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Abstract: Performing predictive maintenance (PdM) is challenging for many reasons. Dealing with
large datasets which may not contain run-to-failure data (R2F) complicates PdM even more. When
no R2F data are available, identifying condition indicators (CIs), estimating the health index (HI),
and thereafter, calculating a degradation model for predicting the remaining useful lifetime (RUL)
are merely impossible using supervised learning. In this paper, a 3 dof delta robot used for pick
and place task is studied. In the proposed method, autoencoders (AEs) are used to predict when
maintenance is required based on the signal sequence distribution and anomaly detection, which
is vital when no R2F data is available. Due to the sequential nature of the data, non-linearity of the
system, and correlations between parameter time series, convolutional layers are used for feature
extraction. Thereafter, a sigmoid function is used to predict the probability of having an anomaly
given CIs acquired from AEs. This function can be manually tuned given the sensitivity of the system
or optimized by solving a minimax problem. Moreover, the proposed architecture can be used for
fault localization for the specified system. Additionally, the proposed method is capable of calculating
RUL using Gaussian process (GP), as a degradation model, given HI values as its input.

Keywords: Predictive maintenance; Anomaly detection; Autoencoder; Gaussian processes; Deep
learning; Data-driven maintenance

1. Introduction

PdM is an optimal approach for performing condition based maintenance of systems, based on
real-time monitoring and identifying CIs which result in a failure when deteriorated [1]. In fact, by
using CIs, it is possible to detect fault or degradation, when any of the CIs depicts a symptom of a near
future malfunctioning of the system. Moreover, after the anomaly detection and localization steps, the
next task would be to estimate the RUL of the studied system [2,3]. In comparison with other classical
methods like periodic and preventive maintenance, such an approach can significantly reduce the
maintenance costs, since almost the entire useful life of the system can be utilized. One approach for
performing PdM is data-driven maintenance planning framework [4]. Data-driven models have proven
to be effective when the complexity of the studied system prevents using model-based approaches
[5]. In fact, data-driven models tend to reveal the correlations between collected sensor data and
thus are capable of calculating corresponding system formation such as RUL [6]. Moreover, given the
improvements in data acquisition and availability of data, the aforementioned data-driven PdM has
even caught much attention lately [7,8]. It is worth noting that, the data-driven models are divided into
two groups. The first group tries to find mappings from multi-sensory data to the RUL. The second
group however, as the proposed method, tries to transform the available high dimensional data into a
one dimensional HI and calculate the RUL based on this new value. Moreover, the second group has
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shown better generalization and higher precision on the available public datasets [6]. Additionally, the
possibility of gathering data from multiple sensors in Industry 4.0 environments, has also lead to the
increased use of PdM [9]. It can be said that, once enough data from all parts of the studied process
can be gathered, PdM can be employed. As a result, maintenance costs and downtime will be reduced,
and the overall productivity will increase in an Industry 4.0 setting [10]. Nonetheless, one important
obstacle is normally neglected in Industry 4.0 and Digital twin cases. Usually, no historical R2F dataset
is available in industry [11] and it is very unlikely that one will find examples in the relevant literature
that fit a current problem in detail. Furthermore, one of the main challenges of data-driven PdM is
tackling with large, high dimensional datasets. Additionally, identifying CIs and extracting informative
features from the available data can be tedious, when manual feature engineering is deployed. For
addressing the above-mentioned problems, machine learning and deep learning approaches can be
used [12–14]. There has been an extensive study on different machine learning and deep learning
structures such as support vector machines, convolutional neural networks, long short-term memory
(LSTM) and AEs in the domain of PdM [15–19]. Consequently, the problem with traditional machine
learning approaches such as support vector machines is that these methods do not capture temporal
dependencies in the available data and also neglect anomalies that are time dependent. Moreover,
features derived from deep learning models tend to preserve useful information in the original data
compared to the output of feature engineering required in machine learning models [20]. Therefore,
for attaining better results from trained models, the extensive use of deep neural networks is vital
[21]. However, it is worth noting that a deep feed forward neural network will not be effective
either, given that this structure requires temporal dependencies in advance [22]. Furthermore, LSTM
models are not sufficiently accurate when the output dimension is large [23,24]. On the other hand,
convolutional neural networks have been proven to be effective for extracting features from raw data.
Additionally, this structure was designed for high dimensional data of images. This characteristic of
this type of neural network makes it perfect for feature extraction in PdM even with high dimensional
data [25]. Likewise, AEs have been successfully implemented for feature extraction, dimensionality
reduction, anomaly detection and time-series prediction [26–28]. Given the performance of AEs and
convolutional neural networks in handling high dimensional data and extracting features, it has been
decided to use these architectures in the proposed method. What is generally missing from conducted
studies is a hybrid architecture that benefits from different capabilities of the available data-driven
models for anomaly detection and using this information for calculating RUL given that no R2F data
is available. The previous studies targeting PdM, normally consider a complete data set of R2F data
[26]. However, some other are only limited to feature extraction and anomaly detection of their system
in hand [29]. In the proposed method, an AE with convolutional layers is trained to find CIs and
calculate the corresponding HI using a minimax optimized sigmoid function, and finally determine
when maintenance is required using a GP as a degradation model. Essentially, the proposed method
tries to cluster data based on the distribution of signal sequences of different tasks. The aforementioned
signal sequences are gathered from a 3 dof delta robot, used for picking and placing parts in a smart
factory. This architecture combines the semi-supervised training and feature extracting of AEs with
the power of convolutional neural network for finding spatial information in the available signal
sequences. Furthermore, reconstruction error in the proposed method is used to come up with a CI
which is then passed to a minimax optimized sigmoid function to calculate the HI. Additionally, HI is
interpreted as the probability of the current system failing given the formerly-mentioned CI. The HI
can also be interpreted as an anomaly probability value where by HI = 0, the system is operating as
expected [30]. It is worth noting that, the proposed HI is the complement of HI introduced in some
literature [6]. After acquiring the HI, a.k.a. anomaly probability values, a GP as a degradation model is
trained to predict the time-series of HI values. Based on the predicted values, it is possible to calculate
the RUL of the studied system given different previously chosen thresholds [11,31]. In short, the main
contributions of the proposed method are the following:
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1. Given the semi-supervised nature of the method, there is no need for failure data for training the
model, which is vital when gathering such data can be dangerous or economically infeasible.

