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Abstract:

Background: Compartmental models that dynamically divide the host population in categories
such as susceptible, infected and immune form the mainstream of epidemiological modelling.

Effectively such models treat infection and immunity as binary variables.

Method: We constructed an individual based stochastic model that considers immunity as a
continuous variable and incorporates factors that bring about small changes in immunity. The
small immunity effects (SIE) comprise cross immunity by other infections, small increments in

immunity by sub clinical exposures and slow decay in the absence of repeated exposure.

Results: A model incorporating SIEs leads to qualitatively different epidemiological predictions
including repeated waves without the need for new variants. Dwarf peaks, i.e. peak and decline
of a wave much before reaching herd immunity threshold, low level apparently stable existence
of the pathogen, new surges after variable and unpredictable gaps, new surge after vaccinating
majority of population are the common features of the pandemic mimicked by simulations using
the SIE model.

Discussion: The SIE model raises alternative possible causes of the universally observed dwarf
peaks and repeated surges. We also suggest testable predictions to differentiate between the
alternative causes. The model further shows complex interactions of different interventions that
can be contextually synergistic as well as antagonistic. As a result, interventions intended to
arrest the transmission can be ineffective or counterproductive. Interventions that are beneficial

in the short run can be hazardous in the long run.

Conclusions: In the absence of empirical estimates of many parameters, the model may not be
useful to make quantitative predictions at this stage but it certainly challenges traditional wisdom
and currently held beliefs behind non-pharmaceutical interventions recommended to control the

epidemic.

Keywords: Epidemiological model, dwarf peak phenomenon, herd immunity, Covid-19.
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Introduction:

Mainstream epidemiological models use a compartmental approach in which the population is
dynamically distributed into compartments, typically three compartments namely susceptible,
infected and removed (Tang et al 2020, Tolles and Luong 2020, Fudolig and Howard 2020) or at
times more depending upon the question being addressed (Leung et al 2020, Giordano et al 2020,
Carcione et al 2020). While this family of models is simple and useful towards some objectives,
they are inadequate to capture certain features of real life epidemiological patterns as revealed by
the Covid-19 pandemic (Moein 2021). Often the predictions of the model are empirically testable
(Agarwal et al 2021). In the current pandemic some of the commonly observed features were not
adequately explained by the mainstream models. During the Covid-19 pandemic in any of the
surge, the peak appears to be achieved followed by decline substantially before reaching the herd
immunity threshold expected at the estimated parameters. If anon pharmaceutical interventions
(NPIs) or preventive restrictions (PRs) restricted the peaks, we should see significant and
consistent decline in transmission rates after imposition of the measures. However, in data across
countries the change in the slope is not correlated with standing stringency level and poorly
correlated with change in stringency (Kharate and Watve 2021). This pattern is not adequately
explained by the mainstream models so far. By classical model, the down-slope ends up
approaching zero incidences, whereas during the pandemic it has commonly ended up in low and
apparently steady level for quite some time before beginning of a consequent surge. The repeated
wave pattern needs explanations outside the model such as change in behaviour of people as the
fear reduces (Epstein et al 2021) or appearance of new variants (Fudolig and Howard 2020).

The compartmental models consider immunity as a binary variable. Any individual or a fraction
of the population, when not suffering from active infection is either susceptible or immune in the
model. We show here that considering immunity as a continuous variable rather than as a binary
variable and incorporating subtle known factors affecting immunity explains many of the
previously unexplained features of the epidemic. Allowing gray shades of immunity one can get
repeated waves without involving new variants, increased rates of transmission without increased
infectivity of the virus, a long term endemic steady state, a peak and decline much before the
expected herd immunity threshold, breakthrough infections after vaccination and new surges

after vaccinating majority of the population. The model that can explain these phenomena also
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gives certain non-conventional predictions that can be potentially important for designing control

measures for future epidemics.

Incorporation of shades of immunity and dynamic population distribution of it necessitates an
individual based model where the immunity level of each individual is affected by a number of
factors. We only incorporate factors for which there is empirical evidence, at least qualitatively.
Infection of an individual is a probabilistic phenomenon. In our approach immunity is measured
in terms of the dose of infectious agent required to infect an individual with a probability of 0.5.
The concept of ID50 is classical and well known (Antilla et al 2013, Regoes et al 2002, McLean
and Bostoc 2000, Gadagkar and Call 2015) and the relationship between dosage of pathogen and
probability of infection is of sigmoid nature with ID50 lying at the point of inflection. In our
model we treat ID50 not as a population parameter but as a property of an individual depicting
his probability of getting infected at a given level of exposure to the pathogen at a given time.
Higher the level of immunity, higher is the ID50, i.e. higher the dose of pathogen required to
cause infection. An individual’s ID50 is a dynamic variable of the model that can vary between
zero to infinity and that is under continued flux being affected by a natural infection or
vaccination, which leads to a large quantum jump in ID50. This contrasts with many small
immunity modulators. Some immunity is contributed as cross immunity from infection by other
viruses in the form of antibodies to conserved epitopes (Mallajosyula 2021),interferons and other
non-specific mechanisms (Dee et al 2021) and as a result some level of pre-immunity exists in a
population before facing an epidemic (Sette and Crotty 2020, Doshi 2020, Ng et al 2020). A
negative correlation between background level viral infection and the severity of Covid-19
pandemic is suggested by some studies (Haridas and Prathap 2020). Resistance to infection also
involves subtle factors such as physical integrity of mucous membranes or other concerned
tissues, the proportion of senescent cells in the target tissue (Humphreys et al 2020) and so on.
After recovering from a respiratory infection, for example, much of the mucous membrane is
composed of young cells that have replaced the infected cells. Such a young cell lining may be
more resistant to a new virus, but this effect is expected to be short lived and wane fast as some
older and effete cells accumulate. It is also possible that exposure to a pathogen at sub-infectious
level contributes to some immunity (Gold et al 2021, Santos Rocha 2018), not comparable in
magnitude to that achieved by active infection or by vaccines (Krammer 2021). Since immune

