + �(�)
 

The parameter K, the half saturation constant of the equation will be decided by pop-

ulation specific factors such as population density, mobility and behaviour of people.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2022                   doi:10.20944/preprints202109.0162.v3

https://doi.org/10.20944/preprints202109.0162.v3


 

 

The probability of an individual getting infected from at least one of the infectious 

contacts is 

���� = 1 − �1 −
�(�)�

(��50(�, �)� + �(�)�)
)�

��(�)

 

With this probability, the status of the individual at a given time S(i,t+1) changes from 

0 to 1.  

Similarly the probability that an individual gets a subclinical exposure that gives a 

small immunity increment Isce at time t+1 is 

���� = 1 − �(1 −
�(�)�

(���50(�)� + �(�)�)
)�

��(�)

 

We used stochastic simulations using these probabilities. The range of parameters 

used for these simulations is tabulated in table 1. Note that the Isce, Icross and Id ranges used 

for the simulation are one to three orders of magnitude smaller than Iinf. Whenever we 

address vaccination related questions, the effect of vaccination is assumed to be equiva-

lent to the effect of prior infection following Krammer (2021). Since distributions are being 

generated, we avoid zero and negative values by setting up an arbitrary small minimum 

limit to E(i), ID50(i,t) and I(t). Any values going below this are considered equivalent to 

the minimum.  

We used the model for running simulations (see supplementary information) with a 

range of parameters used as in table 1. Within the range one or more of the parameters 

were randomized. Since empirical estimates for many of the parameters are not available, 

we restrict ourselves to drawing qualitative conclusions that show alternative possible 

outcomes of any policy or measures implemented and do not claim any quantitative pre-

dictions.  

Table 1. 

Parameter Lower limit Upper limit 

Mean E(i)1 0 50 

s.d. E(i) 1 30 

mean ID50 (0)2 0 200 

s.d.ID50 (0) 1 100 

mean Sce50(i)2 10 50 

s.d. Sce50(i) 1 30 

a 2 5 

Pc 0.1 0.4 

Iinf2 200 300 

Icross2 0 40 

Isce2 0 40 

Id2 0 4 

Pcross 0 0.1 

Icmax 5 40 

K 50 2500 

1: Arbitrary units. 2. Immunity related parameters are expressed in the same units as 1. 

2.2. Simulating Non-pharmaceutical interventions (NPIs) 

During the Covid-19 pandemic, for the first time a set of NPIs were used on a global 

scale, consisting of certain preventive restrictions (PRs) imposed by government and per-

sonal protection measures (PPMs) advised to people. We addressed the effects of these on 

the epidemiological patterns to study their possible effects under different conditions. 

While the classical model only assumes that NPIs will reduce the parameter R, our model 
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allows exploring differential effects and interactions of different measures with each other 

and with the other parameters.  

We expect NPIs to affect mean E(i), Pcross, Kcmax and K but in a differential way. Personal 

protection measures such as masks, PPEs, hand washing, surface sanitization and social 

distancing is expected to reduce meanE(i) and Pcross. Travel restrictions and work from 

home policy are expected to decrease Kcmax and/or increase K. We also consider a general 

lockdown parameter L that goes from 0 to 1 and which multiplicatively alters E(i), Pcross 

and Kcmax simultaneously and proportionately. These changes were applied either from the 

beginning of the simulations or at different t representing imposition or relaxation of NPIs 

at different stages of the epidemic.  

3. Results 

Since the model involves a large number of parameters we started with an explora-

tory approach to randomize all parameters within the given range (table 1) and record the 

qualitative outcome. Over a thousand simulations gave only four qualitative types of out-

comes (figure 2), (i) A single peak followed by extinction or near extinction of the patho-

gen, similar to a typical compartment model (ii) a peak followed by a low level stable or 

mildly fluctuating endemic like state (iii) a pattern of multiple surges or waves, the surges 

often being separated by apparently stable or fluctuating incidence for variable time du-

ration (also see figures 7, 9 and 10 for variable spacing between waves). Since the number 

of parameters is large and we have no empirical estimates for many of them, we do not 

systematically explore the entire parameter space. Instead we focus here on demonstrat-

ing the complex interplay of parameters, the overall complexity of the outcomes and the 

inherent unpredictability of the system although certain qualitative patterns can be pre-

dicted. This contrasts the classical deterministic predictive models and the change is 

mainly brought about by making just one binary variable continuous. 
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Figure 2. The four types of outcomes from the model. Blue lines = new cases per unit time, red lines 

= mean population immunity level. A. Single wave followed by near eradication of the virus, B. 

