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Abstract 

Langevin simulations are conducted to investigate the Josephson escape statistics over a large 

set of parameter values for damping and temperature. The results are compared to both Kramers and 

Büttiker-Harris-Landauer (BHL) models, and good agreement is found with the Kramers model for 

high to moderate damping, while the BHL model provides further good agreement down to lower 

damping values. However, for extremely low damping, even the BHL model fails to reproduce the 

progression of the escape statistics. In order to explain this discrepancy we develop a new model, 

which shows that the bias sweep effectively cools the system below the thermodynamic value as the 

potential well broadens due to the increasing bias. A simple expression for the temperature is derived, 

and the model is validated against direct Langevin simulations for extremely low damping values.  
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1) INTRODUCTION   

Thermally activated escape from a potential energy well is a topic of ubiquitous interest in 

condensed matter physics, and the quasi-equilibrium of the metastable state prior to the escape is of 

course crucially important for understanding the escape process. The pioneering work of Kramers [1] 

analyzed the problem for relatively low temperature, and realtively high damping such that one can 

assume near-equilibrium conditions. This analysis has produced a tremendeously powerful tool for a 

broad class of problems. Notably, Kramers’ theory has over the past several decades become critically 

important for the analysis of the finite Josephson potential [2] and its characteristics. While the 

features of the potential are not directly observable they can be illuminated by the statistics of 

measurable transitions from a zero-voltage state through a bias sweep that progressively tilts the 

potential and thereby lowers the potential barrier until the system makes the transition [3]. Thus, from 

an ensemble (an ideal gas) of such bias sweep experiments, it is within the assumptions of the theory 

possible to assess self-consistency with the expectations of an assumed functional form for the 

potential. 

Due to the irreversibility of the escape, the bias sweep, which shifts the potential well from 

deep to shallow, is an integral part of the interpretation of the measurable switching statistics. The 

departure from quasi-equilibrium was elaborated upon by Büttiker, Harris, and Landauer (BHL) [4], 

where the interplay between the escape time scale and the damping parameter is recognized as having 

a significant effect on the energy distribution prior to switching. Since it is self-evident that an escape 

from the well happens to a system, which has an energy of at least the energy barrier, the BHL theory 

outlines that the system may not have time to correctly re-equilibrate (re-heat) between subsequent 

escapes if the damping, which sets an inverse time scale for re-equilibration, is small enough. As a 

result, a low-damping system will exhibit an escape distribution that reflects an effective temperature 

lower than the thermodynamic temperature, and the statistics will depart from that of Kramers’ 

theory. Although the manifestations of the mismatch between the time scale of escape and 
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equilibration has been further investigated in, e.g., Refs. [5, 6], the BHL theory has been considered 

much less frequently than the traditional Kramers theory as representative for the expectations in 

Josephson bias sweep experiments, even if the damping parameter is generally not well known in the 

metastable zero-voltage state. This is especially notable over the past couple of decades, during which 

the possibility for observing macroscopic quantum states was proposed for Josephson systems at very 

low temperatures [7], where the damping is also expected to be very small. At the root of 

demonstrating that a macroscopic quantum state has been achieved is the observation that the escape 

statistics from bias sweep experiments significantly departs from that of the classical expectation, 

thereby indicating that the anomalous escape statistics may be caused by quantum mechanical 

tunneling through the energy barrier in addition to the classical path over the energy barrier. Such 

assertion was made in Refs. [8, 9], and subsequently by many others, including more recently in Refs. 

[10, 11], and most of the interpretation of a “crossover” temperature between classical and quantum 

regimes have used the Kramers theory as its basis [12]. 

  The assertion of the “crossover” from classical to quantum behavior of Josephson junctions 

systems has led to a bulk of literature and efforts investigating how the quantum state can be exploited 

as elementary bits for quantum computation [13]. Additionally, with the assumption of working with 

a device in the quantum regime, many dynamical experiments have been conducted to further the 

understanding of how to manipulate a quantum device through application of, e.g., microwaves and 

bias pulses that induce measurable resonant escape signatures that can be interpreted as, e.g., Rabi 

oscillations, Ramsey fringes, and other features akin to those found in atomic physics. For Josephson 

junctions, however, many of these non-equilibrium features have been directly attributed to classical 

resonant transients of the same driven-damped nonlinear oscillator (the Resistively and Capacitively 

Shunted Junction (RCSJ)) in the classical regime (see the review of Ref. [14], and, e.g., Refs. [15-

17]). Also similarities between fast-sweep experiments [18], which show modulated switching 

distributions, and classical simulations [19, 20] of a low dissipation RCSJ model have been found. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 September 2021                   



4 
 

Those simulations revealed that, below a certain threshold for the ratio of the normalized damping 

and sweep parameters, the metastable state exhibits initial condition induced coherent oscillations, 

which directly affect the subsequent escape statistics.  