response is costly, the body has evolved not to give a full strength immune response to every
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attack. Immune response is proportional to the intensity of invasion and virulence of the
pathogen (Read 1994, Long et al 2020, Shinde et al 2021). Therefore the response to a mild
exposure without detectable infection is likely to be proportionately small, but repeated
exposures may raise the immunity level sufficient to increase the probability of escaping a given
attack. In the absence of repeated exposure, immunity is known to decline gradually (Leino
2000, Sanderson 2021). This phenomenon was well recognized by previous models, but they still
treated it with the binary immunity state assumption (Leung et al 2018). Different components of
immunity are known to decline at different rates. For example, memory cells have a long life
(Turner et al 2021) whereas antibody titres decline relatively fast. Some of the other non-specific
small contributors mentioned above may also decline rapidly. At present there is little empirical
work to parameterize these subtle factors. Therefore we do not incorporate the differential
decline, but assume a small constant decline in ID50 with time in the absence of repeated
exposure. The results of accommodating the small immunity effects (SIEs) are qualitatively

different from the binary immunity models.

Owing to lack of empirical data on all the immunity related parameters, it is not possible to make
a quantitatively predictive model for the Covid-19 pandemic at this stage. But our objective is to
demonstrate that the SIEs can substantially affect the shape of an epidemic curve and therefore

they demand more empirical inputs as well as a different class of futuristic models that will have

a greater predictive value.
The Model:

We conceive an individual based model in which every i"" individual in a population of N has a
dynamic immunity level ID50 (i,t) which can change with time. There is a background
population distribution of immunity levels before the epidemic begins which is assumed to be
normally distributed initially with a mean ID50 (0) and s.d.ID50 (0). The nature of the
distribution is allowed to change in time as individuals change their immunity levels. The
probability of infection at a given level of exposure to the pathogen is assumed to be a sigmoid
function by the classical principle of D50 such that
E®*"
T (D507 ¢ E(1)9)

Pinf
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Where E (i) is the exposure bias (in arbitrary units) of i individual to the virus. Individuals
differ in their exposure to a pathogen by their profession, locality and behaviour and accordingly
E(i) also has a population distribution which is assumed to be constant in time. The parameter ‘a’

is the power that decides the sharpness of the sigmoid curve.
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Figure 1: The sigmoid curve relating probability of infection as a function of exposure to
infectious agent. ID50 or the point of inflection where the probability of infection = 0.5 is a
measure of standing immune level of an individual. We assume that exposure without causing
infection contributes a small increment in immunity and this function is also assumed to be

sigmoid.

S(i,t) is a binary state of i individual at time t that can vary between 0 = uninfected and 1 =
infected. With the probability Pinfthe state changes from 0 to 1. The infection is spontaneously
cured with a constant probability Pc by which a state 1 is transformed to state O and

simultaneously ID50 (i,t+1) is shot up by a factor lint.

We assume a small chance Pcross With which an individual is infected by other viruses
contributing cross-immunity. The level of cross immunity offered by such an infection is lcross
assumed to be one to two orders of magnitude smaller than linr. Similarly we assume that an

exposure to the infectious agent without causing infection also confers a small immunity
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increment Isce and this also works in a similar sigmoid function with Sce50(i) corresponding to

probability of 0.5. Sce50(i) also has a population distribution which has a constant mean and s.d.

Whenever an individual’s status is 0 and remains so, with neither lcross NOr lsce inCrements, the

immunity is assumed to decline by a small decrement I4 which is much smaller than lIsce and lcross.

The exposure of individuals to the infectious agent also has multiple components and we include
three important parameters representing them. One is the exposure bias of an individual. Some
individuals by their occupation, type of housing, mobility and behaviour are more exposed and
others relatively isolated. Therefore E(i) is assumed to be the distribution of the exposure bias
which remains time invariant. Exposure is also a function of the prevalent number of infectious
individuals I(t), but this need not grow linearly with I(t). A society has some degree of viscosity
and there is an upper limit K.,,,, to how many infectious persons one individual can come in
contact. Therefore we consider the number of individuals from which a person can get infection

as a saturating function of I(t) such that,

Kemax- 1(t)

®= 2o

The parameter K, the half saturation constant of the equation will be decided by population

specific factors such as population density, mobility and behaviour of people.

The probability of an individual getting infected from at least one of the infectious contacts is

E(l)a Ic(t)

Finr = 1= 11 = D50G, 00 + EQ)

With this probability, the status of the individual at a given timeS(i,t+1) changes from 0 to 1.