Single wave followed by prolonged low level endemic coexistence C. Multiple surges with varying 

space between waves and heights of waves D. Effective control of transmission directly leading to 

eradication. E. An example slice of the parameter space across ID50(0) and L showing how the types 

of outcomes can be distributed. With high rate of transmission and low baseline immunity pattern 

A is observed. With greater restrictions on transmission endemic state ensues, further restrictions 

invite multiple waves but beyond a threshold restrictions, i.e. near zero transmission the disease 

may be quickly eradicated. The parameter areas vary widely as other parameters change but the 

four basic types are preserved. 

When the small immunity effects are zero or close to zero, the outcome is similar to 

classical compartment models implying that the apparently stable endemic or multiple 

well spaced wave patterns are a result of the SIE. It is notable that in this model when SIE 

parameters  > 0, the height of a peak and subsequent decline begins when only a small 

fraction of the population is infected, in contrast to the herd immunity threshold of clas-

sical SIR model. An important outcome of the model is that a wave pattern with variable 

spacing, slopes and heights of the waves is possible even without the need for novel var-

iants defying immunity.  

Owing to the sigmoid relationship of infection probability with the dynamic individ-

ual ID50 values, at times a small increase in immunity can be sufficient to evade infection 

with a high probability. The escape is likely to be accompanied by further small increase 

in ID50 reducing the probability of infection further. By this mechanism, many individu-

als can escape infection without being “fully” immune. This results into an arrested peak 

followed by decline in incidence much before the classical herd immunity threshold could 

be reached. One of the patterns predominantly observed during the first phase of the pan-

demic was that most members of the family of infected individuals appear to have es-

caped infection in spite of exposure (Shah et al 2020). This can also be explained by the 

SIE effect. However, as the incidence declines, the immunity levels achieved by SIEs also 

start declining. The rate of decline is enhanced by NPIs. This makes some of the 
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individuals susceptible again. This leads to a complex dynamics resulting into a fluctuat-

ing incidence that may remain apparently stable for some time or give rise to another 

surge when the immunity levels of a substantial part of the population decline below a 

threshold.  

The immunity decline is more relevant to individuals with smaller E(i) as they remain 

protected owing to lower exposure. However, as they remain protected, their immunity 

also declines slowly. With the decline, they become increasingly susceptible at a lower 

exposure. This is unlikely to happen to individuals who achieve immunity after an active 

infection or by vaccination. This is because the rise in immunity is of a much greater mag-

nitude than the SIEs. Although the infection or vaccination acquired immunity is also sub-

ject to waning, during the long time required for waning they have a greater chance of 

repeat subclinical exposures boosting the immune levels again. Therefore the second 

wave is mostly due to decline in the SIE rather than decline in infection or vaccination 

driven immunity. This is also evident in the gap between two surges which can be often 

much smaller than Iinf /Id. 

When the rate of a process is determined by multiple factors, only some of them are 

rate limiting at a given set of conditions. Therefore only intervention in these factors can 

result into effective control of transmission. Intervention in factors that are not rate limit-

ing is not likely to have any effect. The factors interact with each other in a complex way, 

sometimes being synergistic but at other times working to nullify each other’s effects. Sim-

ulations using our model demonstrate this well known principle, some examples being 

depicted in figure 3.  

 

Figure 3. The complex nature of interaction between the parameters affecting net incidence during 

the simulated pandemic A. Effect of Pcross at two different mean E(i), 5 (blue line) and 10 (red line). 