In light of the often ambiguous interpretations of experiments, it is the aim of this work to 

investigate how well the Kramers and BHL theories conform to the classical Josephson escape 

statistics as obtained from a Langevin description of the RCSJ model. We are especially interested in 

the role of the damping parameter, since this parameter is not always well known in experiments, and 

since both the BHL theory and the work in Ref. [19] show that this may directly influence the 

statistics. The remainder of the paper is structured as follows: In the next section we briefly review 

the main elements of the RCSJ model of Josephson junctions and review the approaches to thermal 

escape of Kramers [1] and BHL [4]; in Sec. 3 we show the results obtained from the numerical 

integration with “flat” initial conditions and compare those with the theoretical models and discuss 

the obtained results also trying to frame those in the context of existing experimental results and 

parameters. In Section 4 we present a model for interpreting the presented results for the very low 

dissipation case. In Section 5 we have concluding remarks. 
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2) NUMERICAL APPROACH AND MODEL EQUATIONS 

The RCSJ model for a single Josephson tunnel junction is an electrical circuit in which an 

element described by Josephson dc and ac equations is put in parallel with a capacitor, a resistor, and 

a dc bias current. The capacitor C of the model gives account for the “parallel plates” structure of a 

tunnel junction while the loss parameter indicates the presence of dissipative effects which could be 

ascribed to normal electron tunnelling or to quasi-particle tunneling (below the superconducting gap 

of the junctions) or to other dissipative processes [2]. Referring to the same notations used in previous 

work [14,20] the nonlinear equation describing such a parallel, and dc biased, combination in 

normalized form is 

𝜑̈ + 𝛼𝜑̇ = −𝑠𝑖𝑛𝜑 + 𝜂 + 𝑛(𝑡)                                        (1) 

where in the right hand side the first two terms represent normalized force seen as  −
𝑑𝑈

𝑑𝜑
   with 𝑈 =

(1 − 𝑐𝑜𝑠𝜑) − 𝜂𝜑. The extra term n(t) on the right hand side is a noise term such that  

< 𝑛(𝜏)𝑛(𝜏′) >= 2𝛼 𝜃 𝛿(𝜏 − 𝜏′)    and    < 𝑛(𝜏) >= 0                    (2) 

The variable   is the normalized thermodynamic temperature of the system; i.e., the 

Boltzman energy kBT (kB=1.38 x10-23 J/K) relative to the maximum Josephson energy Ej=0 Ic/2 

(with 0=2.07x10-15 Wb being the flux-quantum) and Ic is the maximum critical current [2]. More 

terms can be added to the right hand side of Eq. (1) to mimic several different experimental situations, 

however for the purposes of the present work we just consider the bias term and the thermal noise. 

We have considered two types of initial conditions for the system (1). The first is “flat” initial 

data in which we just set 𝜑0 = 𝜑(𝑡 = 0) = 0, 𝜑̇0 = 𝜑̇(𝑡 = 0) = 0 ; this type of initial data is very 

reasonable for the kind of escape simulations we perform (starting at  =0). However these initial 

conditions do not take in consideration the initial temperature of the system and therefore we have 

also set up numerical integrations considering even the “bath” temperature when fixing the initial 
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conditions. In most cases the results generated by the two sets of initial conditions were not very 

different, as it will be clear from the result that we will present.  

“Thermal” initial conditions at t=0, where  = 0, are  (𝜑, 𝜑̇) = (𝜑0, 𝜑̇0), are drawn from the  

Boltzmann density distribution functions such that < 𝜑0 𝜑̇0 >= 0 and 

𝜌(𝜑0) =
exp (−

𝑈(𝜑0)
𝜃 )

∫  exp (−
𝑈(𝜑0)

𝜃
) 𝑑𝜑0

𝜋

−𝜋

                               (3) 

𝜌(𝜑̇0) =
exp (−

𝜑̇0

2𝜃)

√2𝜋𝜃
                                           (4) 

Here 𝜑0 ∈ [−𝜋, 𝜋) , 𝜑̇0 ∈ (−∞, ∞) , and  𝑈(𝜑0) = 1 − cos 𝜑0 − 𝜂𝜑0. This initial condition ensures 

that an ensemble of simulations will represent a thermal set of initial conditions. 