2. The proposed method does not require hand designed features for training the models, which
makes the training stage easier when no or too little domain knowledge about the system is
available or when a large, high dimensional dataset has to be tackled with.

3. The proposed method can also be used to classify the task and determine which task is going to
fail, based on the similarity of distribution of the signal sequence.

4. By having the output of the proposed method, a probability can be assigned, which describes
how probable it is that the system is going to fail. This probability includes a slack variable which
determines how much deviation from reference values is allowed. Additionally, it is also possible
to determine the sensitivity and rate of changes of the proposed method to deviation from the
reference values or find optimal values by solving a minimax problem.

5. Given the studied system, the proposed method is capable of pinpointing where the problem
originates from, regardless of the number of motors misbehaving. Moreover, the output of
fault localization shows that the trained model has learned some correlations between different
parameters of the studied system.

6. The trained GP does not require numerous data points to predict the anomaly values. Moreover,
the dedicated GP for regression does not require a long time to be (re)trained. These characteristics
make GP ideal for online prediction of anomaly values.

In essence, the hypothesis is that, by having enough data points from the delta robot’s error
free operating condition, it is possible to train a deep neural network, capable of determining the
distribution of error free signal sequences of the studied system. Afterwards, based on the deviation
from the determined distributions, it is possible to calculate a new CI. This new CI is then transformed
into HI which describes the probability of having an anomaly. Afterwards, this anomaly value is
predicted using GP as a degradation model. This prediction of this value can be used for calculating
RUL of the studied system based on some given thresholds.

2. Material and Methods

In this section different Deep learning architectures used in the proposed method along with the
dynamics and parameters of the delta robot are introduced.

2.1. Autoencoder (AE)

AEs try to replicate their input at their output through an internal representation. The
aforementioned internal representation is in fact a bottleneck in a higher or lower dimensional space
from which the decoded output is calculated. The only constraint is to have a sufficiently complex
space which is able to learn the distribution of the provided data. AEs are made of the following parts:

• encoder f
• internal representation z
• decoder g

Given an input vector x, the encoder part of AE, which can be a single or a multi-layer structure,
finds an internal representation of the provided input. The internal representation is in fact the
latent space, in a higher or lower dimensional space, capable of representing the provided input [32].
Therefore, it can be claimed that

z = f (x) (1)

Afterwards, by having the internal representation, the decoder part of the AE, tries to estimate
the formerly given input, denoted as x̂, based on given z. The aforementioned can be formulated as

x̂ = g(z) = g( f (x)) (2)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 September 2021                   doi:10.20944/preprints202109.0099.v1

https://doi.org/10.20944/preprints202109.0099.v1


Journal Not Specified 2021, 1, 0 4 of 21

The reconstruction error is the difference between the input and the output of the AE [33]. In the
conducted study, the loss function of the neural network is the mean squared error (MSE).

Generality of the trained model, plays a significant role in the performance of the proposed
method. By having AEs which merely copy the input at their output, no insight is provided whether
a signal sequence is error free or if maintenance is required. In respect to AEs, for increasing the
generality of the trained model, it has been decided to use deep AEs [34]. Additionally by using
convolutional layers, instead of having deep dense neural networks, locality of the features are also
taken into account for finding the underlying distribution of error free signal sequence.