B. Effect of mean E(i) at different Pcross. Note that at when Icross.Pcross> =Id, (blue line) reducing mean 

E(i) reduced the incidence whereas at Icross.Pcross< Id(red line) reducing E(i) increased the net inci-

dence. C. Effect of Kcmax at Icross.Pcross> = Id, (blue line) and Icross.Pcross< Id (red line). A work from home 

strategy that reduces Kcmax may reduce the incidence in the former condition whereas work from 

home can actually increase disease incidence in the latter. The examples illustrate complexity of 

interactions between factors owing to which the measures intended to reduce transmission can be 

effective, ineffective or even counterproductive in different contexts. 
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As a result of the complex interactions, different factors become rate limiting in dif-

ferent phases of the epidemic and a measure that is effective in one phase may prove in-

effective in another. For example in one phase of the epidemic the rate of transmission of 

the virus may be central in determining the slope of the incidence curve whereas in an-

other phase the rate of immunity decline may be the limiting factor and a change in rate 

of transmission may bring in no detectable change in the dynamics (figure 4). It is im-

portant to realize this in planning public health policies. The complex interactions possi-

bly explain the lack of consistent relationship between various PRs imposed and the 

change in slope of the incidence curve to follow. Imposing a restriction is expected to de-

crease the slope and lifting imposition is expected to increase it. But in data across coun-

tries we observe that contrary to expectation 31% of times slope actually increased after 

imposing PRs and 45.4 % of times it decreased after relaxing them (Kharate and Watve 

2021). The simple assumption that PRs decrease disease transmission is not always true.  

 

Figure 4. The effect of the same intervention at different phases of the epidemic can be very different. 

(A) Two exposure levels mean E(i) = 15 (green lines) and 10 (blue line) from the beginning of the 

simulation (B) Two simulations started with mean E(i) =10 but at t=100 one of them changed to 15. 

Note that controlling exposure from t=0 substantially lowers the incidence, but relaxing the control 

at a later phase, t=100, has no significant effect on the course of the epidemic. A possible implication 

of this is that if a new variant with greater infectivity arises during the endemic like state, the in-

creased infectivity alone may not be sufficient to cause another peak. Also relaxation of PRs may 

increases E(i) but that may not result in rise in incidence. 

We see in the Covid-19 data across different populations that most of the peaks have 

been much smaller than the herd immunity thresholds that were predicted. This is com-

patible with our model. However there are two possible alternative explanations for hav-

ing dwarf peaks. One is that the non-pharmaceutical interventions (NPIs) or preventive 

restrictions (PRs) effectively restricted the transmission and arrested the peaks. The other 

is that most individuals could escape infection owing to the SIE effects restricting the peak 
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height. It is possible to make differential predictions from the two alternative hypotheses 

for the small peaks. If the preventive restrictions arrest the infection and turn the curve 

downwards by effectively making Rt < 1 in the classical model, the slope of the downward 

curve is expected to be independent of the upward curve (figure 5a). On the other hand, 

in the classical model, as well as in our model when the curve naturally starts a decline 

owing to altered level of population immunity, there remains an element of symmetry in 

the shape of the peak. If the upward slope is steeper, the downward slope is also propor-

tionately steeper. This is because a rapid rise in incidence also causes a rapid rise in im-

munity by the classical model as well as by SIE effects and a greater level of population 

immunity causes a steeper decline. This leads to a good correlation between the upward 

and downward slopes as revealed by simulations (figure 5b and c). Applying PRs at some 

point in a rising wave, and assuming that the PRs are effective, a decline before the herd 

immunity levels can also be obtained. But in this case the slope of the decline is driven by 

the intensity of the PRs and therefore may not be related to the upward slope before the 

imposition of PR. High population density and other pro-transmission factors that are 

responsible for a steep upward slope, make a steep downward slope more difficult. This 

is most likely to deviate further from the symmetry of the wave. Therefore using a corre-

lation between the upward and downward slope it is possible to test on a global scale 

whether PRs or the SIE effects were commonly responsible for the shorter peaks. A careful 

analysis of symmetry of peaks (See supplementary material for details of symmetry anal-

ysis) reveals highly significant correlation between upward and downward slopes (figure 

5 D and E). The log log plot has a correlation coefficient r=0.903 and slope of 0.932. A slope 

close to unity in a log-log plot indicates a linear relationship. The slope of the linear rela-

tionship is close to unity indicating a high level of symmetry in all the peaks, in spite of a 

wide diversity in slopes. Since symmetry is expcted by the SIE model but not by alternatve 

models or by the effect of NPIs, the dwarf slopes are best explained by the gray immunity 

model alone. 
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Figure 5. Differentiating between two alternative causes for dwarf peaks: In the incidence curves of 