It is worth noting that the physical identification/meaning of dissipation can generate problems 

for Josephson circuits modelling and it is somewhat difficult to determine particular damping values 

when junctions are current-biased in the zero voltage state for which, by nature of the superconducting 

state, ohmic dissipation is zero. We do not in this work address estimating the damping parameter. 

Instead, we investigate the Langevin model (1)-(2) down to very low damping values and compare 

the results with existing theoretical approaches, namely Kramers theory [1] and the BHLmodel [4], 

both predicting specific responses for systems described by Eq. (1). 

As the normalized sweep rate 𝜂̇ =
𝑑𝜂

𝑑𝑡
 is naturally crucial for the outcome of escape from a 

potential well generated by a bias sweep [18,19,20] we need also consider this parameter in the 

discussion. A typical sweep simulation of Eq. (1) starts at t = 0 with 𝜂 = 𝑡𝜂̇ using the statistically 

robust stochastic Verlet algorithm [21], which is designed to give near time-step independent 

statistics, thus comfortably allowing for statistically correct results for a normalized time step of  t 

= 0.02. Signifying escape, the simulation is stopped when 𝜑 > 𝜋 − 𝑠𝑖𝑛−1𝜂 , and the value of  is 
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then recorded as the switching current. This procedure is repeated many times in order to generate a 

density distribution P() of these switching currents. Representative distributions are visualized in 

the inset of Fig.1a, (left panel), where we show four distributions obtained for decreasing values of 

temperature (decreasing the temperature the distributions become more peaked). When increasing the 

bias  slowly compared to other time scales in the system, the escape is assumed to happen under 

adiabatic conditions. 

Theoretically, the resulting escape statistics from the system of Eqs. (1) and (2) can be 

compared with the classical Kramers model limit, valid for low normalized temperature and 

moderately low dissipation by the normalized escape rate [1]: 

Γ𝐾 =
𝜔𝑝

2𝜋
𝑒

−𝐸𝑗Δ𝑈

𝑘𝐵𝑇                           (5) 

where Δ𝑈 = [√1 − 𝜂2 − 𝜂𝑐𝑜𝑠−1𝜂]  is the bias-dependent height of the Josephson potential 

barrier and the prefactor is the normalized attempt frequency  𝜔𝑝 =  √1 − 𝜂24
 (the normalized 

Josephson plasma frequency), measured in units of 𝜔0 = √
2𝜋𝐼𝑐

Φ0𝐶
 .  Kramers also derived an expression 

for very low damping (containing an explicit dissipation term) which can also be seen as a limit form 

of the BHL model predicting the occurrence of escape through the normalized escape rate [4]: 

Γ𝐵 =  
[1+( 

4𝑘𝐵  𝑇

𝛼𝐼𝑏
)]1/2−1

[1+(
4𝑘𝐵𝑇

𝛼𝐼𝑏
)]

1/2

+1

[
𝛼𝐼𝑏

𝑘𝐵𝑇
]

𝜔𝑝

2𝜋
𝑒

−𝐸𝑗Δ𝑈

𝑘𝐵𝑇                    (6)      

In our simulations, containing an explicit dissipation term, we shall use this latest equation in 

order to trace the agreement with a theoretical model. As pointed out in Ref. [4] when   tends to 

infinity Eq. (4) reduces to Eq. (3); i.e., the limit of high dissipation BHL model limits Kramers’ escape 

rate. In Eq. (4) the parameter 𝐼𝑏 =
3

10
 16𝐸𝑗[2(1 − 𝜂)]5/4 . We list in Table 1 key notations for 

Josephson parameters and equations for direct comparison between our present work and Ref. [4]. 
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Variable / Equation           BHL This paper 

Noise in Langevin 

model 

〈𝜉(𝑡)𝜉(𝑡′)〉 = 2𝛾𝑘𝑇𝛿(𝑡 − 𝑡′) Equation 2 

Josephson energy 𝑉0 𝐸𝑗 

Plasma free frequency 

𝜔𝑝 = √
𝑉0

𝑚
 

𝜔0 

Plasma frequency 
𝜔𝐴 = 𝜔𝑝 (1 − 𝐹2

𝑉0
2⁄ )