Similarly the probability that an individual gets a subclinical exposure that gives a small

immunity increment lsce at time t+1 is

E(l)a Ic(t)
 (Sce50(D)@ + E(i)a))

Piee =1 — (1
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We used stochastic simulations using these probabilities. The range of parameters used for these
simulations is tabulated in table 1. Note that the Isce, lcrossand Iq ranges used for the simulation are
one to three orders of magnitude smaller than lin. Whenever we address vaccination related
questions, the effect of vaccination is assumed to be equivalent to the effect of prior infection
following Krammer (2021). Since distributions are being generated, we avoid zero and negative
values by setting up an arbitrary small value to E(i), ID50(i,t) and I(t). Any values going below

this are considered equivalent to the minimum.

We used the model for running simulations (see supplementary information) with a range of
parameters used as in table 1. Within the range one or more of the parameters were randomized.
Since empirical estimates for many of the parameters are not available, we restrict ourselves to
drawing qualitative conclusions that show alternative possible outcomes of any policy or

measures implemented and do not claim any quantitative predictions.

Table 1:

Parameter Lower limit | Upper limit
Mean E(i)* 0 50
s.d. E(i) 1 30
mean D50 (0)? 0 200
5.d.1D50 (0) 1 100
mean Sce50(i)? 10 50
s.d. Sce50(i) 1 30

a 2 5

Pc 0.1 0.4
linf’ 200 300
leross” 0 40
lsce? 0 40
I 0 4
Peross 0 0.1
lemax 5 40

K 50 2500

1: Arbitrary units. 2. Immunity related parameters are expressed in the same units as 1.

d0i:10.20944/preprints202109.0162.v2


https://doi.org/10.20944/preprints202109.0162.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 October 2021 d0i:10.20944/preprints202109.0162.v2

Simulating Non-pharmaceutical interventions (NPIs): During the Covid-19 pandemic, for the
first time a set of NPIs were used on a global scale, consisting of certain preventive restrictions
(PRs) imposed by government and personal protection measures (PPMs) advised to people. We
addressed the effects of these on the epidemiological patterns to study their possible effects
under different conditions. While the classical model only assumes that NPIs will reduce the
parameter R, our model allows exploring differential effects and interactions of different

measures with each other and with the other parameters.

We expect NPIs to affect mean E(i), Pcross, Kemaxand K to be affected by NPIs but in a differential
way. Personal protection measures such as masks, PPEs, hand washing, surface sanitization and
social distancing is expected to reduce meanE(i) and Pcross. Travel restrictions and work from
home policy are expected to decrease Kcmax and/or increase K. We also consider a general
lockdown parameter L that goes from O to 1 and which multiplicatively alters E(i), Pcross and
Kemax Simultaneously and proportionately. These changes were applied either from the beginning
of the simulations or at different t representing imposition or relaxation of NPIs at different

stages of the epidemic.
Results:

Since the model involves a large number of parameters we started with an exploratory approach
to randomize all parameters within the given range (table 1) and record the qualitative outcome.
Over a thousand simulations gave only four qualitative types of outcomes (figure 2),(i) A single
peak followed by extinction or near extinction of the pathogen, similar to a typical compartment
model (ii) a peak followed by a low level stable or mildly fluctuating endemic like state (ii) a
pattern of multiple surges or waves, the surges often being separated by apparently stable or
fluctuating incidence for variable time duration (also see figures 7, 9 and 10) for variable spacing
between waves). Since the number of parameters is large and we have no empirical estimates for
many of them, we do not systematically explore the entire parameter space. Instead we focus
here on demonstrating the complex interplay of parameters, the overall complexity of the
outcomes and the inherent unpredictability of the system although certain qualitative pattern
predictions can be made. This contrasts the classical deterministic predictive models and the

change is brought about by making just one binary variable continuous.
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Figure 2: The four types of outcomes from the model. Blue lines = new cases per unit time, red
lines = mean population immunity level. A. Single wave followed by near eradication of the
virus, B. Single wave followed by prolonged low level endemic coexistence C. Multiple surges
with varying space between waves and heights of waves D. Effective control of transmission

directly leading to eradication. E. An example slice of the parameter space across ID50(0) and L
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showing how the types of outcomes can be distributed. With high rate of transmission and low
baseline immunity pattern A is observed. With greater restrictions on transmission endemic state
ensues, further restrictions invite multiple waves but beyond a threshold restrictions, i.e. near
zero transmission the disease may be quickly eradicated. The parameter areas vary widely as

other parameters change but the four basic types are preserved.

When the small immunity effects are zero or close to zero, the outcome is similar to classical
compartment models implying that the apparently stable endemic or multiple well spaced wave
patterns are a result of the SIE. It is notable that in this model when SIE parameters > 0, the
height of a peak and subsequent decline begins when only a small fraction of the population is
infected, in contrast to the herd immunity threshold of classical SIR model. An important
outcome of the model is that a wave pattern with variable spacing, slopes and heights of the

waves is possible even without the need for novel variants defying immunity.