Covid-19 across countries, it is observed that almost all the peaks are achieved much before the 

predicted herd immunity level. This can either be because of the preventive restrictions imposed or 

because of the small immunity effects. A. In a classical SIR model, the PRs are expected to make Rt 

<1 if a decline is caused by them. However, they may take any value between zero and one inde-

pendent of the upward slope of the surge. Therefore no correlation is expected between the upward 

and downward slope. B. Simulations using our model in which the parameters are randomized to 

get variance in transmission rates, show that a steep upward slope is accompanied by a steep down-

ward slope giving rise to a correlation between the two (C). In pandemic data across countries cov-

ering all 288 peaks of height over 1000 (new cases per day) there is good correlation between upward 

and downward slopes. 

The starting ID50 distribution in the population is assumed to be normal in the SIE 

model, presumably contributed by cross immunity to other viruses. However, the shape 

of the distribution will change as the epidemic progresses. The change is rapid if the NPIs 

reduce transmission of other viruses. While infected and recovered individuals will have 

experienced a quantum jump in their ID50(i,t) the protected part of the population may 

have lost some, particularly if the personal protection measures are strictly followed. Fur-

ther as a wave recedes, exposure becomes rarer and the immunity is gradually lost for a 

larger sector of the population. The distribution of immunity in the population at this 

stage is highly dispersed and often bimodal (Figure 6). Although the individuals having 

acquired immunity after an active infection will experience little proportionate loss and 

will be least susceptible to reinfection for a longer time, the once having escaped because 

of SIE may have reduced immunity as compared to their baseline particularly if personal 

protective measures have been strictly followed. The resulting bimodal or over dispersed 

distribution of immunity has important consequences for the shape of the incidence curve. 

The pathogen may persist in the population without becoming extinct owing to newly 

created susceptibles that can get infected at very low exposures. If the immunity of a sub-

stantial sector of population drops below a threshold, a new wave may begin. Therefore 

depending upon the parameters and the standing context, the epidemic can take wave 

forms without the need for new variants or behavioural change in the population.  
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Figure 6. Change in the distribution of population immunity during the course of the epidemic 

when NPIs are applied but are unable to eradicate the pathogen in one go. The assumed normal 

distribution of immunity in the beginning of the epidemic becomes increasingly over-dispersed. 

The immunity levels decline starting with the protected sector of the population (low E(i)) and when 

near the lower end, some of them get infected even at very low exposures. These individuals are 

thrown to the right extreme because of infection induced immunity, but simultaneously more indi-

viduals lose immunity to take their place. This immunity dynamics appears to be mainly responsible 

for the stable or oscillating incidence. 

Nevertheless the model is not incompatible for new variants which might escape the 

specific immunity to earlier variant or may be mutants with higher infectivity. It is possi-

ble that both SIE and new variant contribute to repeated waves. In the context of repeated 

waves, another interesting result of the SIE effect is that even in the absence of a new and 

more infectious variant, the second wave can be steeper and taller than the first one (figure 

7). This happens when initial population immunity, mean ID50(i,0) is substantially greater 

than mean E(i), both the distributions have sufficiently large standard deviations and per-

sonal protection or general lockdowns are sufficiently effective to allow loss of immunity 

in a sector of the population. Under such conditions the first wave is mainly limited by 

pre-existing cross-immunity of the population. However, due to personal protection 

measures exposure to other viruses giving cross-immunity is also reduced for the majority 

of the population. As a result the distribution of immunity becomes bimodal and for sub-

stantial population the immunity declines below a threshold to trigger a new wave. Since 

now the background immunity for a sector of the population is lower than the first wave, 

the second wave rises more sharply and achieves a greater height. Such a pattern is seen 

in many countries during the current pandemic. This creates an alternative possible ex-

planation to the more devastating second wave faced by countries such as India. The first 

wave in the highly population dense India was said to be surprisingly small with low 

mortality which could be ascribed to a background immunity level contributed by other 

viral infections (Haridas and Prathap 2020). However owing to widely applied lockdown 

and personal protection measures, the immunity of a substantial sector of the population 

could have declined, making them highly susceptible. This susceptibility could be the 

cause of the steeper and more devastating second wave. Currently the devastating nature 

of the second and subsequent waves  is attributed to the greater infectivity of new vari-

ants  (Mallapaty 2021b) without considering the alternative hypothesis of SIE. The two 

possible causes of the second wave being more devastating are not mutually exclusive, 

but it is necessary to analyze and understand their relative contributions by a differential 

predictions approach.  
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Figure 7. The phenomenon of second wave being steeper and taller than the first can be obtained in 

the SIE model without the need for a more infectious variant. The steepness of the second wave is 

caused by the subtle accumulating immunity loss intensified by NPIs. Increasing one or more of the 

exposure related variables from the start of the simulation increases the first peak and suppresses 

the second. 