In this paper, the predictive maintenance of a delta robot without any R2F data is studied.
Moreover, the delta robot is used to perform pick and place of barrels and springs in a pen production
line. The barrel and spring of a pen are sent to the station where the delta robot is located, with a tray
containing different parts of the customized pen. More details about the delta robot are provided in
Section 2.3. In the proposed method, two datasets from barrel and spring pick and place movement
are gathered. These two distributions of data describe a error free signal sequence from 11 parameter
estimations of the delta robot. It can be claimed that if the attained signal sequence from the delta robot
whilst performing either of these tasks does not match these two distributions, there exists anomaly in
the data. Thus, there is a problem with delta robot and maintenance is required. The gathered data
from the delta robot are 11 time series from different parameters. Therefore, it is not efficient to use
dense neural network in encoding and decoding parts of the AE to learn the underlying distribution
of the provided data. In order to address the aforementioned problems, convolutional layers are used
in the structure of the AEs.

2.2. Convolutional layer

Given the sequential nature of the gathered data, it is decided to used a convolutional layer
to capture spatial information and relation in the gathered data. The aforementioned sensor signal
sequences are concatenated and a new dataset is acquired from these separate senor signals. The
acquired features from the convolutional layer are calculated as follows. First, several convolutions are
performed to compute linear activations as

S(i, j) = (X ∗ K)(i, j) = ∑
m

∑
n

X(m, n)K(i−m, j− n) (3)

where X is the concatenated signal sequences and K is the two-dimensional kernel. Afterwards,
these linear activations are passed through nonlinear activations functions (detector stage). Finally, a
pooling function can be applied. It is decided not to use pooling, since it will complicate the neural
network in AEs. It can be claimed that the convolutional layer captures all the spatial information
required in the new dataset [33], [35]. Afterwards, the AEs find a representation for these so-called
error free data points and finally the distribution of these datasets are acquired. Based on these data
distributions, a new CI is calculated. Moreover, the aforementioned CI in fact contains information
about the distance to data distributions of the error free working conditions of the delta robot [30].
Thereafter, a probability is assigned to any new signal sequence which describes how probable it is
that the delta robot is having a problem given the formerly-mentioned CIs.

2.3. Delta robot dynamics and parameters

The studied 3 dof delta robot is a fully parallel robot with closed loop mechanism. This robot
is used for fast and accurate pick and place task. In the conducted study, the delta robot is part of a
learning factory, which assembles customized pens according to the requests of the user . The delta
robot station is depicted in Figure 1.
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Figure 1. Delta robot as a part of the smart factory.

By using three parallelograms the moving platform remains at a fixed orientation with respect
to the robot base. The movement of the Tool Center Point (TCP) is achieved by the three direct drive
motors. The links only transmit force along TCP and are made of carbon fiber tubes. Given the fact
that dynamic equation of the studied system is linear in its dynamic parameters, the parameters of the
system can be acquired to determine whether the system is operating error free or not. This can be
done using the following equation

τ = Ψp (4)

where p is the dynamic parameter of the system, Ψ is the matrix with dynamic equations of the
system and τ is the applied torque. Essentially, the implemented adaptive feed forward controller
(AFFC) in the 3 dof delta robot, learns the parameters of the system during motion. The block diagram
of AFFC can be seen in Figure 2.

PD

Inverse dynamics

Robot
qd e τ q, q̇, q̈
−

q

τFF
qd, q̇d, q̈d

τFB

Inverse dynamics

Figure 2. AFFC block diagram

Since there are some simplifications in the attained model, in order to improve the performance
of the system, the unmodeled dynamics is compensated with a feedback controller. The control law of
the AFFC is calculated as

τ = Ψ(qd, q̇d, q̈d) p + τFB (5)
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Parameter Learning rate
Motor inertia [gm2] 0.0005

Gravity [mN] 0.08
Mass [g] 0.09

Spring offset [mNm] 0.07
Coulomb friction 0 [mNm] 0.1
Coulomb friction 1 [mNm] 0.1
Coulomb friction 2 [mNm] 0.1

Spring constant [mNm/rad] 0.2
Viscose friction 0 [mNms/rad] 0.01
Viscose friction 1 [mNms/rad] 0.01
Viscose friction 2 [mNms/rad] 0.01

Table 1. Parameters and the corresponding learning rates

where qd is the desired joint angle and τFB is the torque calculated from the feedback controller,
formulated as

τFB = Kp e + Kd ė (6)

The calculated error e is the difference between desired and actual joint positions. The terms Kp

and Kd are the proportional and derivative gains of the feedback controller respectively. Whilst the
delta robot is moving, the dynamic parameters of the system (p) are learned by the AFFC using the
tracking error function. The aforementioned tracking error function is calculated as follows

E = (τ −Ψp)2 (7)

The implemented learning algorithm is gradient descent and results in the following

pnew = pold + α ΨTτFB (8)

where α is a positive definite matrix which determines the learning rates for different parameters. It
is worth noting that the aforementioned values only are estimation of the real values [36–38]. The
aforementioned parameters and the corresponding learning rates in the studied system are shown in
table 1.