1/4

 𝜔0𝜔𝑝 = 𝜔0(1 − 𝜂2)
1/4

 

Normalized bias current 𝐹

𝑉0
 

𝜂 

Characteristic time 
𝑡0 =

1

𝜔𝑝
 𝑡0 =

1

𝜔0
 

Phase and derivatives 

𝜃, 𝜃̇ = √
𝑉0

𝑚
𝜃′,   𝜃̈ =

𝑉0

𝑚
𝜃′′ 

𝜃̇ =
𝑑𝜃

𝑑𝑡
, 𝜃′ =

𝑑𝜃

𝑑𝜏
, 𝜏 = 𝑡/𝑡0 

𝜑, 𝜑̇, 𝜑̈ 

𝜑̇ =
𝑑𝜑

𝑑𝜏
  

 

Normalized Equations 

 

𝜃′′ + 𝐺𝜃′ + 𝑠𝑖𝑛𝜃 =
𝐹

𝑉0
 +

𝜉

𝑉0
 

𝑉

𝑉0
= (1 − 𝑐𝑜𝑠𝜃) − (

𝐹

𝑉0
) 𝜃 

𝜑̈ + 𝛼𝜑̇ + 𝑠𝑖𝑛 𝜑 = 𝜂 + 𝑛 

𝑈

𝐸𝑗
= (1 − 𝑐𝑜𝑠𝜑) − 𝜂𝜑 

Normalized (1.2) 〈𝜉(𝑡)𝜉(𝑡′)〉

𝑉𝑜
2

= 2𝐺
𝑘𝑇

𝑉0
𝛿(𝜏 − 𝜏′) 

〈𝑛(𝜏)𝑛(𝜏′)〉 = 2𝛼𝜃𝛿(𝜏 − 𝜏′) 

Normalized thermal 

energy 

𝑘𝑇

𝑉0
 𝜃 =

𝑘𝐵𝑇

𝐸𝑗
 

Normalized damping 𝐺 =
𝛾

√𝑚𝑉0

 𝛼 

Normalized noise 𝜉/𝑉0 𝑛 

Barrier hight 𝐸𝑏 𝐸𝑗∆𝑈 

 

BHL escape rate 

(Eq.3.11) 

r =

√1 +
4αkT

ηIb
− 1

√1 +
4αkT

ηIb
+ 1

(
ηIb

kT
) (

ωA

2π
) e

−Eb
kT⁄  

● 𝐼𝑏 =
3

10
𝐼0 [2 (1 − 𝐹

𝑉0
⁄ )]

5/4
 

● 𝐼0 = 16√𝑚𝑉0 

● α: correction factor (~1) 

Γ =

√1 +
4kBT
αIb

− 1

√1 +
4kBT
αIb

+ 1

(
αIb

kBT
) (

ωp𝜔0

2π
) e

− 
𝐸𝑗ΔU

kBT  

● 𝐼𝑏 =
3

10
𝐼0[2(1 − 𝜂)]5/4 

● 𝐼0 = 16𝐸𝑗 

● correction factor = 1 

 

Table1: correspondence between BHL notation (Ref. [4]) and ours. Setting m=1 means that the time 

normalization of BHL becomes the usual plasma frequency normalization that we employ.  
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3) RESULTS FOR FLAT INITIAL CONDITIONS 

As specified above for “flat” initial conditions we intend  𝜑(0) = 0, 𝜑̇(0) = 0. In the panel of Fig. 1 

we show the results obtained from the statistical escape distributions with these initial conditions, 

sweeping the variable   in the shown intervals for a fixed value of the sweep rate 𝜂̇ = 1.8 𝑥 10−6.  

In the inset of Fig. 1(a) we also show typical histograms obtained as results of the escape processes 

where we can see the peak moving left toward higher currents and squeezing in width as a 

consequence of temperature decrease. We see in Figs. 1(a) and (b) that the agreement between BHL 

model and the simulations is very good when the values of the dissipation parameter  are around  

10-4, 10-5. However, in Fig. 1(c) we see that, when the loss parameter approaches the value of the 

normalized sweep rate, the agreement between theory and simulations becomes less good. The 

significance of the parameter 𝜅 = 𝛼/𝜂̇ has been demonstrated in Refs. [19, 20]. For values of the 

dissipation parameter of the order of 0.1 the features of the histograms (peak position and peak width) 

are well described by both Kramers and BHL models, as expected from the arguments of the previous 

section.  When decreasing  below this value, only the theoretical distributions obtained from Eq. (4) 

follow the numerically distributions. The agreement is reasonable down to  =10-6 , but below this 

value the numerical data do no longer match the theory.  

