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Abstract: Although commercially-available low-cost air quality sensors have low accuracy, the sen-
sor system are being used to collect the data for the regulation of PM:25 emission caused by industrial
activities or to estimate the personal exposure for PMzs. In this work, to solve the accuracy problem
of low-cost PM sensor, we developed a new PM225 calibration model by combining the deep neural
network (DNN) optimized in calibration problem and a LSTM optimized in time-dependent char-
acteristics. First, two datasets were generated to test the accuracy performance and generalization
performance of the PM2s calibration machine learning (ML) model. The PM2s concentrations, tem-
perature and humidity by low-cost sensor and gravimetric-based PM25 measuring instrument were
sampled for a sufficiently long time. The proposed model was compared with benchmark (multiple
linear regression model) and low-cost sensor results. For root mean square error (RMSE) for PM25
concentrations, the proposed model reduced 41-60% of error compared to the raw data of low-cost
sensor, and reduced 30-51% of error compared to the benchmark model. R? of ML model, MLR and
raw data were 93, 80 and 59 %. Also, the developed model still showed consistent calibration per-
formance when calibrated with new sensors in different locations. Low-cost sensors combined with
ML model not only can improve the calibration performance of benchmark, but also can be applied
to the sensor monitoring systems for various epidemiologic investigations and regulatory decisions.

Keywords: machine learning; deep learning; calibration; air quality; low-cost sensors; exposure as-
sessment

1. Introduction

Air pollution caused by industrialization and urbanization is causing serious envi-
ronmental and health problems. For example, fine particulate matter (PM) is generated
from various emission sources of industrial activities such as industry, transportation and
combustion. In particular, fine dust with a diameter of less than 2.5 um (PM2.5) causes
various diseases such as cardiovascular diseases, asthma, and neurotoxicity because it is
directly exposed to the lungs and circulatory system. Therefore, it is very important to get
the data for regulation on industrial emission by monitoring the PM2.5 concentration gen-
erated by the emission activity [1].

In South Korea, gravimetric-based PM2.5 measuring instrument has been used as
national reference method (NRM) to monitor the PM2.5 concentrations. However, in-
stalling NRM equipment at each of short-distance sampling locations is expensive
(>$10,000). This limits obtaining PM2.5 information at the community level.

Light-scattering low-cost PM2.5 sensors can make a possibility to solve the cost prob-
lem. Since the low-cost sensor can obtain the PM concentration in real-time, it has been
used in various studies such as personal exposure assessment [3,4], indoor exposure esti-
mation [5] and outdoor monitoring [6,7,8]. However, low-cost sensors are sensitive to en-
vironmental variables such as temperature and humidity due to their light scattering
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method. Badura et al. [9] conducted the validation test to evaluate the reliability of the
low-cost sensors in outdoor field during a long period using the national standard meas-
uring equipment. Above 80% relative humidity, raw data by low-cost sensors observed
an apparent overestimation of PM2.5 concentration measurements.

Vogt et al. [10] performed the comparison of three models of low-cost PM2.5 sensors
(Plantower 5003, Sensirion SPS30 and Alphasense OPC-N3) against the gravimetric device
in outdoor field. Among the low-cost sensors, the SPS 30 sensor showed high accuracy in
PM2.5 concentration measurement and high correlation among individual sensors. How-
ever, it has been shown that the low-cost sensor has lower accuracy than the national
standard measurement network equipment for a certain measurement period due to the
limitations of the physical characteristics of the sensor.

Zusmana et al. [11] developed metropolitan region-specific calibration models based
on the multi-linear regression method (MLR) and the time-series data by various low-cost
sensors (PM2.5, temperature and humidity) and the NRM network equipment (PM2.5) to
solve the sensitivity problem driven by environmental variables. The calibration model
confirmed the possibility of applying a low-cost sensor at the community-level by solving
the accuracy degradation caused by the physical characteristics of low-cost sensor. How-
ever, the metropolitan region-specific calibration model still showed low accuracy (R2 =
0.67-0.84) in a specific data period.

In this study, we develop a low-cost PM2.5 calibration model using machine learning
(ML) methodology to solve the limitation of accuracy degradation due to the light-scatter
physical characteristics of low-cost sensors. This work has two purposes; (1) development
on a low-cost calibration machine learning (ML) model with higher accuracy and compar-
ison with the MLR modeling method and proposed ML model. (2) A generalization test
to show if the PM2.5 calibration machine learning algorithm is applicable to the new spa-
tial-temporal field condition.