2.4. Gathering and preprocessing data from delta robot

In order to read data from the delta robot and also to send commands to it, a local area connection
is established with the system and the corresponding HTML page containing all the data in XML
format is scraped. Beautiful Soup package from Python is used to scrape the aforementioned page.

After gathering datasets for different tasks of the delta robot, the first step is to normalize the data
to remove the effects of scaling in the data. Data normalization can be calculated as follows

X̃ =
X− µ

σ
(9)

where µ and σ are the mean and the variance of the gathered data, and X̃ is the normalized
data, calculated from the original data points X [39]. Another step before feeding the data to the 2d
convolutional layer of the proposed method is augmenting another dimension to the data which is
similar to different channels of an image.

After preprocessing the gathered data, the next step is to create a training dataset for the proposed
method. Given the dynamics of the delta robot in performing different tasks, a window of size 5
data points with stride of 1 is used to create the training dataset. It is worth noting that once the
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Figure 3. Architecture of the proposed method

sampling frequency increases, the size of the aforementioned window has to increase to capture the
same dynamics from the data.

2.5. Architecture of the proposed method

The architecture of the proposed method can be seen in Figure 3 [40]. Given the fact that, signal
sequences from delta robot sensors can be concatenated, it has been decided to use convolutional
layers to capture the spatial information in the time series. By using the AE there is no need to do
manual feature engineering and the deep neural network will learn a representation of the distribution
of the error free signal sequences. By replicating the input at the output of the AE, the reconstruction
error is used to determine whether a signal sequence is error free. In the conducted study, the AE is
made of the following layers:

• Convolution with 32 filters and kernel size of 4× 4
• Dropout
• Convolution with 16 filters and kernel size of 12× 12
• Transpose (a.k.a deconvolution) with 16 filters and kernel size of 12× 12
• Dropout
• Transpose with 32 filters and kernel size of 4× 4

It is worth noting that, the activation function in the convolutional layers is Rectified Linear Unit
(ReLU) calculated as follows

ReLU(x) =

{
x if x > 0,

0 otherwise
(10)

The formerly-mentioned activation function can address the vanishing gradient problem, improve the
learning speed and lastly, result in positive response of neurons to representations from the features
[41–43]. It is worth noting that, the selected loss function for the neural network is the MSE.

Based on the dynamics of the system and the sampling rate, the convolution window and the
depth of the neural network can be tampered with to come up with the optimal solution for a given
system. In the conducted study, two AEs were trained: one for the spring pick and place movement
and one for barrel pick and place movement. Based on the reconstruction error the movement can be
identified, and it can also be determined whether the delta robot is having a problem and maintenance
is required.

2.6. GP

In the conducted study, GP is used for performing regression. GPs are non-parametric models
which try to assign higher probabilities to functions which have closer values to the available
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Figure 4. Statistical information of normalized sensor readings of barrel movement

data points or in other words to the functions which fit the dataset better. GPs are in fact an
infinite-dimensional multivariate distribution where every selection of random variables has a
multivariate Gaussian distribution. Formally, GPs are denoted as GP(m(x), k(x, x

′
)), where m(x)

is the mean function and k(x, x
′
) is the covariance function. When x and x

′
, according to the kernel

function, have similar values, the output of the model at these two points will also be similar. Moreover,
a collection of random variables {h(x) : x ∈ X} is drawn from GP with mean function m and covariance
function k if the following for x1, x2, ..., xn ∈ X holdsh(x1)

...
h(xn)

 ∼ N

{m(x1)
...

m(xn)

 ,

 k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

} (11)

Once a prior is assigned to the parameters of the model w, the posterior can be calculated after
observing the available data as follows

p(w|y, X) =
p(y|X, w)p(w)

p(y|X)
(12)

where p(y|X, w) is the likelihood, p(w) is the prior and p(y|X) is the marginal likelihood. Thereafter,
for a new data point x∗, the output of the model can be calculated as shown below

p( f ∗|x∗, y, X) =
∫

w
p( f ∗, x∗, w)p(w|y, X)dw (13)

3. Results

In this section the simulation results are presented for continuous and binary implementation of
the proposed method.

3.1. Setting up the model

The delta robot performed spring and barrel pick and place for 900 seconds, and it was sampled
every 100 milliseconds. As an example, the statistical description of the gathered dataset of barrel
movement after preprocessing is shown in Figure 4.