Although the system assumes a state of complexity with limited quantitative predictability, the
processes leading to the four possible outcomes can be explained in principle. Owing to the
sigmoid relationship of infection probability with the dynamic individual 1D50 values, at times a
small increase in immunity can be sufficient to evade infection with a high probability. The
escape is likely to be accompanied by further small increase in ID50 reducing the probability of
infection further. By this mechanism, many individuals can escape infection without being
“fully” immune. This results into an arrested peak followed by decline in incidence much before
the classical herd immunity threshold could be reached. One of the patterns predominantly
observed during the first phase of the pandemic was that most members of the family of infected
individuals appear to have escaped infection in spite of exposure (Shah et al 2020). This can also
be explained by the SIE effect. However, as the incidence declines, the immunity levels achieved
by SIEs also start declining. The rate of decline is enhanced by NPIs. This makes some of the
individuals susceptible again. This leads to a complex dynamics resulting into a fluctuating
incidence that may remain apparently stable for some time or give rise to another surge when the

immunity levels of a substantial part of the population decline below a threshold.

The immunity decline is more relevant to individuals with smaller E(i) as they remain protected
owing to lower exposure. However, as they remain protected, their immunity also declines

slowly. With the decline, they become increasingly susceptible at a lower exposure. This is
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unlikely to happen to individuals who achieve immunity after an active infection or by
vaccination. This is because the rise in immunity is of a much greater magnitude than the SIEs.
Although the infection or vaccination acquired immunity is also subject to waning, during the
long time required for waning they have a greater chance of repeat subclinical exposures
boosting the immune levels again. Therefore the second wave is mostly due to decline in the SIE
rather than decline in infection or vaccination driven immunity. This is also evident in the gap

between two surges which can be often much smaller than lint/lq.

When the rate of a process is determined by multiple factors, only some of them are rate limiting
at a given set of conditions. Therefore only intervention in these factors can result into effective
control of transmission. Intervention in factors that are not rate limiting is not likely to have any
effect. The factors interact with each other in a complex way, sometimes being synergistic but at
other times working to nullify each other’s effects. Simulations using our model demonstrate this

well known principle, some examples being depicted in figure 3.

4000 -

A (Other parameters used in this
§ iy simulation N=5000, mean E(i) = 10,
3 3000 | s. d. E(i)=5, mean 1D50(1,0)=100, s.d.
%ﬂ 2500 ID(50)=60, mean Sce50(i) = 20, s.d.
$ i | Sce50(i)=5, P. =0.2, 1;=200, l5=20,
é 1500 - la=2,Kemax=30, K=2500.

1000 + T T T T
0.000001 0.00001 0.0001 0.001 0.01 0.1 1
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Figure 3: The complex nature of interaction between the parameters affecting net incidence
during the simulated pandemic A. Effect of Pcrossat two different mean E(i), 5 (blue line) and 10
(red line). B. Effect of mean E(i) at different Pcross. Note that at when lcross.Peross™ =lq, (blue line)
reducing mean E(i) reduced the incidence whereas at lcross.Pcross< la(red line) reducing E(i)
increased the net incidence.C. Effect of Kcmaxat lcross.Peross™> = ld, (blue line) and lcross.Peross< ld
(red line). Awork from home strategy that reduces Kcmax may reduce the incidence in the former
condition whereas work from home can actually increase disease incidence in the latter. The
examples illustrate complexity of interactions between factors owing to which the measures
intended to reduce transmission can be effective, ineffective or even counterproductive in

different contexts.

As a result of the complex interactions, different factors become rate limiting in different phases
of the epidemic and a measure that is effective in one phase may prove ineffective in another.
For example in one phase of the epidemic the rate of transmission of the virus may be central in
determining the slope of the incidence curve whereas in another phase the rate of immunity
decline may be the limiting factor and a change in rate of transmission may bring in no
detectable change in the dynamics (figure 4). It is important to realize this in planning public
health policies. The complex interactions possibly explain the lack of consistent relationship
between various PRs imposed and the change in slope of the incidence curve to follow. Imposing
a restriction is expected to decrease the slope and lifting imposition is expected to increase it. But
in data across countries we observe that contrary to expectation 31% of times slope actually
increased after imposing PRs and 45.4 % of times it decreased after relaxing them (Kharate and
Watve 2021). A simple but highly enlightening possibility raised by the model is that the simple

assumption that PRs decrease disease transmission is not always true.
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new incidence per unit time

o

Figure 4: The effect of the same intervention at different phases of the epidemic can be very
different. (A) Two exposure levels mean E(i) = 15 (green lines) and 10 (blue line) from the
beginning of the simulation (B) Two simulations started with mean E(i) =10 but at t=100 one of
them changed to 15. Note that controlling exposure from t=0 substantially lowers the incidence,
but relaxing the control at a later phase, t=100, has no significant effect on the course of the
epidemic. A possible implication of this is that if a new variant with greater infectivity arises
during the endemic like state, the increased infectivity alone may not be sufficient to cause
another peak. Also relaxation of PRs may increases E(i) but that may not result in rise in

incidence.