The process of this study is shown in Figure 1. First, low-cost Sensirion SPS30 and NRM
equipment were colocated to develop the ML model. If high concentrations of PM2.5 are
not sampled, incorrect performance evaluation results may be obtained [11]. Therefore,
the experiment is carried out until PM2.5 samples are obtained more than 50 ug / m>.
ML model and MLR model are developed based on the obtained data sample (train set),
and model performance is compared using the other independent data not used for
model development (test set). The MLR is used as a benchmark for evaluating the newly
developed calibration ML model. Finally, generalization tests are performed to confirm
that the optimized ML model is applicable in the new location-period.
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Figure 1. Research flow chart. This work is performed in two step; (1) Data collection for PM2.5,
temperature and humidity by low-cost sensor and PM2.5 by gravimetric instrument with high
accuracy. (2) Machine learning model development based on the collected data set. Calibration
performance from the developed model is compared with raw data by low-cost sensor and cali-
bration results by benchmark method (multi-linear regression method). Also, the proposed ma-
chine learning method extends the new sensor to test model generalization.

Hyper-parameter tuning

Generalization test

Comparison of neural network

The novelty of this study is divided into three categories; (1) Improvement of the
calibration performance against the existing calibration model (MLR) by using a new ma-
chine learning algorithm. it is very important because it does not only provide reliable
community-level monitoring, but also can help exposure assessment in epidemiological
studies. (2) Development on low-cost sensor ML model using sensor data and a gravimet-
ric sampling device for PM2.5. To our knowledge, there is very scarce literature calibrating
low-cost sensor systems against reference gravimetric methods. (3) Generalization test for
whether the developed ML model is applicable at the new measurement location and
time. Most of papers for the low-cost sensor calibration confirm the validity of the calibra-
tion model at the only same location and time, but not at the new locations and times.
Generalization test is essential to build a monitoring sensor-network that provides PM2.5
concentrations at various locations.

2. Methods
2.1. Data sampling to develop calibration machine learning (ML) model
2.1.1. Air quality measurement instruments

In general, ML algorithm functions the relationship between input variables and out-
put variables. In this study, input variables were set as PM2.5 by Sensirion low cost SPS
30 (<$50) and temperature and humidity by Sensirion SHT85 (< $30) to model the complex
relation for environmental variables and PM2.5 of light-scatter method.

It is very important to have consistent precision among low-cost sensors in order to
build a monitoring sensor network system by ML model. Because the low-cost Sensirion
SPS 30 has excellent inter-sensor precision [10], the ML model based on SPS 30 have pos-
sibility of maintaining the consistent performance even with new sensors. Therefore, the
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PM2.5 measurement results by the SPS 30 sensor is set as the input variable. Environmen-
tal variables such as temperature and humidity have an effect on decreasing the accuracy
of low-cost sensor based on light-scatter method [12]. Therefore, two environmental vari-
ables were also set as input conditions to model the complex physical characteristics
among PMzs, temperature and humidity.

The target variable is PM25 concentration measured from the gravimetric instrument.
The quality of target variable plays an important role to develop ML model with high
calibration performance. The gravimetric method is based on TEOM (Tapered Element
Oscillating Microbalance) technology, which intakes the atmospheric air through a filter,
heats it, continuously measures the filter weight, and calculates the mass concentration of
PM in near real time. It has been used in many countries to monitor PM2.5 concentrations
in field because TEOM has high accuracy in field test compared the various air quality
devices [13].

2.1.2. Dataset for calibration machine learning (ML) modeling

Dataset is required to develop and test the ML model. Dataset includes the labeled
time series type by the aforementioned input variables (PMzs of SPS 30, temperature and
humidity of SHT 85) and target variables (TEOM). In general, the dataset is divided into
a training set for estimating the ML model parameters and a test set for evaluating the ML
model calibration performance. In this study, two datasets were generated to test the ac-
curacy performance and generalization performance of the PM2.5 calibration ML model.

For validating the accuracy performance of ML model, the test set must have differ-
ent combinations of variables compared with the train set. In addition, ML model must
consider adequate design space between training set and test set. For example, if a variable
with a higher concentration range than the training set used for model development is
input to the developed ML model, the calibration performance has possibility of deterio-
rate [14]. In other words, the training set must contain a sufficiently high concentration of
PM2.5. Also, data set with a small concentration range of PM2.5 may give incorrect eval-
uations of certain metrics, such as R2 [11].