The aforementioned datasets are fed to the two AEs for barrel and spring pick and place movement.
For demonstration purposes, the learning curves of the deep neural net for the spring movement is
shown in Figure 5.

After training AEs, the training dataset is fed to the models and the mean absolute error (MAE)
for data points is acquired. Moreover, the maximum MAE is used as the threshold for classifying
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Figure 5. Learning curve of the AE for the spring movement
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Figure 6. Distribution of reconstruction error given the normalized input data

a signal sequence as anomaly in binary classification case. The simulation results for sample MAE
reconstruction errors can be seen in Figure 6.

As pointed out earlier, the maximum reconstruction error is used as a threshold in a binary
classification model. In fact, when the reconstruction error is less than this threshold, the given signal
sequence will be classified as error free. It is also possible to come up with a continuous value which
describes the probability that a signal sequence is not error free given the reconstruction error as a
CI. As an example, a sigmoid function can be used to map the aforementioned CI to a probability
of anomaly which is then used as the HI of the delta robot. The aforementioned sigmoid function is
calculated as follows

φ(d) =
1

1 + e−c1×(d−c2)
(14)

where d is reconstruction error, a.k.a. the CI, which contains information about the deviation from the
error free working condition data distribution of the delta robot. Furthermore, c1 is the slope of the
sigmoid function and finally, c2 determines the point where the sigmoid function is equal to 0.5. Based
on the sensitivity of the system, the parameters c1 and c2 can be chosen. In the conducted study, the
threshold for binary classification of anomaly in the barrel and spring movement are 0.46 and 0.30
respectively.
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Figure 8. Probability of a signal sequence being an anomaly given the CI

3.2. Binary classification and predicting anomaly probability

After training the AEs, a sample dataset is used to test the proposed method. Three sequences of
impaired data is created by adding the corresponding signal sequences in the error free dataset an
attenuated noise (maximum amplitude of the noise is 0.1). As an example, an impaired signal sequence
of length 4 is created at 45, 85 and 110 indices from the barrel movement dataset. Afterwards, the
sample dataset is fed to the AE trained for the barrel movement. It can be seen in Figure 7 that the AE
has successfully found the impaired signal sequences. It is worth noting that the binary classification
was used in this simulation. Hence, the data points are either denoted as error free or impaired which
are equivalent to 0 and 1 respectively. Moreover, smoother HI values for another anomalous signal
sequence from the CI using a sigmoid function with values c1 = 1.4 and c2 = 1.6 are depicted in
Figure 8.

It is worth noting that peak value and also the slope can be tuned to get a more case specific
output. For example, when the studied system is very susceptible to changes, then a steeper slope and
a lower threshold can be used. However, when no domain knowledge about the system is available it
is best to use the optimization method introduced in Section 3.5. The pseudo-code of the proposed
method can be seen in Figure 9.

3.3. Robustness testing

Lastly, to test the robustness of the proposed method, another dataset is acquired from the
parameters’ matrix p while its values are converging. As it was described in Section 2.3, the estimated
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Obtain data from test runs
Compute new dataset by preprocessing and augmenting
Train AEs for different tasks
while System operating do

Read signal from system
Compute reconstruction error (CI) from AEs
if any CI is below threshold then

Display error free system operation
Display task

else
Display anomaly detected
MAINTENANCE REQUIRED

end
end

Figure 9. Pseudo-code of the binary classification
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Figure 10. Results of simulation from incremental disturbance

parameters are updated using the tracking error. Therefore, at the early stages when the system
has just started working, the values of parameters are not good estimates of the parameters. The
aforementioned parameters are converging to the actual value with a predefined learning rate α.
The spring AE is trained on this low quality dataset. Afterwards, another dataset which contains
converged values of parameters is tampered with. The length of the test time series is 245, and from
the 150th data point, the corresponding values of the three Coulomb frictions are added with three
separate disturbances which increases steadily from 0 until they reach 60% of the maximum value of
corresponding friction values. Subsequently, after attaining the new test dataset, this dataset is fed to
the spring AE. The simulation results can be seen in Figure 10.