We see in the Covid-19 data across different populations that most of the peaks have been much
smaller than the herd immunity thresholds that were predicted. This is compatible with our
model. However there are two possible alternative explanations for having dwarf peaks. One is
that the non-pharmaceutical interventions (NPIs) or preventive restrictions (PRs) effectively
restricted the transmission and arrested the peaks. The other is that most individuals could escape
infection owing to the SIE effects restricting the peak height. It is possible to make differential
predictions from the two alternative hypotheses for the small peaks. If the preventive restrictions

14
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arrest the infection and turn the curve downwards by effectively making R < 1 in the classical
model, the slope of the downward curve is expected to be independent of the upward curve
(figure 5a). On the other hand, in the classical model, as well as in our model when the curve
naturally starts a decline owing to altered level of population immunity, there remains an element
of symmetry in the shape of the peak. If the upward slope is steeper, the downward slope is also
proportionately steeper. This is because a rapid rise in incidence also causes a rapid rise in
immunity by the classical model as well as by SIE effects and a greater level of population
immunity causes a steeper decline. This leads to a good correlation between the upward and
downward slopes as revealed by simulations (figure 5b and c). Applying PRs at some point in a
rising wave, and assuming that the PRs are effective, a decline before the herd immunity levels
can also be obtained. But in this case the slope of the decline is driven by the intensity of the PRs
and therefore may not be related to the upward slope before the imposition of PR. High
population density and other pro-transmission factors that are responsible for a steep upward
slope, make a steep downward slope more difficult. This is most likely to deviate further from
the symmetry of the wave. Therefore using a correlation between the upward and downward
slope it is possible to test on a global scale whether PRs were commonly responsible for the
shorter peaks or SIE effects. A careful analysis of symmetry of peaks (See supplementary
material for details of symmetry analysis) reveals highly significant correlation between upward
and downward slopes (figure 5 D and E) of all major peaks indicating substantial role of SIE and
not NPIs alone.

Figure 5: Differentiating between two alternative causes for dwarf peaks: In the incidence
curves of Covid-19 across countries, it is observed that almost all the peaks are achieved much
before the predicted herd immunity level. This can either be because of the preventive
restrictions imposed or because of the small immunity effects. A. In a classical SIR model, the
PRs are expected to make R<1if a decline is caused by them. However, they may take any value
between zero and one independent of the upward slope of the surge. Therefore no correlation is
expected between the upward and downward slope. B. Simulations using our model in which the
parameters are randomized to get variance in transmission rates, show that a steep upward
slope is accompanied by a steep downward slope giving rise to a correlation between the two
(C). In pandemic data across countries covering all 164 peaks of height over 1000 (new cases

per day) there is good correlation between upward and downward slopes taken over linear scale
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(r=-0.861 including second peak of India which is an outlier and 0.599 excluding it) as well as

log scale (r=-0.4304). For all the three correlations p <107,
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The starting ID50 distribution in the population is assumed to be normal in the SIE model.
However, the shape of the distribution will change as the epidemic progresses. While infected
and recovered individuals will have experienced a quantum jump in their ID50(i,t) the protected
part of the population may have lost some, particularly if the personal protection measures are
strictly followed. Further as a wave recedes, exposure becomes rarer and the immunity is
gradually lost for a larger sector of the population. The distribution of immunity in the
population at this stage is highly dispersed and often bimodal (Figure 6). Although the
individuals having acquired immunity after an active infection will experience little
proportionate loss and will be least susceptible to reinfection for a longer time, the once having

escaped because of SIE may have reduced immunity as compared to their baseline particularly if
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personal protective measures have been strictly followed. The resulting bimodal or over
dispersed distribution of immunity has important consequences for the shape of the incidence
curve. The pathogen may persist in the population without becoming extinct owing to newly
created susceptibles that can get infected at very low exposures. If the immunity of a substantial
sector of population drops below a threshold, a new wave may begin. Therefore depending upon
the parameters and the standing context, the epidemic can take wave forms without the need for
new variants or behavioural change in the population. The possibility of variably spaced repeated
waves is a unique outcome of the SIE model not seen with the classical compartment models

without involving novel variants or recruitment of new born susceptibles.

Histogram of /Dsp for various time steps (Cl parameter = 0.1)

Frequency of values
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Figure 6: Change in the distribution of population immunity during the course of the epidemic
when NPIs are applied but are unable to eradicate the pathogen in one go. The assumed normal
distribution of immunity in the beginning of the epidemic becomes increasingly over-dispersed.
The immunity levels decline starting with the protected sector of the population (low E(i)) and
when near the lower end, some of them get infected even at very low exposures. These

individuals are thrown to the right extreme because of infection induced immunity, but
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simultaneously more individuals lose immunity to take their place. This immunity dynamics

appears to be mainly responsible for the stable or oscillating incidence.