In this study, Low-cost Sensirion SPS30 and SHT85and NRM equipment were colo-

cated to develop the ML model as shown Figure 2.
The sampled data of time series type (PM2s of SPS 30, temperature and humidity of SHT
85 and PM2s of TEOM) are shown in Figure 3. The data sampling period was measured
over 110 days. 77 days were designated as training set and 33 days were designated as
test set. The maximum PM2.5 concentrations in the train set and test set were sampled for
a sufficiently long time to include PM2.5 data higher than 50 pg/ m? at least, which is
scenario of high concentration determined by world health organization (WHO). Maxi-
mum PM:5 concentration measured by Gravimetric method is 115 pg / m3. Therefore, the
concentration of PM2s sampled in this work is enough high to validate model calibration
performance.
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Figure 2. Measurement position and field test setup; (a) low-cost sensor for PMz2s, temperature and
humidity (b) gravimetric instruments.
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Figure 3. Results of collected data set; From top to bottom, PM2s of SPS 30, temperature and hu-
midity of SHT 85 and PM2s of TEOM. Region of white box represents the train set that is used to
develop the calibration model. Region of green box represents the test set that is used to evaluate

the developed calibration models.

Table 1 represents the statistical information (maximum, minimum, average and
standard deviation for the collected dataset) of the corresponding dataset. We correlate
the complexity between input variables (data of low cost sensors) and target variable (data
of high accuracy device) through ML method based on the data set.
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Table 1. Results of statistical information for data set sampled from low cost sensor and gravimet-
ric instrument.

Variables Minimum Maximum Average Standard deviation
Temperature -4.713 34.76 13.96 6.96
Humidity 8.55 99.99 43.51 19.45
Low-cost PMzs 0.39 165.56 27.11 19.45
Gravimetric PM2s 1 115 22.15 14.21

In addition, additional dataset was sampled with new sensors in different locations
to validate the generalized performance of ML model. Generalization test is essential to
build a monitoring sensor-network that provides PM2.5 concentrations at various loca-
tions.

2.2. Machine learning algorithm

The measured PM2.5 concentration and environmental variable data (temperature and
humidity) have time series characteristics. That is, air quality data has a time-dependent
characteristic, which is a relationship between past data and current data. Among ma-
chine learning algorithms, the long short-term memory (LSTM) neural network is an
algorithm optimized for time-dependent characteristics. In this study, in order to cali-
brate the low-cost PM2.5 sensors, we develop a new PM2.5 calibration model by custom-
izing the deep neural network (DNN) optimized in calibration problem and a LSTM op-
timized in time-dependent characteristics. The overall system architecture of the PM2.5
calibration HybridLSTM algorithm proposed in Figure 4.

t+2 hour

Output

Step 2
LSTM to DNN

Step 1

Input to LSTM

Input

t t+ 1 hour t+2 hour

Figure 4. HybridLstm model architecture.

(Step 1) PM2.5, temperature, and humidity of the low-cost sensor data described in
Section 2.1 are input to the network in the form of a time series including historical trends
for 24 hours. Values entered with historical data provide time-dependent properties be-
tween time series data through LSTM cells.

(Step 2) The time-dependent values are passed to the DNN architecture, and the neu-
ral network parameters are trained to minimize the differences between the values of the
target variables (TEOM PM2.5) and results predicted by the model. The key to the Hy-
bridLSTM algorithm is to approach the calibration problem differently from the applica-
tion of conventional LSTM approach. For example, HybridLSTM algorithm is to make the
time series of the target variable (TEOM PM2.5) the same as the last time series of the
input variables (low cost PM2.5, temperature and humidity). The results feed the DNN to
get the complex non-linearity between input and target. Since the theory for the time-
dependent of LSTM [15,16] and the process of calculation of complex nonlinearity be-
tween input and output of DNN [17,18] have been well described in many studies, in this
study, the description of theory is omitted in order to avoid unnecessary repetition.
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Since calibration accuracy by ML model varies depending on the combination of hy-
per-parameters (such as learning rate, network architecture, batch size, optimization func-
tion, etc.), it is very important to find an optimized hyper-parameter. however, there is a
limit to comparing a huge number of combinations. Therefore, many studies determine
the hyper-parameter by trial and error methods [17,18]. In this study, hyper-parameters
with optimal ML calibration performance were determined by changing various hyper-
parameter combinations. The hyper-parameter optimization results were summarized in

Table 2.

Table 2. Results of hyper-parameter optimization for HybridLstm.