Before proceeding to describe the statistical behavior for the lowest values of dissipation we estimate 

the values of experimentally relevant Josephson junction parameters. Typical normalized dissipation 

parameters presented in literature are in the range (0.001-0.05) [15-20]. Normalized sweep rates of 

published experimental results range in the interval (1.6 x10-13 – 1.0 x10-6); the ratios between 

Boltzmann kBT and Josephson energies (defined as the normalized temperature  ) typically range in 

the (10-4- 100 ) interval. This usually corresponds to temperatures in the (10mK-1K) range [8-11]. The 

friction parameter, however, is subject to some speculation when the junction is biased on the zero-

voltage step, and the work of Ref. [22] estimates that between 1K and 100mK, the “effective” 

dissipation could decrease about four orders of magnitude more. We will not here speculate further 
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on the actual value of zero-voltage effective dissipation in real junctions, but simply consider the 

RCSJ model over a rather wide interval of the loss term in the Langevin equation in an effort to 

compare statistical models with the Langevin simulations.  

4) RESULTS  FOR  THERMAL INITIAL CONDITIONS  

Using the thermal initial conditions described above, representative distributions for different 

values of the dissipation parameter  are visualized in Figs. 2-6; the dotted curves (single peak 

distributions) in each sub-panel of the Figs. 2-5 show the results expected from Kramers' statistical 

model (Eq. 3). Fig. 2 and Fig. 3 represent the same sweep rate  =10-8 for two values of , 10-3 (Fig. 

2) and 10-4 (Fig. 3). Fig. 4 and Fig. 5 represent a sweep rate =10-9 for  =10-3 (Fig. 4) and  =10-4 

(Fig. 5). 

When conducting bias-sweep simulations, it is self-evident that the statistical accuracy at the 

right tail of the distribution corresponding to higher values of  will be poor, since very few events 

will reach those high values. In order to mitigate this effect, we have included in our simulations a 

feature to simulate those rare events through the following scheme. A large number, N = 1000, of 

independent simulations (an ideal gas) are initiated with different initial conditions according to the 

above description, and they proceed synchronously in  with different realizations of the stochastic 

noise. The ith simulation tracks the phase i (i = 1, 2,…, N) and has a statistical weight wi such that 

∑ 𝑤𝑖 = 1𝑁
𝑖=1 , where initially wi = N-1 for all i. When one of the phases , say i , records a  switch, the 

corresponding  value is recorded with statistical weight wi. Another simulation, say j, is then 

randomly chosen, and we set (𝜑𝑖, 𝜑̇𝑖) = (𝜑𝑗, 𝜑̇𝑗) and wi = wj/2, whereafter we set wj = wi. Then the 

N simulations again proceed synchronously until a simulation again records a switch. This procedure 

ensures that we always simulate N systems regardless of the actual statistical density of the system, 

and the statistical accuracy is therefore greatly enhanced for the rare events at the tail end of the 

distributions. The results of this rare-event algorithm can be seen in Figs. 2-5 as the solid histogram 
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curves, which exhibit a near uniform statistical uncertainty regardless of the observed density. 

Accompanying those curves are smooth solid curves, which represent the BHL statistical model of 

the switching density. We observe that the agreement between the Langevin switching simulations 

and the BHL model is rather good for damping values  ≥10-6. For smaller friction values the 

simulated distributions continue to approach  = 1 as friction is decreased, while the BHL model 

results become independent of friction for these extremely low friction values. 