Nevertheless the model is not incompatible for new variants which might escape the specific
immunity to earlier variant or may be mutants with higher infectivity. It is possible that both SIE
and new variant contribute to repeated waves. In the context of repeated waves, another
interesting result of the SIE effect is that even in the absence of a new and more infectious
variant, the second wave can be steeper and taller than the first one (figure 7). This happens
when initial population immunity, mean ID50(i,0) is substantially greater than mean E(i), both
the distributions have sufficiently large standard deviations and personal protection or general
lockdowns are sufficiently effective to allow loss of immunity in a sector of the population.
Under such conditions the first wave is mainly limited by pre-existing cross-immunity of the
population. However, due to personal protection measures exposure to other viruses giving
cross-immunity is also reduced for the majority of the population. As a result the distribution of
immunity becomes bimodal and for substantial population the immunity declines below a
threshold to trigger a new wave. Since now the background immunity for a sector of the
population is lower than the first wave, the second wave rises more sharply and achieves a
greater height. Such a pattern is seen in many countries during the current pandemic. This creates
an alternative possible explanation to the more devastating second wave faced by countries such
as India. The first wave in the highly population dense India was said to be surprisingly small
with low mortality which could be ascribed to a background immunity level contributed by other
viral infections (Haridas and Prathap 2020). However owing to widely applied lockdown and
personal protection measures, the immunity of a substantial sector of the population could have
declined, making them highly susceptible. This susceptibility could be the cause of the steeper
and more devastating second wave. Currently the devastating nature of the second wave in India
is attributed to the variant Delta (Mallapaty 2021b) without considering the alternative
hypothesis of SIE. The two possible causes of the second wave being more devastating are not
mutually exclusive, but it is necessary to analyze and understand their relative contributions by a

differential predictions approach.
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Figure 7: The phenomenon of second wave being steeper and taller than the first can be
obtained in the SIE model without the need for a more infectious variant. The steepness of the
second wave is caused by the subtle accumulating immunity loss intensified by NPIs. Increasing
one or more of the exposure related variables from the start of the simulation increases the first

peak and suppresses the second.

The alternative causes of the second and subsequent waves can be differentiated based on the
epidemiological patterns they give rise to. The possible causes of second wave can be different if
the first peak has achieved herd immunity or is a dwarf peak due to SIE effects or due to NPI. If
a new variant evades immunity against the prior variant, a new wave may begin but the pattern
of this wave with respect to individual exposure bias will remain similar to the first wave, i.e.
individuals with greater risk of exposure will be affected first. If the first wave is dwarfed by
NPIs, in the absence of SIEs, a novel antigenic variant will be unable to cause a second wave
unless the NPIs are relaxed and/or the infectivity is increased. In simulations increasing
infectivity or relaxing restrictions is treated similarly by increasing the exposure related
parameters. In simulations if SIEs are disabled and the first peak is substantially dwarfed by
NPIs, the exposure, infection relationship is positive as in the first wave. Even if immunity
evading variant and increased infectivity act together, the positive relationship between exposure
and infection is retained in the second wave. In contrast, if the first peak is dwarfed by SIEs a
second peak can arise without a new variant and in that case, the low exposure individuals are

more likely to be infected in the second wave (Figure 8).
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Figure 8: The exposure infection relationship during the first and second wave: Relative
frequency of infected individuals belonging to the five pentiles of the exposure distribution when
the second wave is caused by (A) SIE model, (B) variant with greater infectivity or restrictions
relaxed and (c) variant with greater infectivity as well as partial immunity evasion. In the SIE
model the relationship is reversed during the second wave, i.e. individuals less exposed to the
first wave are more likely to get infected in the second. In contrast if the second wave is caused
by lifting restrictions or a new variant with higher infectivity and/or evading immunity to earlier

variant the exposure-infection relationship is not inverted.

This contrasting pattern is testable in real life. Although precise quantification of individual
exposure bias may be difficult, it can be predicted that if SIEs cause a first dwarf peak followed
by a second wave, individuals whose occupation exposes them more to infected individuals, who
live in population dense locality and/or do not follow appropriate behaviour will be infected
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disproportionately more in the first wave whereas in the subsequent waves individuals from
more isolated, remote and low density areas, with safer occupations and following Covid

appropriate behaviours will show disproportionately increased relative incidence.

The bimodality of immunity in the SIE model also suggests a possible cause of the observed
incidence surge in many countries after nearly half or more of the population getting vaccinated.
If vaccination is accompanied by effective personal protection measures, while the vaccinated
individuals have high levels of immunity, the unvaccinated section of the population might have
reduced their immunity levels substantially triggering a new wave. This is seen very frequently
in simulations if we introduce vaccination in a part of the population at some point after the first

wave has declined (figure 9).

In the simulation we consider the vaccinated individuals to be completely immune. If vaccination
does not completely prevent infection but arrests severity, vaccinating part of the population can
create a much stronger surge because of a combination of infected but not seriously ill
individuals among the vaccinated and increased susceptibility among the unvaccinated. The
effect of vaccination also depends upon at what time mass vaccination begins. If it begins after
prolonged lockdown it is likely to be less effective since the baseline immunity itself has
declined. Also repeated exposure after vaccination is likely to boost immunity further and keep it
high, as documented earlier for other viral infections (Whittle 1999). Lockdown is therefore

likely to be partially antagonistic to vaccination.
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Figure 9: A surge of variable intensity is possible after vaccination of a substantial proportion of
the population. Here at t = 75, 50% of the population is assumed to be vaccinated instantly.
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Although the mean immunity of the vaccinated sector goes up (dotted green line) pushing the
average up (red line), the unvaccinated ones continue to lose immunity slowly (dotted violet line)

and after a threshold loss a new surge may begin.