The alternative causes of the second and subsequent waves can be differentiated 

based on the epidemiological patterns they give rise to. The possible causes of second 

wave can be different if the first peak has achieved herd immunity or is a dwarf peak due 

to SIE effects or due to NPI. If a new variant evades immunity against the prior variant, a 

new wave may begin but the pattern of this wave with respect to individual exposure bias 

will remain similar to the first wave, i.e. individuals with greater risk of exposure will be 

affected first. If the first wave is dwarfed by NPIs, in the absence of SIEs, a novel antigenic 

variant will be unable to cause a second wave unless the NPIs are relaxed and/or the in-

fectivity is increased. In simulations increasing infectivity or relaxing restrictions is treated 

similarly by increasing the exposure related parameters. In simulations if SIEs are disa-

bled and the first peak is substantially dwarfed by NPIs, the exposureinfection relation-

ship during the second wave is positive as in the first wave. Even if immunity evading 

variant and increased infectivity act together, the positive relationship between exposure 

and infection is retained in the second wave. In contrast, if the first peak is dwarfed by 

SIEs a second peak can arise without a new variant and in that case, the low exposure 

individuals are more likely to be infected in the second wave (Figure 8).  
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Figure 8. The exposure infection relationship during the simulated first and second wave: Relative 

frequency of infected individuals belonging to the five pentiles of the exposure distribution when 

the second wave is caused by (A) SIE model, (B) variant with greater infectivity or restrictions re-

laxed and (c) variant with greater infectivity as well as partial immunity evasion. In the SIE model 

the relationship is reversed during the second wave, i.e. individuals less exposed to the first wave 

are more likely to get infected in the second. In contrast if the second wave is caused by lifting 

restrictions or a new variant with higher infectivity and/or evading immunity to earlier variant the 

exposure-infection relationship is not inverted. 

This contrasting pattern is testable in real life. Although precise quantification of in-

dividual exposure bias may be difficult, it can be predicted that if SIEs cause a first dwarf 

peak followed by a second wave, individuals whose occupation exposes them more to 

infected individuals, who live in population dense locality and/or do not follow appropri-

ate behaviour will be infected disproportionately more in the first wave whereas in the 

subsequent waves individuals from more isolated, remote and low density areas, with 

safer occupations and following Covid appropriate behaviours will show disproportion-

ately increased relative incidence.  

Testing many other predictions Bajpai and Watve (2022) showed that new variants 

did not cause the waves in the Covid-19 pandemic. Instead, the population immunity sta-

tus that enabled a new wave simultaneously made selective conditions favourable for a 

new variant.  

The bimodality of immunity in the SIE model also suggests a possible cause of the 

observed incidence surge in many countries after nearly half or more of the population 
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getting vaccinated. If vaccination is accompanied by effective personal protection 

measures, while the vaccinated individuals have high levels of immunity, the unvac-

cinated section of the population might have reduced their immunity levels substantially 

triggering a new wave. This is seen very frequently in simulations if we introduce vac-

cination in a part of the population at some point after the first wave has declined (figure 

9).  

In the simulation we consider the vaccinated individuals to be completely immune. 

If vaccination does not completely prevent infection but arrests severity, vaccinating part 

of the population can create a much stronger surge because of a combination of infected 

but not seriously ill individuals among the vaccinated and increased susceptibility among 

the unvaccinated. The effect of vaccination also depends upon at what time mass vaccina-

tion begins. If it begins after prolonged lockdown it is likely to be less effective since the 

baseline immunity itself has declined. Also repeated exposure after vaccination is likely 

to boost immunity further and keep it high, as documented earlier for other viral infec-

tions (Whittle 1999). Lockdown is therefore likely to be partially antagonistic to vaccina-

tion.  