In order to explain the discrepancy between the BHL model and the Langevin simulations we 

proceed to a linearization of Eq. (1) around the potential minimum  = sin-1 , such that  𝜑 = 𝜑− +

 𝜓 , where |𝜓| ≪ 1 is the small-amplitude dynmaical variable. The equation for 𝜓 is: 

𝜓̈ + 𝛼𝜓̇ + 𝜔𝑝
2 𝜓 =  𝑛(𝑡)                                   (7)      

with 𝜔𝑝
2 =  cos−1 𝜑−  .  This stochastic harmonic equation for 𝜓 produces the two statistical 

equipartitioned moments: 

𝜔𝑝
2 < 𝜓2 >=< 𝜓̇2 >= 𝜃                              (8) 

such that the average total normalized energy <H> for the small amplitude variable is given 

by 

< 𝐻 >=
1

2
𝜔𝑝

2 < 𝜓2 > + 
1

2
< 𝜓̇2 > =  𝜃               (9) 

Suppose now that we instantaneously change the bias current such that p changes by dp . Given 

that the distributions 𝜚(𝜓) and 𝜚(𝜓̇) cannot change instantaneously, the instantaneous total energy 

change must therefore be given by: 

𝑑 < 𝐻 >=  𝜔𝑝 < 𝜓2 > 𝑑𝜔𝑝                      (10) 

Subsequent equipartition will produce the new equilibrium moment: 
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< 𝜓2 >=  
< 𝐻 > + 𝑑 < 𝐻 >

𝜔𝑝
2

                (11) 

which, combined with (10) gives: 

𝑑 < 𝐻 >

< 𝐻 >
=

𝑑𝜔𝑝

𝜔𝑝
=

𝑑𝜃

𝜃
                           (12) 

⟹   𝜃 = 𝜃0

√1 − 𝜂24

√1 − 𝜂0
24

                              (13) 

where we have  =0  for  =0. For 0=0, which we use in these simulations, we finally get : 

𝜃 = 𝜃0 √1 − 𝜂24
                                        (14) 

Thus, in the extremely low damping limit, where every change in  can be viewed as 

instantaneouscompared to the equilibration time of the system, the sweep acts as an expanding 

confinement of an enclosed gas, which cools as the phase-space expands. This notion is validated in 

Figs. 2-5 where we display the normalized temperatures of the ensemble of simulations as a function 

of the bias current. The measured normalized temperature of an ensemble is here given by the 

weighted average of the kinetic energy: 

𝜃𝑚 =  
∑ 𝑤𝑖𝜑̇𝑖

2𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

                                    (15) 

In the figures, in all the panels referring to  =10-5 and  =10-7, a circle encloses the lines referring 

to temperature data and the arrows above the circles indicate that those data are to be referred to the 

vertical scale on the right. The horizontal dashed curve indicates the thermodynamic temperature set 

by the initial conditions and by the temperature in Eqs. (1) and (2). The dashed curve indicates the 

temperature m (Eq. (15)) determined from the simulations, and the dotted curve indicates the result 

of Eq. (14). 
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For the friction parameter above  =10-4 we observe that the measured temperature mostly 

coincides with the thermodynamic temperature. Some positive deviations are observed at the tail end 

of the distributions, and these must be attributed to the fact that the inherent high energy of switching 

events dominates statistically when the entire system content is about to escape. As the friction is 

decreased, we observe the BHL cooling mechanism that depresses the measured temperature when 

switching begins to take place. This cooling reflects the fact that it takes time for the ensemble to 

replenish the statistical equilibrium of the remaining simulations when a high-energy simulation 

switches. For the extremely low friction simulations, we observe the cooling mechanism described in 

this work. The signature of this is that the system has cooled to the value given by Eq. (14) prior to 

the switching events taking place, resulting in switching occurring at a significantly reduced 

temperature compared to the prescribed thermodynamic value. Consequently, the switching 

distribution is driven to higher   values compared to the ones predicted by the BHL model. 

Figure 6 shows the condensation of the escape statistics into distribution peak position (Fig. 

6a) and width (Fig. 6b) for  𝜂̇ = 10−9  and for different temperatures and damping parameters for 

both Langevin (solid interpolations) simulations and the BHL (dotted interpolations) model. The 

figure confirms the results from Figures 2-5, but illuminates how the BHL model fails to account for 

the new cooling mechanism outlined in this paper for extremely low damping sweep experiments. 

Notice that the standard Kramers result is a constant at a value for high damping. Each marker for the 

Langevin simulations is constructed from 10,000 sweep simulations, starting at  = 0 with the thermal 

initial conditions given by the indicated thermodynmaic temperature. The peak position is defined as 

the average of the 10,000 switching currents, while the width is calculated as the standard deviation 

of those values. 
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5) CONCLUSIONS 

In a previous endeavour [20] the effect of the initial conditions on the escape from the 

washboard potential has been investigated systmatically revealing relevant properties of the process.  