The model finds its most important use in predicting the qualitatively different possible
outcomes of PRs. The generalized outcome is that the effects of PRs can be non-monotonic and
depend substantially on the context. What can be good in the short run may turn
counterproductive in the long run (figure 10a). Also the stringency of PRs may not be linearly or
even monotonically related to the total incidence (figure 10b) as observed commonly in
simulations over a large parameter space.
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Figure 10: The non monotonic effects of PRs: Course of an epidemic at different values of L
between 0 and 1. As the lockdown stringency increases, the first peak is suppressed, but post
peak incidence is maximum for intermediate values of L. As a result, the net incidence over the
course of the epidemic is non-monotonic. Stringency of lockdowns may not be beneficial and

may turn out to be counterproductive at certain levels.
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Since we have little information about the SIE related parameters, it is difficult to predict

whether PRs will be beneficial or hazardous in different populations at different times.
Discussion:

An epidemic disease is a complex system which is difficult to predict quantitatively as witnessed
during the ongoing Covid-19 pandemic. The predictions of the current mainstream modelling
based on compartmental models largely failed in making qualitative as well as quantitative
predictions. Not only the number of cases or number of deaths could not be predicted, but that
there would be repeated waves, the causes, the timing and the severity of waves also could not be
predicted at a level significantly above common sense. This is likely to be an effect of
oversimplifying a complex system. Modelling is best done with an incremental approach. When
a simple model fails to meet its objectives, it is necessary to incorporate crucial elements of the
complexity into the model. What we show here is that treating immunity as a binary variable
needs to be replaced by treating it as a continuous variable and incorporating small effects
contributing positively and negatively to immunity. Allowing gray shades of immunity alone
makes the model display characters of a complex system and brings in many qualitative changes
in the model outcomes. Potentially even infection need not be treated as a binary variable since
the intensity of infection matters. The immune response is proportionate to the intensity of
infection (Long et al 2020, Shinde et al 2021, Read 1994) and the standing level of immunity is
expected to affect the intensity of infection thereby the two continuous variables can have a
complex interaction. Our model has also not incorporated severity of symptoms and mortality. In
an epidemic the viral infectivity and virulence is also subject to natural selection and changes
during the course of the epidemic are inevitable (Shinde et al 2021). The transmission dynamics
depends upon season and local variables such as population density, type of housing and
workplace, nature of transport, weather conditions that differ from population to population and
time to time. This makes the entire system highly complex. Predicting a complex system by
pretending it to be simple, not only makes the predictions dicey, it severely limits the thinking in
the domain including the qualitative perception of non-modellers. The small immunity effects
modelled here are not unknown. But the current epidemiological qualitative thinking also does
not incorporate them possibly because starting the model with a simple set of assumption also

makes the non-modellers forget that processes not currently incorporated in the model do exist.
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A gray immunity model is an important step in the incremental approach and our simulations
show that it can potentially explain the short and self limiting peaks, repeated surges with
increasing or decreasing amplitude and variable gaps between them, an apparently stable
endemic like state, surges even after vaccinating majority of the population. All these
phenomena are seen in simulations without necessarily involving new variants. Further we also
make differential testable predictions to resolve between alternative causes of these phenomena.
The most important outcome of the gray immunity model is the possibility that the long term
effects of preventive restrictions can be non-linear, non-monotonic and the interventions that can
be beneficial in the short run can be counterproductive in the long run, a warning bell already
rung by Hollingsworth et al (2020) in the context of other infectious diseases. In this connection,
it should be noted that a WHO (2019) report based on meta-analysis of several studies published
just before the beginning of the pandemic showed that most of the NPIs for respiratory infections
have little evidence of being effective. All the studies claiming success of NPIs in arresting
infection (e. g. Alfano and Ercolano 2020, Kharroubi and Saleh 2020, Atalan 2020, Brauner
2020, Abaluck et al 2021) are short term studies and therefore whether the short term benefit has
turned counterproductive during the epidemic has not been studied.

Our assumptions about small immunity effects are not without empirical support. The immunity
boosting effect of repeated subclinical exposures is well demonstrated for other viral infections
such as measles (Whittle 1999). In the Covid-19 pandemic our assumption that NPIs reduce
other common respiratory infections is evident in data (Marriott et al 2021, Huang 2021). It is
also argued that by inhibiting common respiratory viruses the general respiratory immunity in

the population may have declined substantially (Cohen 2021).

Of particular interest is that the model gives a possible alternative causal hypothesis to the dwarf
peaks and repeated waves which are currently believed to be caused by differential
implementation of PRs and by new variants respectively. The three factors are not mutually
exclusive and could be acting together or in complex interactions. In the light of the gray
immunity model it is possible to take a perspective of an analytical as well as accommodative
causal analysis. There are two possible reasons for the dwarf peaks. The currently believed one is
that the PRs restricted the peaks and the alternative explanation is that most individuals escape

infection owing to small immunity increments. We have already stated the differential
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predictions of the two. According to the PR hypothesis, there should be no correlation between
the upward slope and downward slope of the peaks which is expected to be quite strong by the
SIE hypothesis. In reality most peaks are highly symmetrical as shown by the highly significant
correlation between upward and downward slopes. In addition, the analysis of change in slope of
the incidence curve following imposition or relaxation of PRs has already shown that the effects
of PRs are marginal (Kharate and Watve 2021). Differentiating between the causes of dwarf
peaks is important because arguments such as the lockdowns saved so many deaths (Agarwal et
al 2021) are based on the assumption that peak heights were restricted by PRs. If the dwarf peaks
are a result of SIEs, then the estimates of the effects of lockdowns () are bound to be gross

overestimates.

