Epidemiology: gray immunity model gives qualitatively different predictions

Milind Watve1*, Himanshu Bhisikar2, Rohini Kharate3

1Independent researcher, E-1-8, Girija Shankar Vihar, Karve Nagar Pune 411052, India. milind.watve@gmail.com

2Indian Institute of Science Education and Research, Homi Bhabha Road, Pune 411008, India. himanshu.bhisikar@students.iiserpune.ac.in

3Independent Researcher, 4, Shivratri Soc., Model colony, Shivaji nagar, Jail road, Nasik, 422101. rohinikharate1712@gmail.com

*For correspondence: milind.watve@gmail.com

E-1-8, Girija Shankar Vihar, Karve Nagar Pune 411052, India

Supplementary material

A. Flow chart for the simulations (page 2).
B. Python code for the simulations: (page 3 to 9) The code for the core program is given, which was modified according to the questions being asked.
C. Details of symmetry analysis of peaks. (page 10)
START
Generate Distributions for $ID_{50}(i, 0)$, $E(i)$, $SCE_{50}(i, 0)$, $S(i)$

For t in range $[0, 500]$

For i in range $[0, 10000]$

$S(t)$ Identification

$S(t) = 1$

$x_4 < P_{c}$

Yes

$S(t + 1) = 0$

$ID_{50}(i, t + 1) = ID_{50}(i, t) + I_{mf}$

No

$S(t + 1) = 1$

$x_5 < P_{mf}$

Yes

No

$x_6 < P_{sce}$

Yes

$S(t + 1) = 0$

No

$x_7 < P_{inf}$

Yes

$S(t + 1) = 0$

No

$x_8 < P_{sce}$

Yes

$S(t + 1) = 1$

No

$x_9 < P_{cross}$

Yes

$ID_{50}(i, t) - I_d < 0$

No

$ID_{50}(i, t + 1) = ID_{50}(i, t) + I_{sce}$

Yes

$ID_{50}(i, t + 1) = ID_{50}(i, t) + I_s$

$x_9 < P_{cross}$

Yes

$ID_{50}(i, t) - I_d + I_c < 0$

No

$ID_{50}(i, t) - I_d + I_c < 0$

Yes

$ID_{50}(i, t + 1) = ID_{50}(i, t) + I_{sce}$

$x_9 < P_{cross}$

Yes

$ID_{50}(i, t) = ID_{50}(i, t) + I_s$

No

$ID_{50}(i, t) - I_d + I_c < 0$

Yes

$ID_{50}(i, t + 1) = ID_{50}(i, t) + I_{sce}$

$x_9 < P_{cross}$

Yes

$ID_{50}(i, t) = ID_{50}(i, t) + I_s$

No

Sum up $S(i, t)$

Find I_c value
""" Importing required modules """
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from mpl_toolkits.mplot3d import Axes3D
np.random.seed(0)

""" Initialization of required parameters which have constant values """
N = 5000 # Population size
T = 500 # Time interval
NN = np.arange(0, N) # Population size in array format
 # for plotting purposes
TT = np.arange(0, T) # Time interval in array format
 # for plotting purposes
P_r = 0.2 # Probability that an infected
individual is cured
I_mf = 200 # A constant increment in immunity
whenever a person is cured of infection. (Units = EU)
I_sce = 20 # A constant level of exposure that
ensures subclinical exposure induced immunity with a
probability 0.5. (Units = EU)
I_d = 3 # A small decrement by which
immunity decreases every time unit if not exposed or infected. (Units = Eu)
I_c = 30 # Constant Immunity increase due to
cross-immunity
a = 2 # Parameter deciding the sharpness
of the sigmoid relationship
r = 0.1 # Restriction parameter
P_c = 0.1*r # Cross immunity parameter
I_cmax = 30*r # Maximum number of infective
patients with which a normal person can come in contact
K = 2500 # Half-saturation constant of the
equation.