It is worth noting that corresponding c1 and c2 values are 1.8 and 1.9 respectively. It can be seen
that, as the friction values diverge from their normal values (error free), the AE produces CIs which
further deviate from the normal values which results in higher HI values. From a PdM point of view,
a threshold can be chosen based on the sensitivity of the system and maintenance can be performed
based on the calculated HI. Simply, by changing the c1 parameter of the sigmoid function, the rate of
increase or decrease in the returned probability values can be tuned. On the other hand, by tampering
with c2, it can be decided which values of attained anomaly probability have to be ignored. In fact, c2

is like a slack variable which allows divergence from the reference values. Overall, it can be claimed
that, these two parameters can be fine-tuned according to the studied system and suitable models
for PdM can be acquired accordingly. Nonetheless, in the following sections a minimax optimization
based method will also be introduced which provides optimal values for c1 and c2.
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Figure 11. Learning curve of the different AEs for the barrel movement

3.4. Comparison of the convolutional, LSTM and dense AE

As it was discussed in the introduction, the convolutional layer in the proposed method,
significantly enhances the model. Namely, the captured spatial information in the attained signal
sequences, and also the acquired features improve the performance of the AE for PdM. The impact of
the structure of AE on its performance is studied by training three different AEs:

• AE with dense feed-forward layers: This architecture has the lowest performance and simply
is not capable of handling sequential data. Even by increasing the model complexity, this
architecture does not show any improvement in the performance. The number of trainable
parameters in this case is 475, 200. Moreover, the minimum validation loss for this structure is
0.8266.

• AE with LSTM layers: This model has a much better performance than the previous scenario.
However, this model cannot outperform the results of the AE with convolutional layers. This
simulation results proves that as expected, this structure is capable of handling sequential data,
but not as good as the AE with convolutional layers. In this case, the number of trainable
parameters is 254, 347. It is worth noting that, the minimum validation loss for AE with LSTM
layers is 0.0637.

• AE with convolutional layers: The best performing amongst the test models with the fewest
parameters. The proposed method has successfully found all the spatial information and acquired
features for reconstructing the given signal sequences. The number of parameters in this case is
125, 665. Lastly, the minimum validation loss for the chosen AE structure is 0.0281

The learning curve of the aforementioned models is depicted in Figure 11.
As shown, there is quite a gap between validation loss of the different methods, as an indicator of

generalization power of different architectures.

3.5. Optimization of sigmoid function

In this part, in order to improve the interpretability of the output of the model, the sigmoid
function which determines the probability of being an anomaly (HI) is optimized. It is worth noting
that this optimization is performed on the test run data which contains no anomaly in different signal
sequences. The main idea is to find minimum values of c1 and c2 whilst keeping the output sensitive
to deviations by maximizing the sigmoid cost function. In other words, a minimax optimization is
performed on the sigmoid function, mapping deviation from references, a.k.a reconstruction errors, to
probability of having a problem in the studied system. The optimization problem is formulated as
follows
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Figure 12. Results of simulation from optimized sigmoid function

C∗ = min
c1,c2

max
i

fi, i ∈ 1, 2

f1 =
D

∑
d

1
1 + e−c1(d−c2)

f2 = std(
1

1 + e−c1(D−c2)
)

(15)

where C∗ is the optimal parameters c1 and c2, given the aforementioned optimization problem and
initial values of c1 and c2. Additionally, D is the vector of calculated d for all the data points in the
test run signal sequences. Furthermore, std is the standard deviation of applied sigmoid function
on D, with c1 and c2 parameters. The maximization part of the above optimization is for ensuring
that the output of the optimization problem is not a flat signal of zero with large values of c1 and
c2. Moreover, the minimization forces the c1 and c2 parameters to converge to values which make
the sigmoid function have lower bias and a gentle slope. The results of optimization is depicted in
Figure 12.

A ramp disturbance is added to the available spring movement from the 150th data point. The
data used in this part of the study are the same as the previous section, as shown in Figure 10, where
the robustness of the model was tested. As it can be seen in Figure 12, the optimized probability
function, tries to keep the probability of anomaly for the first 150 data points zero, and just as the
disturbance and deviation is added to the original data, the probability of anomaly increases steadily.
By requiring more variance in the optimization problem, a more informative mapping from deviation
to anomaly probability is acquired. Moreover, c1 and c2 values are 3.56 and 1.96 respectively.

3.6. Fault localization

After finding out the fact that, there is anomaly in the studied system and therefore, a need
for maintenance, the next task is fault localization. For doing so, after classifying the current task
through the signal sequence distribution with AEs, the contribution of different reconstruction errors
is analyzed to determine where the problem originates from. In the conducted study, there are three
motors for moving the TCP of the delta robot and the goal is to find out which of these motors is not
operating well. Different scenarios are studied to show the capability of the proposed method for
fault localization. In order to do so, different ramp disturbances are added to Coulomb and Viscose
friction of the motors in the spring movement dataset from the 150th data point. The final value of
these disturbances is 60% of the maximum value of the friction values. The CI for different motors is
determined by the sum of reconstruction errors in Coulomb and Viscose friction passed through the
sigmoid function. As it can be seen in Figure 13, Figure 14 and Figure 15, the model is able to pinpoint
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Figure 13. Simulation results with distortion added to motor 1
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Figure 14. Simulation results with distortion added to motor 2

where the problem derives from. Noticeably, the anomaly probability increases steadily from the 150th

data point for all the scenarios.
Similarly, when two or more friction values are manipulated, the model is able to determine the

fault in the system. Moreover, the anomaly probabilities higher than a predetermined threshold depict
which motors are having problem and need maintenance. Two examples are shown in Figure 16 and
Figure 17, where the friction values of the first and third motor and all the motors are manipulated
respectively.