The appearance of repeated waves can have three possible causes. One is that of fluctuating
stringency of PRs and changing behavior of people. When the incidence curve is upwards and
mortality is high, PRs are imposed and people follow behavioral guidelines under the fear of the
infection. When incidence is low, restrictions are relaxed and fear is lowered which together lead
to increased transmission again. This hypothesis assumes that PRs were highly effective. But the
small and inconsistent changes in slopes after imposing PRs and the symmetry of the peaks
weakens the PR induced dwarf peak hypothesis. The second prevalent explanation is that each
new wave is caused by a new variant that is either capable of escaping immunity and/or more
infectious than the earlier variant(s). The SIE model has raised a third possibility that repeated
waves are intrinsic to the small immunity effects over a wide parameter space. It is possible to

make differential testable predictions of the three.

A new variant can cause a new wave if it can evade the immunity against the prior variant(s). If
this is qualitatively true, immunity acquired by prior infection or vaccination becomes irrelevant
individuals with a higher E(i) would be more prone to infection in the first wave as well as
second wave. On the contrary, by the immunity loss hypothesis, second wave is expected to
affect more of the class that remained relatively protected in the first wave, i.e. individuals with
lower E(i). In all our simulations the mean E(i) of individuals infected in a second wave was
always significantly smaller than the mean of individuals infected in the first wave. Although we
did not find systematic analysis examining this in the Covid-19 data, some anecdotal accounts

suggest that the second wave affected those sectors of the society that remained protected in the
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first wave (Mallapaty 2021a, 2021b). Evidence for the acquired immunity being ineffective
against the new variants is contradictory and therefore unreliable (Planas et al 2021, Powels et al

2021, Gazit et al 2021). In any case it is certainly not completely ineffective.

In case the new variant is only partially susceptible to prior acquired immunity, the binary
immunity model is inappropriate to accommodate this possibility and our model needs to be
brought in. The moment the continuous immunity model is invoked, it brings in its own intrinsic
pattern of repeated waves, which should form the null model against which the new variant
hypothesis should be tested. Since new variants keep on arising and their relative frequencies
may drift or get selected by any mechanism of competition between viruses, the association of a
variant with a new wave could only reflect a coincident hitch hiking on a wave. This null
hypothesis can be rejected if a consistent correlation is shown between the increasing frequency
of a variant and increasing R of the incidence curve across different countries or populations.
Awaiting such a critical testing of the new variant hypothesis, at present both the alternative (but
not mutually exclusive) hypotheses need to be kept open. It is also possible that a new variant
gets selected by the altered immunity landscape of the host population. Since the immune
response of a host is proportional to the intensity of invasion, it is likely that more invasive
variants get selected when the host immunity is low (Shinde et al 2021). Therefore SIE is also
likely to be causal to selection of more infectious variants. A critical question to ask is whether
appearance of new variants is mutation limited or selection limited. It is possible to address this
question with retrospective data. If it is mutation limited, we should see most new variants
appearing near the peak of waves when viral populations are at their maxima. If selection
limited, extended NPIs will be associated with more infective variants. Thus NPI, selection on
new variants and small immunity effects are likely to be intertwined threads whose effects are

difficult to segregate from each other.

Apart from the academic implications of our model in rethinking of the modelling approach,
there are direct public health implications as well. The possible trade-off between short term and
long term effects of PRs and the non-monotonic outcomes caution against blanket
recommendation of lockdowns as well as personal protective measures over a long term. The
measures that have a large social and economic cost should not be recommended since their

outcomes are context dependent and at times turn counterproductive. Where and when it will
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turn counterproductive cannot be predicted very well at present. Therefore umbrella
recommendations of such measures should not be done. In fact, this was the stand taken in a
WHO report published a few months before the beginning of the pandemic (WHO 2019). But the
cautionary note against implementation of the socially and economically costly NPIs appears to
have been forgotten under the panic response to the pandemic. After vaccination, repeated
exposure is most likely to boost and maintain long term immunity (Leino 2000). Therefore
according to our model, other personal protection measures after vaccination should be
contraindicated. At least substantial rethinking is required about public health policies to control
infectious disease epidemics. One major hurdle in this has been lack of empirical studies on the
small immunity effects, which is a hen and egg problem. Since the importance of SIEs is not
appreciated, there is little motivation for empirical studies and since there is no data, modelling
involving them fails to progress beyond a limit. At present we don’t even have tools to monitor
the small immunity changes at a population level. Antibody titres do not reflect all mechanisms
of immunity. Population screening tools for other subtle mechanisms have not been developed.
Therefore they are not incorporated in the current epidemiological thinking. We have tried to
break this vicious cycle by indicating that at least theoretically the SIEs can alter the course of an
epidemic substantially. The change is fundamental because what is currently assumed to limit the
incidence may possibly be increasing it in the long run, as suggested by the model. At the
minimum, the message of the gray immunity modelling exercise is that the factors assumed to be
small and unimportant need more attention since they can potentially change public health

policies fundamentally.
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