Here we have demonstrated that the model developed by Büttiker, Harris, and Landauer, BHL [4] 

provides satisfying account for the phenomenology of the RCSJ model of Josephson junctions as far 

as the escape from potential properties are concerned when dissipation is entered through a linear loss 

term in the equations for as long as the damping is not extremely small. The model captures, over 

wide parameter ranges, the most important features of the physical system traced by extensive 

numerical simulations of the dynamical equations performed imposing thermal initial conditions. We 

have re-confirmed that a relevant parameter that influences transitions between different dynamical 

conditions is the ratio   between dissipation  and sweep rate 𝜂̇. For this ratio below a certain 

threshold (i.e., for extremely low damping), the BHL model fails to reproduce the results of direct 

Langevin escape simulations, and we have developed a simple model of cooling that seemingly 

explains the phenomenon. We submit that the potential well acts as a confining cylinder for the 

trapped particle in the metastable state, and that the bias sweep acts as an expanding piston that 

effectively cools the gas. When the damping parameter is too small for the system to re-equilibrate 

during this cooling process, then the effective temperature remains below the thermodynamic 

expectation, and the escape does therefore not follow the expectations from either the Kramers or 

BHL models. Our result is in very good agreement with simulations for vanishing damping. 

Here, as in the previous paper [20], we have seen that numerical simulations of the Langevin 

model provide very good agreement with theory demonstrating that the features of the nonlinear 

RCSJ model can be approximated, with a high degree of accuracy, by statistical models, even for 

relatively low loss and temperatures. Significant deviations in experimental data from the classical 

model at low temperatures can be due to effects that critically depend on initial conditions or other 

perturbations during the experimental execution. The work described here, together with previous 
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simulations of bias sweep protocols, suggests that the outcome of escape studies from bias sweep 

simulations are hyper-sensitive to perturbations when the zero-voltage damping becomes extremely 

low, which some indications point to for very low temperatures. A previous work [14] put forward 

the possibility that at very low temperatures the low thermal conductivity of superconductive films 

could represent a problem for removing the heat generated in the junctions by the switches into the 

voltage state; a phenomenon which could limit the real temperature decrease in the junctions.   It is 

not straightforward at this point to assess if (and how) the present work is directly related to 

experimental reality. Figs. 2 and 4 show that, that the low temperature “BHL cooling” begins for 

=0.001 at values of the bias current close to those where the experiments departs from the Kramers 

model for a Josephson maximum critical current Ic of the order of 2A (see for example Refs. [10,11]. 

This could be a coincidence [23], however, we have demonstrated that the RCSJ Langevin 

simulations produce both a cooling mechanism consistent with the BHL model (in the range 10-6<  

<10-4 for our simulations) and another cooling mechanism by the model of an expanding ideal gas 

that we have presented in Sec. 4 for  <10-7. These results show how intriguing can be the statististics 

and the thermodynamics of this nonlinear model for very low temperature and dissipation. 

This project has been supported in part by the FEEL project (INFN, Italy). 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 September 2021                   



16 
 

REFERENCES 

1) H. A. Kramers, Physica 7, 284 (1940). 

2) T. Van Duzer and C. W. Turner, Principles of Superconducting Devices and Circuits 

(Prentice-Hall, Englewood Cliffs, NJ, 1999). 

3) J. Kurkijarvi, Phys. Rev. B 6, 832 (1972). 

4) M. Büttiker, E. P. Harris, and R. Landauer, Phys. Rev. B 28, 1268 (1983). 

5) A. Barone, R. Cristiano, and P. Silvestrini, J. Appl. Phys. 58, 3822 (1985). 

6) P. Silvestrini, O. L. Liengme, and K. Gray, Phys. Rev. B 37, 1525 (1988). 

7) A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 11 (1981). 

8) R. F. Voss and R. A. Webb, Phys. Rev. Lett. 47, 265 (1981). 

9) S. Washburn, R. A. Webb, R. F. Voss, and S. M. Faris, Phys. Rev. Lett. 54, 2712 (1985). 

10) H. F. Yu et al., Phys. Rev. B 81, 144518 (2010). 

11) G. Oelsner, L. S. Revin, E. Il’ichev, A. L. Pankratov, H.-G. Meyer, L. Grönberg, J. Hassel, 

and L. S. Kuzmin, Appl. Phys. Lett. 103, 142605 (2013). 