Creating empty 2D array of P values. This array would represent the
modified probability of infection for each individual with respect to time.
Pone = np.zeros((N, T))
Creating empty 2D array of P values. This array would represent the
modified probability of infection for each individual with respect to time.
Ptwo = np.zeros((N, T))
Creating empty 2D array of P_inf(i,t) values. This array would represent
the probability of infection for each individual with respect to time.
P_inf = np.zeros((N, T))
Creating zeros 2D array of P_sce(i,t) values. This array would represent
the probability of sub-clinical exposure for each individual with respect to
time.
P_sce = np.empty((N, T))
Creating 2D array of ID_50(i,t) values and assigning values from
the standard normal distribution. This array would represent the time evolution
of the immunity of each of the individuals with respect to time.
ID_50 = np.zeros((N, 1))
Creating array of E(i,0) values and assigning values from the normal distribution with mean = 70, sd = 30 (for t = 0 case). This array represents the expose bias of each of the individuals at initial time.
E = np.zeros((N, 1))

Creating array of S(i,t) values. These are the infective states of the individuals with respect to time.
S = np.zeros((N, 1))

Creating Array which will show the time evolution of I (Total infective state of the population)
I = np.zeros((T, 1))

Creating array of SCE_50(i,0) values and assigning values from the normal distribution. This array represents the constant level of exposure of each of the individuals at initial time.
SCE_50 = np.zeros((N, 1))

for j in range(N):
 x1 = np.random.choice(np.arange(0, 2), p=[0.95, 0.05])
 S[j, 0] = x1
 x2 = round(np.random.normal(20*r, 0.01), 3)
 if (x2 < 0):
 x2 = 0.0001
 E[j, 0] = x2
 else:
 E[j, 0] = x2
 x3 = round(np.random.normal(100, 30), 3)
 if (x3 < 0):
 x3 = 0.0001
 ID_50[j, 0] = x3
 else:
 ID_50[j, 0] = x3
 x4 = round(np.random.normal(20, 5), 3)
 if (x4 < 0):
 x4 = 0.0001
 SCE_50[j, 0] = x4
 else:
 SCE_50[j, 0] = x4

print('Top to bottom - Individuals (0 to N)
Left to right - Time steps (0 to T)
First column contains the values for T = 0
')
print("1. Initial State of the individuals in the population -- S(i,0):")
print(S)
print("2. Initial expose bias of the individuals in the population -- E(i,0):")
print(E)
print("3. Initial distribution of population immunity levels -- ID_50(i,0):")
print(ID_50)

X = np.zeros(T)
for t in range(T):
 P_inf_temp = np.zeros((N,))
 P_sce_temp = np.zeros((N,))
 P1_temp = np.zeros((N,))
P2_temp = np.zeros((N,))
S_temp = np.zeros((N, 1))
ID_50_temp = np.zeros((N, 1))
I_trans_temp = np.zeros((N, 1))
I[t] = np.sum(S[:, -1])
for n in range(N):
 I_trans_temp[n] = (I_cmax * I[t]) / (K + I[t])
 P_inf_temp[n] = (E[n][0])**a / ((ID_50[n][-1])**a +
 (E[n][0])**a)
 P1_temp[n] = 1 - ((1 - P_inf_temp[n])**((I_trans_temp[n])))
 P_sce_temp[n] = (E[n][0])**a / ((SCE_50[n][0])**a +
 (E[n][0])**a)
 P2_temp[n] = 1 - ((1 - P_sce_temp[n])**((I_trans_temp[n])))
Condition to be imposed when S(t) = 1
if S[n][-1] == 1:
 x4 = round(np.random.random(), 3)
 if x4 < P_r:
 S_temp[n] = 0
 ID_50_temp[n] = ID_50[n][-1] + I_mf
 else:
 S_temp[n] = 1
 x5 = round(np.random.random(), 3)
 if x5 < P1_temp[n]:
 S_temp[n] = 1
 ID_50_temp[n] = ID_50[n][-1]
 else:
 S_temp[n] = 0
 x6 = round(np.random.random(), 3)
 if x6 < P2_temp[n]:
 ID_50_temp[n] =
 ID_50[n][-1] + I_sce
 else:
 if (ID_50[n][-1] - I_d < 0):
 ID_50_temp[n] = 0
 else:
 ID_50_temp[n] =
 ID_50[n][-1] - I_d
Condition to be imposed when S(t) = 0
else:
 x7 = round(np.random.random(), 3)
 if x7 < P1_temp[n]:
 S_temp[n] = 1
 ID_50_temp[n] = ID_50[n][-1]
 else:
 S_temp[n] = 0
 x8 = round(np.random.random(), 3)
 if x8 < P2_temp[n]:
 x9 = round(np.random.random(), 3)
 if x9 < P_c:
 ID_50_temp[n] =
 ID_50[n][-1] + I_sce + I_c
 else:
 ID_50_temp[n] =
 ID_50[n][-1] - I_d - I_sce - I_c
ID_50[n][-1] + I_sce