The probability of being an anomaly given the CI, is calculated similar to the previous sections,
with the c1 and c2 values of 1.8 and 1.3 respectively. Given the dynamic of parallel robots, when there
is a disturbance in the friction values of a motors, it can be seen that all the reconstruction errors in
different motors increase. This shows that, the trained model has learned the correlation between
different parameter values and thus, is not purely an identity function which tries to replicate the input
at its output. This characteristic of the model can significantly help increase the interpretability of the
trained model.

3.7. RUL

After acquiring a HI which determines the probability of having an anomaly given the CI, the
next and last step is to calculate RUL. In fact, by using the AEs, raw parameter readings from the
delta robot are converted to new CIs. Afterwards, by calculating the deviation from reference values
for the aforementioned CIs, the probability of having an anomaly given CI is calculated as the HI of
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Figure 15. Simulation results with distortion added to motor 3
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Figure 16. Simulation results with distortion added to motors 1 and 3
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Figure 17. Simulation results with distortion added to motors 1, 2 and 3
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Figure 18. Simulation results for HI estimation using the degradation model
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Figure 19. Simulation results for RUL estimation

the studied system. Moreover, in the last step, this value is predicted to estimate RUL of the studied
system. Additionally, given the fact that no R2F data from the system is available, threshold values
for the anomaly probability values can be used to predict RUL. In fact, by having the aforementioned
thresholds, RUL is calculated as the difference between the current time stamp and the time stamp
when the HI is higher than the threshold. Furthermore, for calculating the HI in future time stamps,
a GP for modelling degradation is trained to predict the anomaly probability values. The input for
the GP are 20 past HI data points and afterwards, 15 future HI data points are predicted. It is worth
noting that the kernel is designed only once and the GP is (re)trained once the new data points are
available. Moreover, for acquiring better results and also reducing calculations, it is recommended to
use an appropriate stride value for retraining the GP. In the conducted study, the CIs are used to train
the GP with a stride of 6. In this case, in every step the GP required on average 0.02936 seconds to be
retrained. The results of the conducted study for the degradation model and RUL calculation can be
seen in Figure 18 and 19.

As shown in Figure 18, the GP is capable of predicting the future HI values of the system. It
should be noted that the aforementioned figure contains plots of the HI of the system though time
and also the predicted value from the degradation model. The GP regressor has a MSE of 0.00092.
Moreover, the explained variance score of the GP is 99.41% which is calculated as follows:

explained variance(y, ŷ) = 1− Var{y− ŷ}
Var{y} (16)
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where y is the HI of the system, ŷ is the predicted value using the GP and Var is the variance of the
formerly-mentioned values. As it can been seen in Figure 19, the probability of having an anomaly, has
steadily increased from the 18th time stamp. Additionally, the predictions from the degradation model
suggest that in 8 steps the system will reach a critical condition and therefore, maintenance is required
prior to the 29th time stamp. Thus, it can be claimed that the RUL of the system is 7 time stamps given
the assigned threshold, which is anomaly probability value of 65%, and the applied degradation model.
It is worth noting that, given the stride value of the GP, one time stamp is equivalent to 6 sampling
times for reading the parameters from the system. Moreover, the used kernel for the GP is made of the
following parts:

1. Exp-Sine-Squared kernel

k(x, x
′
) = exp(−2sin2(πd(x, x

′
)/p)

l2 ) (17)

2. Radial basis function

k(x, x
′
) = exp(−d(x, x

′
)2

2l2 ) (18)

3. Matern

k(x, x
′
) =

21−ν

Γ(ν)

(
√

2ν
d(x, x

′
)

l

)ν

Kν

(
√

2ν
d(x, x

′
)

l

)
(19)

4. Constant kernel
k(x, x

′
) = constant value ∀x, x

′ ∈ X (20)

where d(x, x
′
) is the Euclidean distance between two data points x and x

′
. Additionally, p is the

periodicity parameter, l is the length scale, ν controls the smoothness of the kernel, Kν is a modified
Bessel function and finally, Γ is the gamma function.