12) H. Grabert, P. Olschowski, and U. Weiss, Phys. Rev. B 36, 193 (1987); J. M. Martinis and 

H. Grabert, Phys. Rev. B 38, 2371 (1988).  

13) J. Clarke and F. K. Wilhelm, Nature 453, 7198 (2008). 

14) J. A. Blackburn, M. Cirillo, and N. Grønbech-Jensen, Phys. Rep. 611, 1-34 (2016). 

15) N. Grønbech-Jensen and M. Cirillo, Phys. Rev. Lett. 95, 067001 (2005). 

16) J. M. Marchese, M. Cirillo, and N. Grønbech-Jensen, Eur. Phys. J. Special Topics 147, 333 

(2007). 

17) “Anomalous Thermal Escape in Josephson Junctions Perturbed by Microwaves”, N.  

Grønbech-Jensen, M. G. Castellano, F. Chiarello, M. Cirillo, C. Cosmelli, V. Merlo, R. Russo, 

and G. Torrioli, in “Quantum Computation in Solid State Systems”, B. Ruggiero, P. Delsing, 

C. Granata, Y. Pashkin, and P. Silvestrini eds., (Springer NY 2006), pp. 111-119. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 September 2021                   



17 
 

18) P. Silvestrini, V. G. Palmieri, B. Ruggiero, and M. Russo, Phys. Rev. Lett. 79, 3046 (1997). 

19) C. Cheng, M. Cirillo, G. Salina, and N. Grønbech-Jensen, Phys. Rev. E 98, 012140 (2018). 

20) C. Cheng, G. Salina, N. Grønbech-Jensen, J. A. Blackburn, M.  Lucci, and M. Cirillo, J. Appl. 

Phys. 127, 143901 (2020). 

21) L. F. Grønbech Jensen and N. Grønbech-Jensen, Mol. Phys. 117, 2511 (2019). 

22) P. Silvestrini, S. Pagano, R. Cristiano, O. Liengme, and K. E. Gray, Phys. Rev. Lett. 60, 844 

(1988). 

23) In experiments below a given temperature the position of the peaks of the distributions tends 

to become independent on temperature and to occur always at the same value of the bias 

current, which is not what we see in the Langevin model here since going down in 

temperature the peaks keep moving toward higher bias currents (see Figs. 3, 5, and 6a). 

 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 September 2021                   



18 
 

FIGURE CAPTIONS 

Figure 1. Peak position (left panels) and width (right panels) of statistical escape distributions 

obtained sweeping the temperature in the shown intervals for a sweep rate 𝜂̇ = 1.8𝑥10−6 for different 

values of the loss parameter (indicated in the panels). The dots are the results of numerical 

simulations, the lines BHL theory. (a), (b) and (c) are relative to different values of the dissipation 

parameter which is indicated on the top of each panel. The inset in the left plot of (a) is an 

exemplificatory sketch for the quantities we trace: the width of the distributions is indicated by the 

horizontal arrows and the peak position, moving toward higher values of bias current lowering the 

temperature, by the vertical arrow. 

Figure 2. Numerically obtained escape distributions (jagged lines) along with Kramers (dotted) and 

BHL model (solid curve) for a sweep rate  𝜂̇ = 10−8. The BHL model follows closely the numerical 

results down to  =10-6. Normalized temperature   is 10-3. Also displayed are the measured 

temperature m (dashed curve), the thermodynmaic temperature (dashed horizontal line), and the 

extreme low temperature model result for the sweep induced temperature given by Eq. (14) (dotted 

curve). 

Figure 3. Same as in Fig. 2, except for the normalized temperature  =10-4. 

Figure 4. Same as in Fig. 2, except for the normalized sweep rate 𝜂̇ = 10−9. 

Figure 5. Same as in Fig. 3, except for the normalized sweep rate 𝜂̇ = 10−9. 

Figure 6. Mean (a) and standard deviation (b) of the escape current distributions for a variety of 

parameters given on the figures. Each Langevin marker represents the statistics of 10,000 escape 

simulations for 𝜂̇ = 10−9, initiated with thermal initial conditions at  =0. Comparable data from the 

BHL model are also displayed. 
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Figure 2 
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Figure 3 
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Figure 4
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Figure 5 
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Figure 6 
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