else:
 x9 = round(np.random.random(), 3)
 if x9 < P_c:
 if (ID_50[n][-1] - I_d - I_c < 0):
 ID_50_temp[n] = 0
 else:
 ID_50_temp[n] = ID_50[n][-1] - I_d + I_c
 else:
 if (ID_50[n][-1] - I_d < 0):
 ID_50_temp[n] = 0
 else:
 ID_50_temp[n] = ID_50[n][-1] - I_d

ID_50[n][-1] - I_d + I_c

else:
 if (ID_50[n][-1] - I_d < 0):
 ID_50_temp[n] = 0
 else:
 ID_50_temp[n] = ID_50[n][-1] - I_d

ID_50 = np.hstack((ID_50, ID_50_temp))
S = np.hstack((S, S_temp))
P_inf[:,t] = P_inf_temp
P_sce[:,t] = P_sce_temp
Pone[:,t] = P1_temp
Ptwo[:,t] = P2_temp
x = np.mean(ID_50[:,t])
X[t] = x

print('Infective state of the population:
I[t]
print('Altered state of the population:
print(S)
np.savetxt('ID_50 (0.0, 20*0.0).csv', ID_50, delimiter=',', fmt='%s')
np.savetxt('Infection state (0.0, 20*0.0).csv', I, delimiter=',', fmt='%s')
np.savetxt('Mean ID_50 (0.0, 20*0.0).csv', X, delimiter=',', fmt='%s')
print("\nOverall trend:")
np.set_printoptions(suppress=True)
print(I.reshape(1,T))
print("\nMean Immunity levels:")
np.set_printoptions(suppress=True)
print(X)

print(P_inf.shape)
print(P_sce.shape)
print(S.shape)
print(ID_50.shape)
print(I.shape)

plt.figure(figsize=(10, 7))
X = np.zeros(T)
for t in range(T):
 x = np.mean(ID_50[:,t])
 X[t] = x
plt.plot(TT, X)
plt.plot(TT, I)
plt.title("Trend of Infective state and Mean ID50 with time")
plt.xlabel("Time")
plt.ylabel("I(t)")
plt.legend(["Mean ID50", "$I(t)$ vs t"])
plt.grid(linewidth=0.5)
plt.show()

plt.figure(figsize=(10, 7))
X = np.zeros(T)
for t in range(T):
 x = np.mean(ID_50[:,t])
 X[t] = x
fig, ax2 = plt.subplots()
ax1 = ax2.twinx()
ax1.plot(TT, X, color = 'darkorange', label = 'Mean ID50')
ax2.plot(TT, I, color = 'green', label = '$I(t)$ vs t')
ax1.set_xlabel('Time')
ax1.set_ylabel('ID_50(i,t)')
ax2.set_ylabel('I(t)')
Adjust axis limits based on estimates from above graph
ax1.set_xlim((-1, 150), ylim =(0, 200), autoscale_on = False)
ax2.set_xlim((-1, 150), ylim =(0, 700), autoscale_on = False)
ax2.set_yticks(range(0, 700, 100))
ax2.grid(linestyle='-', linewidth=0.5)
fig.legend(loc='upper right')
ax1.title.set_text('Trend of I(t) and Mean $ID_{50}(i,t) \ for \ (1.0, 100)$')
plt.show()

fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111, projection='3d')
nbins = 50
color = ['orange', 'green', 'red', 'gold', 'magenta', 'blue']
time_step = [500, 400, 300, 200, 100, 0]
for c, t in zip(color, time_step):
 arr = ID_50[:, t]
 thresh = 200
 true_vals = arr > thresh
 true_sum = np.sum(true_vals)
 false_vals = np.array([i for i in arr if i < thresh])
 hist, xbins = np.histogram(false_vals, bins=nbins)
 new_hist = np.append(hist, t)
 new_bins = np.append(xbins, 225)
 xs = (new_bins[:-1] + new_bins[1:]) / 2
 ax.bar(xs, new_hist, zs=t, zdir='y', color=c, alpha=1.0)
ax.title.set_text('Histogram of $ID_{50}(i,t)$ for various time steps (CI parameter = 0.0)')
plt.xticks(range(0, 250, 25))
```
#labels = ('0', '25', '50', '75', '100', '125', '150', '175', '200', '200')
plt.xticks(labels)
ax.set_xlabel(r'$ID_{50}$')
ax.set_ylabel('Time')
ax.set_zlabel('Frequency of values')
print(true_sum)
plt.show()

fig = plt.figure(figsize=(15, 15))
ax = fig.add_subplot(3, 3, 1)
sns.kdeplot(ID_50[:, 0], fill=True, ax = ax)
ax = fig.add_subplot(3, 3, 2)
sns.kdeplot(ID_50[:, 100], fill=True, ax = ax)
ax = fig.add_subplot(3, 3, 3)
sns.kdeplot(ID_50[:, 200], fill=True, ax = ax)
ax = fig.add_subplot(3, 3, 4)
sns.kdeplot(ID_50[:, 300], fill=True, ax = ax)
ax = fig.add_subplot(3, 3, 5)
sns.kdeplot(ID_50[:, 400], fill=True, ax = ax)
ax = fig.add_subplot(3, 3, 6)
sns.kdeplot(ID_50[:, 500], fill=True, ax = ax)
plt.show()

f, ax = plt.subplots(3, 3)
ax[0, 0].hist(ID_50[:, 0])
ax[0, 1].hist(ID_50[:, 100])
ax[0, 2].hist(ID_50[:, 200])
ax[1, 0].hist(ID_50[:, 300])
ax[1, 1].hist(ID_50[:, 400])
ax[1, 2].hist(ID_50[:, 500])
plt.show()

# Number of time steps for which histogram is to be plotted
# To be defined in accordance with the value at the beginning of the program
# Increment of time steps. x = T/(n-1) is to be followed

for i in range(n):
    arr = ID_50[:, t]
    thresh = 200
    true_vals = arr > thresh
    true_sum = np.sum(true_vals)
    false_vals = np.array([i for i in arr if i < thresh])
    sns.histplot(false_vals, bins=bins, color='b')
    plt.ylim(0, 700)
    plt.bar([205], [true_sum], width=10, color='b')
```
plt.show()
t += x
Analysis of symmetry of peaks in the incidence curves:

The dwarf peaks, i.e. peaks and decline at a much smaller height than the expected herd immunity threshold can be potentially explained by two alternative hypotheses. (i) The NPIs being responsible for reducing the R to a value <1. (ii) The SIE as in our model. The differential predictions of the two alternative hypotheses are that by hypothesis (i) no symmetry around the peak is predicted whereas hypothesis (ii) predicts that a steeper upward slope will be followed by a steeper downward slope.

We examine the symmetry of peaks as follows. In the daily new incidence curve on the 7 day running average data between March 2020 to 15th Aug 2021, all peaks with an effective height of 1000 as compared to the higher of the two baselines (figure 1) are taken for analysis. Smaller curves are avoided since stochastic noise is likely to be stronger. The height is divided into the lower 20%, middle 70% and upper 10%. It is commonly observed that in the lower 20% and upper 10% the slope changes rapidly whereas in the middle 70% a linear fit is reasonable. We fit a linear regression to the middle 70% of height for the upward trend as well as downward trend and this pair from all the 164 peaks is subject to correlation. The same procedure is repeated on a linear as well as log scale.

Figure 1: Incidence curve of India using 7 day running average of daily new cases, demonstrating the quantification of peak symmetry. The baseline is the stable incidence phase, higher of the two being taken for a given peak. A linear trend is fitted to the middle 70% of the peak height. The two peaks exemplify the symmetry, the first peak rises as well as declines slowly in contrast with the second which rises as well as falls sharply. The rise and fall slopes of the 164 peaks satisfying inclusion criteria are correlated, a good correlation indicating symmetry.