Optimized parameters Values

Callback 24
Number of layer 5
DNN Node 8/12/24/12/4

Learning rate 0.0065
Batch size 15
Epoch 100

Optimization algorithm Adam

Callback is a parameter for how long the LSTM cell gives time-dependency, and the
number of DNN layer and node are parameters that determine the degree of nonlinearity
between the input variable and the output variable. Too many layers cause overfitting and
deteriorate the calibration performance of new input data. The learning rate is that the
neural network reduces the loss between the input and output. A learning rate having too
large prevents the solution from convergence. Batch size represents the size divided
among the entire train set for training the neural network. Epoch refers to the number of
iterations to train a neural network. The Adam algorithm was used to optimize the neural
network because Adam method showed high convergence and accuracy among many
algorithms in regression problem [17].

2.3. Benchmark method

The multi-linear regression (MLR) method, which showed high correction perfor-
mance in the previous studies [11], was used as a benchmark to evaluate the performance
of the hybridLSTM model proposed in this study. Benchmark method is the same as the
equation below;

3
y=Zwi-xi+b (1)
i=1

where, x;, x, and x3 are SPS30 PM:s, temperature and humidity, and y is the result by
TEOM equipment PMzs. w and b are parameters optimized by the dataset described
above. The benchmark model was developed using the same training data used to de-
velop HybridLSTM model, and the model performance is evaluated using the same test
data.

The metrics used for model development and evaluation were R? and root mean
square error (RMSE). In general, many performance metrics are used to evaluate regres-
sion models, but in evaluating sensor calibration performance, two indicators can be suf-
ficiently explained [11]. The metrics for R? and RMSE are expressed as follows;

n

ti—y)?

i=1
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Where, t;, ¥;, t and n represent the TEOM sample, the corrected result by the model,
the average of the TEOM samples, and the total number of samples, respectively.

3. Results

3.1. Comparison of accuracy among proposed model, benchmark and low-cost sensor

Figure 5 shows the learning process of the ML model during 10 training experiment us-
ing the aforementioned optimal hyper-parameter. The validation set determines
whether the model have an overfitting problem for new PM2.5 data. The proposed
model for the loss of the validation set and the train set sufficiently was converged dur-
ing the repeated training experiment as shown Figure 5. In other words, the developed
model represents a robust model without overfitting. Therefore, researchers can develop

and use a consistent model using the hyper parameter optimized in this study to cali-
brate the low-cost PM2.5 sensors.

— Average on 10 training experiment (Train set)
—— Average on 10 training experiment (Validation set)

RMSE

0 20 40 60 80 100
Epoch

Figure 5. Results of robust model test. The robust test is performed on 10 repeat training experi-
ments to validate that a ML model have the consistent calibration performance.

Figure 6 show the RMSE as a result of calibrating the test set at 7-day intervals using the
optimized model, benchmark, and SPS-30 sensor. The proposed model with time-de-
pendent characteristics showed higher calibration performance for all periods than the
benchmark model and raw data. The quantitative error reduction rate for each of peri-
ods is shown in Table 3. The proposed model reduced 41-60% of error compared to the

d0i:10.20944/preprints202109.0130.v1
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raw data (low-cost sensor), and reduced 30-51% of error compared to the calibration re-
sults by benchmark model.

8 B HybridLSTM
[1 Benchmark
7 RAW

=)

(9}

[N

Root Mean Square Error
w

[ ]

1 week 2 week 3 week 4 week 5 week

Figure 6. Results of error comparison of HybridLstm, benchmark and raw data at 1-week intervals
based on the aforementioned test set.

Table 3. Results of comparison of calibration result of HybridLstm with benchmark(MLR) and
low-cost sensor (RAW) in term of decrease rate of RMSE.

Error decrease rate of RMSE 1 week 2 week 3 week 4 week 5 week

MIR — ;{t;ndLSTM 37.33 % 47.27 % 29.88 % 43.33 % 50.86 %

RAW — HybridLSTM
RAW

58.45 % 41.4 % 60.46 % 58.05 % 52.76 %

Figure 7 represents the comparison results of the developed model, benchmark model, and raw sensor against all
samples of TEOM. Raw data by low-cost PM2.5 sensors showed a huge overestimation in more than 50 um/m3. The
incorrect monitoring in high-concentration situations not only leads to incorrect exposure assessment, but also leads

to errors in determining government regulation. The benchmark method underestimated compared to the gravimetric
method. On the other hand, the proposed model showed small variation results when compared to the TEOM results
in the high concentration as well as in the low concentration section. HybridLSTM had the most similar results to
TEOM, and R2 was about 93 %.

Test set of HybridLSTM (R2): 0.9294 Test set of benchmark (R2): 0.8075 100 Test set of Raw (R2): 0.5892
— y=0967x+1 — y=0869x+1 — y=L195x+1

Prediction results
a
n
Prediction results.