 

Figure 9. A surge of variable intensity is possible after vaccination of a substantial proportion of the 

population. Here at t = 75, 50% of the population is assumed to be vaccinated instantly. Although 

the mean immunity of the vaccinated sector goes up (dotted green line) pushing the average up (red 

line), the unvaccinated ones continue to lose immunity slowly (dotted violet line) and after a thresh-

old loss a new surge may begin. 

The model finds its most important use in predicting the qualitatively different pos-

sible outcomes of PRs. The generalized outcome is that the effects of PRs can be non-mon-

otonic and depend substantially on the context. What can be good in the short run may 

turn counterproductive in the long run (figure 10a). Also the stringency of PRs may not 

be linearly or even monotonically related to the total incidence (figure 10b) as observed 

commonly in simulations over a large parameter space. These simulation results resonate 

with the observation during the pandemic that countries that successfully arrested the 

infection in earlier phases of the pandemic, including New Zealand, Australia, Hong-

kong, showed surges of much greater intensity during later phases of the pandemic.  
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Figure 10. The non monotonic effects of PRs: Course of an epidemic at different values of L between 

0 and 1. As the lockdown stringency increases, the first peak is suppressed, but post peak incidence 

is maximum for intermediate values of L. As a result, the net incidence over the course of the epi-

demic is non-monotonic. Stringency of lockdowns may not be beneficial and may turn out to be 

counterproductive at certain levels. 

Possible generalization from the simulation can be that it is difficult to ascertain that 

restrictions to curbe the spread of the infection can have positive as well as negative im-

pact depending on the context. Since we have little information about the SIE related pa-

rameters, it is difficult to predict whether PRs will be beneficial or hazardous in different 

populations at different times. We need to be open to the possibility that PRs might be 

counterproductive under at least some set of conditions.  

4. Discussion 

An epidemic disease is a complex system which is difficult to predict quantitatively 

as witnessed during the ongoing Covid-19 pandemic. The predictions of the current main-

stream modelling based on compartmental models largely failed in making useful quali-

tative as well as quantitative predictions. Not only the number of cases or number of 

deaths could not be predicted, but that there would be repeated waves, the causes, the 

timing and the severity of waves also could not be predicted at a level significantly above 

common sense. This is likely to be an effect of oversimplifying a complex system. Model-

ling is best done with an incremental approach. When a simple model fails to meet its 

objectives, it is necessary to incorporate crucial elements of the complexity into the model. 

What we show here is that treating immunity as a binary variable needs to be replaced by 

treating it as a continuous variable and incorporating small effects contributing positively 

and negatively to immunity. Allowing gray shades of immunity alone makes the model 

display characters of a complex system and brings in many qualitative changes in the 

model outcomes. Potentially even infection need not be treated as a binary variable since 

the intensity of infection and the output of the virus is highly variable. However, incorpo-

rating it in our model it is unlikely to make much difference since we assume the viral 

load for the next time unit to be a function of the total standing number of infectious indi-

viduals and in this the individual variation will mostly average out. Our model has also 

not incorporated severity of symptoms and mortality. In an epidemic the viral infectivity 

and virulence is also subject to natural selection and changes during the course of the 
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epidemic are inevitable (Shinde et al 2021). The transmission dynamics depends upon 

season and local variables such as population density, type of housing and workplace, 

nature of transport, weather conditions that differ from population to population and time 

to time. This makes the entire system highly complex. Predicting a complex system by 

pretending it to be simple, not only makes the predictions dicey, it severely limits the 

thinking in the domain including the qualitative perception of non-modellers. The small 

immunity effects modelled here are not unknown. But the current epidemiological quali-

tative thinking also does not incorporate them possibly because starting the model with a 

simple set of assumption also makes the non-modellers forget that processes not currently 

incorporated in the model do exist.  