20 : 20 i A

20 40 60 80 0 20 40 60 80 20 40 60 80 100
Gravimetric measurements Gravimetric measurements Gravimetric measurements

Figure 7. Results of scatter plot for the HybridLSTM (a), benchmark (b) and raw data (c) versus

gravimetric measurements.
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Figure 8 shows the time series comparison results of the developed model, benchmark
model, and raw sensor against TEOM at 1-week intervals. The dot line represents the
high PM25 concentrations. Based on the dot line, the low-cost sensor results showed the
overestimation compared to the gravimetric measurement results. Also, the benchmark
method represents the underestimation compared to the gravimetric instrument under
dot line. However, the calibration algorithm proposed in this work can calibrate not only
the PM:2s of high concentration but also PM2.5 of low concentration in terms of high ac-
curacy.
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Figure 8. Results of time series comparison results for the HybridLSTM, benchmark and raw data
versus gravimetric measurements at 1-week intervals; (a) 1, (b) 2, (c) 3, (d) 4 and (e) 5 weeks. The
dot line represents the high PM2.5 concentrations.

3.2. Generalization test of develop machine learning model
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A high-reliability sensor monitoring network can be established only when the de-
veloped PM calibration model shows generalized calibration performance for new loca-
tions and devices. Therefore, in this study, a model generalization test was performed to
see if the verified model with high calibration performance consistently maintains high
performance in new locations and sensors.

The generalization test was performed at a new location by using deep learning
model developed from the previous accuracy evaluation process as shown Figure 9. The
two new positions are approximately 10 km apart and are located at the school (Figure 9
(a)) and near the road (Figure 9 (b)), respectively. Samples were collected until the peak
PM2.5 concentration reached higher than 70 pg/ m® for correct calibration performance
evaluation. The number of samples for generalization test set is 504. The statistical infor-
mation (minimum, maximum, average and standard deviation) of test set are shown in
Figure 9. In near load, the variation of low-cost sensor was higher than the position of
school due to the emission of transportation. However, the performance (R2>90 %) of the
ML model of is maintained despite the two different positional characteristics and new
sensor equipment. It was possible to improve the accuracy of low-cost PM2.5 sensors as
well as build a reliable sensor monitoring network using the machine learning methodol-
ogy proposed in this study.

120
Low-cost sensor (R2): 78.491

100 HybridLSTM (R2): 94.518

100 o .

®
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Figure 9. Results of generalization test of optimized ML model at the new location; school (a) and
near load (b).

4. Discussion and conclusion

In this study, a new PM2.5 machine learning calibration model (HybridLSTM) was
developed and the calibration performance was compared with the existing metropolitan
region-specific calibration model and raw data. Also, generalized performance test was
performed for validating the possibility of establishing a sensor monitoring network. The
results performed are summarized as follows.

(1) HybridLSTM PM2.5 calibration model with time-dependent characteristics
showed optimal performance in improving the accuracy of low-cost PM2.5 sensors. For
RMSE, the proposed model reduced 41-60% of error compared to the raw data of low-cost
sensor, and reduced 30-51% of error compared to the benchmark model. Raw data by low-
cost PM2.5 sensors showed a huge overestimation compared to the gravimetric method
in samples of high PM2.5 concentrations. The benchmark method showed the underesti-
mated calibration results compared to the measurement results by the gravimetric
method. The incorrect monitoring in high-concentration situations not only leads to in-
correct exposure assessment, but also leads to errors in determining government regula-
tion. The proposed model showed the small variation with NRM method.

(2) Most of papers for the low-cost sensor calibration confirm the validity of the cali-
bration model at the only same location and time, not the new location and time. When
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the developed model was applied to a new position and sensor, it showed consistent cal-
ibration performance. Low-cost sensors combined with machine learning models not only
exceed the performance of existing benchmarks, but also sensor monitoring systems for
various epidemiologic investigations and regulatory decisions can produce higher relia-
bility results.

The proposed model solves the existing accuracy limitations of low-cost sensor and
can provide results with high reliability not only for monitoring but also for research in
various environmental fields. Although generalized performance was shown in two loca-
tions in this study, the method proposed in this study needs to be verified in more loca-
tions to build a more reliable sensor monitoring network. Therefore, in future work, we
plan to test whether low-cost PM2.5 sensors combined with machine learning at various
locations and time including different seasons can be applied to sensor network construc-
tion. When constructing a sensor network with high resolution based on high accuracy,
we will test the possibility of providing air quality information to areas where sensors are
not installed through the interpolation method.
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