A gray immunity model is an important step in the incremental approach and our 

simulations show that it can potentially explain the short and self limiting peaks, repeated 

surges with increasing or decreasing amplitude and variable gaps between them, con-

sistent symmetry in most of the peaks, an apparently stable endemic like state for consid-

erable length of time and surges even after vaccinating majority of the population. All 

these phenomena are seen in simulations without necessarily involving new variants. Fur-

ther we also make differential testable predictions to resolve between alternative causes 

of these phenomena. Although prior models have incorporated waning immunity and 

predicted repeated waves (Heffernan and Keeling 2009, Clancy and Mendy 2010, Ehrhardt 

2019, Yang et al 2020), they did not explain the extreme dwarfness and symmetry of the 

peaks. A model based on cyclic population behaviour did predict dwarf peaks (Epstein et 

al 2021, Tkachenko et al elife 2021), but did not talk about symmetry of the peaks. In our 

analysis, their model fails to predict symmetry. Considering intermediate states of im-

munity and incorporating small immunity effects is essential to predict the multiple char-

acteristics of the waves observed during the pandemic.  

The most important outcome of the gray immunity model is the possibility that the 

long term effects of preventive restrictions can be non-linear, non-monotonic and the in-

terventions that can be beneficial in the short run can be counterproductive in the long 

run, a warning bell already rung by Hollingsworth et al (2020) in the context of other in-

fectious diseases. In this connection, it should be noted that a WHO (2019) report based 

on meta-analysis of several studies published just before the beginning of the pandemic 

showed that most of the NPIs for respiratory infections have little evidence of being effec-

tive. All the studies claiming success of NPIs in arresting infection (e. g. Alfano and Er-

colano 2020, Kharroubi and Saleh 2020, Atalan 2020, Brauner 2020, Abaluck et al 2021) are 

short term studies and therefore whether the short term benefit has turned counterpro-

ductive during the epidemic has not been studied.  

Our assumptions about small immunity effects are not without empirical support. 

The immunity boosting effect of repeated subclinical exposures is well demonstrated for 

other viral infections such as measles (Whittle 1999). In the Covid-19 pandemic our as-

sumption that NPIs reduce other common respiratory infections is evident in data (Mar-

riott et al 2021, Huang 2021). It is also argued that by inhibiting common respiratory vi-

ruses the general respiratory immunity in the population may have declined substantially 

(Cohen 2021). 

Of particular interest is that the model gives a possible alternative causal hypothesis 

to the dwarf and symmetric peaks and repeated waves which are currently believed to be 

caused by differential implementation of PRs and by new variants respectively. The three 

factors are not mutually exclusive and could be acting together or in complex interactions. 

In the light of the gray immunity model it is possible to take a perspective of an analytical 

as well as accommodative causal analysis. There are two possible reasons for the dwarf 

peaks. The currently believed one is that the PRs restricted the peaks and the alternative 

explanation is that most individuals escape infection owing to small immunity incre-

ments. We have already stated the differential predictions of the two. According to the PR 

hypothesis, there should be no correlation between the upward slope and downward 

slope of the peaks which is expected to be quite strong by the SIE hypothesis. In reality 

most peaks are highly symmetrical as shown by the highly significant correlation between 
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upward and downward slopes. In addition, the analysis of change in slope of the inci-

dence curve following imposition or relaxation of PRs has already shown that the effects 

of PRs are marginal (Kharate and Watve 2021). Differentiating between the causes of 

dwarf peaks is important because arguments such as the lockdowns saved so many deaths 

(Agarwal et al 2021) are based on the assumption that peak heights were restricted by PRs. 

If the dwarf peaks are a result of SIEs, then the estimates of the effects of lockdowns  that 

are based on comparison with the expected rates of transmission (Brauner 2020) are 

bound to be gross overestimates.  

The appearance of repeated waves can have three possible causes. One is that of fluc-

tuating stringency of PRs and changing behavior of people. When the incidence curve is 

upwards and mortality is high, PRs are imposed and people follow behavioral guidelines 

under the fear of the infection. When incidence is low, restrictions are relaxed and fear is 

lowered which together lead to increased transmission again. This hypothesis assumes 

that PRs were highly effective. But the small and inconsistent changes in slopes after im-

posing PRs and the symmetry of the peaks weakens the PR induced dwarf peak hypoth-

esis. The second prevalent explanation is that each new wave is caused by a new variant 

that is either capable of escaping immunity and/or more infectious than the earlier vari-

ant(s). The SIE model has raised a third possibility that repeated waves are intrinsic to the 

small immunity effects over a wide parameter space. It is possible to make differential 

testable predictions of the three.  

A new variant can cause a new wave if it can evade the immunity against the prior 

variant(s). If this is qualitatively true, immunity acquired by prior infection or vaccination 

becomes irrelevant individuals with a higher E(i) would be more prone to infection in the 

first wave as well as second wave. On the contrary, by the immunity loss hypothesis, sec-

ond wave is expected to affect more of the class that remained relatively protected in the 

first wave, i.e. individuals with lower E(i). In all our simulations the mean E(i) of individ-

uals infected in a second wave was always significantly smaller than the mean of individ-

uals infected in the first wave. Although we did not find systematic analysis examining 

this in the Covid-19 data, some anecdotal accounts suggest that the second wave affected 

those sectors of the society that remained protected in the first wave (Mallapaty 2021a, 

2021b). Evidence for the acquired immunity being ineffective against the new variants is 

contradictory and therefore unreliable (Planas et al 2021, Powels et al 2021, Gazit et al 

2021). In any case it is certainly not completely ineffective.  

In case the new variant is only partially susceptible to prior acquired immunity, the 

binary immunity model is inappropriate to accommodate this possibility and our model 

needs to be brought in. The moment the continuous immunity model is invoked, it brings 

in its own intrinsic pattern of repeated waves, which should form the null model against 

which the new variant hypothesis should be tested. Since new variants keep on arising 

and their relative frequencies may drift or get selected by any mechanism of competition 

between viruses, the association of a variant with a new wave could only reflect a coinci-

dent hitch hiking on a wave. This null hypothesis can be rejected if a consistent correlation 

is shown between the increasing frequency of a variant and increasing R of the incidence 

curve across different countries or populations. Awaiting such a critical testing of the new 

variant hypothesis, at present both the alternative (but not mutually exclusive) hypotheses 

need to be kept open. It is also possible that a new variant gets selected by the altered 

immunity landscape of the host population. Since the immune response of a host is pro-

portional to the intensity of invasion, it is likely that more invasive variants get selected 

when the host immunity is low (Shinde et al 2021). Therefore SIE is also likely to be causal 

to selection of more infectious variants. A critical question to ask is whether appearance 

of new variants is mutation limited or selection limited. It is possible to address this ques-

tion with retrospective data. If it is mutation limited, we should see most new variants 

appearing near the peak of waves when viral populations are at their maxima. If selection 

limited, extended NPIs will be associated with more infective variants. Thus NPI, selec-

tion on new variants and small immunity effects are likely to be intertwined threads 

whose effects are difficult to segregate from each other.  
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Apart from the academic implications of our model in rethinking of the modelling 

approach, there are direct public health implications as well. The possible trade-off be-

tween short term and long term effects of PRs and the non-monotonic outcomes caution 

against blanket recommendation of lockdowns as well as personal protective measures 

over a long term. The measures that have a large social and economic cost should not be 

recommended since their outcomes are context dependent and at times turn counterpro-

ductive. Where and when it will turn counterproductive cannot be predicted very well at 

present. Therefore umbrella recommendations of such measures should not be done. In 

fact, this was the stand taken in a WHO report published a few months before the begin-

ning of the pandemic (WHO 2019). But the cautionary note against implementation of the 

socially and economically costly NPIs appears to have been forgotten under the panic re-

sponse to the pandemic. After vaccination, repeated exposure is most likely to boost and 

maintain long term immunity (Leino 2000). Therefore according to our model, other per-

sonal protection measures after vaccination should be contraindicated. At least substantial 

rethinking is required about public health policies to control infectious disease epidemics. 

One major hurdle in this has been lack of empirical studies on the small immunity effects, 

which is a hen and egg problem. Since the importance of SIEs is not appreciated, there is 

little motivation for empirical studies and since there is no data, modelling involving them 

fails to progress beyond a limit. At present we don’t even have tools to monitor the small 

immunity changes at a population level. Antibody titres do not reflect all mechanisms of 

immunity. Population screening tools for other subtle mechanisms have not been devel-

oped. Therefore they are not incorporated in the current epidemiological thinking. We 

have tried to break this vicious cycle by indicating that at least theoretically the SIEs can 

alter the course of an epidemic substantially. The change is fundamental because what is 

currently assumed to limit the incidence may possibly be increasing it in the long run, as 

suggested by the model. At the minimum, the message of the gray immunity modelling 

exercise is that the factors assumed to be small and unimportant need more attention since 

they can potentially change public health policies fundamentally.  
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