4. Discussion

In this paper, a semi-supervised hybrid deep neuron network structure was introduced for finding
anomaly in signal sequences acquired from sensor readings of a delta robot for PdM. The delta robot
performed pick and place of barrels and springs and was part of a smart factory for assembling
customized pens. The main notion of the proposed method is to find anomaly in the data sequence
and assign an anomaly probability accordingly. The proposed structure did not require any R2F signal
sequence samples of the system for different tasks. The only requisite of this method was to have
enough data from different tasks for the AEs to find the underlying distribution of the error free
signal sequences. This characteristic is vital when there are not enough samples of failure available
due to high costs or the danger it causes. In fact, as the system gets more complicated, it is not
possible to claim that all the different signal sequences leading to different failures are captured and
stored. Therefore, it is better to predict error free working conditions of the system and afterwards,
flag the signal sequences which do not correspond to the error free data sequences as anomaly. In
every step, the AEs were given the acquired signals from sensor readings and, they tried to replicate
these signals at their output. In addition, in the binary classification case, if any of these AEs had a
reconstruction error less than the previously assigned threshold, the provided signal sequence would
be classified as error free. It was also possible to determine the task, given the fact that only the AE,
trained on that specific task, would have a reconstruction error less than the threshold. In fact, the
reconstruction error was used as a new CI for the studied system, which was afterwards used to
calculate the HI of the system. In addition, the simulation results showed that the trained AEs had
successfully learned the distribution of spring and barrel pick and place movement. Moreover, when
the error free signal sequence was disturbed with noise, the AEs were able to find the indices of data
which were tampered with. Additionally, by using a sigmoid function and assigning appropriate
parameters with regard to the studied system, a continuous value, as an anomaly probability value,
defined as the HI of the system, could be acquired. The HI then could be used to determine whether
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the system required maintenance given the thresholds. Furthermore, the aforementioned sigmoid
function could be optimized by solving a minimax problem, and the acquired parameters were in
fact the saddle point of this optimization problem. Additionally, the aforementioned approach was
effective when not enough domain knowledge about the system was available. It is worth noting
that this function, could also be manually tuned based on the sensitivity of the studied system and
the needs of the user. In addition, it was also shown that the most effective architecture based on
AEs for performing PdM was a combination of convolutional layers for extracting features from the
available high dimensional raw data and afterwards, finding the signal sequence of different tasks
accordingly. Thereafter, the trained deep neural networks were used for fault localization. The results
of this part of the study showed that the trained model was capable of pinpointing where the problem
originated from, assuming that distortions originated from the internal parts of the system. Moreover,
when two or more motors were misbehaving in the delta robot, the proposed method was able to
distinguish which motors were not working well. Additionally, the anomaly signal sequences in fault
localization depicted the fact that, the trained model has learned some correlation between signal
sequences. Moreover, the results suggested that the trained AEs were not merely an identity function
trying to replicate their input at the output. Lastly, the recently calculated HIs were used to predict
the RUL, using a GP regressor as a degradation model. In fact, the aforementioned GP was retrained
after acquiring new parameter readings from the delta robot. Moreover, once new parameter readings
were available, the corresponding CIs were calculated and finally the HI of the system given the CIs
were acquired. Thereafter, the new sequence of HIs were sent to the degradation model to be retrained.
Afterwards, the degradation model predicted the future HI values of the system. As an example, in the
conducted studies 15 future time stamps were predicted by having the last 20 HI values of the system.
Subsequently, it was possible to use a threshold data to assign a time in future for performing PdM
given the predictions of the degradation model. It is vital to remember that no R2F data was available
in the conducted study and thus the formerly explained approach was used for calculating HI and
RUL of the system. It is worth noting that, this approach is most likely to work on systems similar to
the delta robot introduced in this paper. Whereas, for more complicated systems, which show highly
nonlinear behavior in their degradation value patterns, this model is most likely to fail. In such cases,
it is important to have enough R2F data to compensate for the complexity of the degradation model
of such systems. In addition, the proposed architecture is superior to analytical models given the
following reasons. By using autoencoders, a movement dependent anomaly detection model can be
trained. In addition, the proposed model relies merely on the read data from the system and thus
can be fine-tuned given new parameter readings. Moreover, the stochastic nature of the architecture
helps to model the uncertainties in the real system and the acquired data. In fact, by employing soft
computing, it is possible to account for both small deviations from the acceptable parameter readings
and also deviations that will lead to an anomaly. Furthermore, unlike the proposed method, for an
accurate estimation of RUL, a very precise analytical model is required, which can be hard to obtain
as the system gets more complex. However, it can be claimed that by employing an analytical model
along with an AE architecture, a relatively simpler analytical model can be used for estimating the RUL.
Moreover, by using an analytical model, a considerable amount of domain knowledge is contained
in the analytical model. Thereafter, the AE can be used to determent deviations from the error free
parameter sequences given the available domain knowledge from the analytical model. In short, given
a complex system, a combination of an analytical model and the AE architecture can determine the
RUL of the system. Whereas, for a simpler system, similar to the studied delta robot, a combination of
AE and GP can determine the RUL. Moreover, as the HI deteriorates, the impact of the precision of the
analytical model decreases, due to the fact that, at extreme the HI is not far from point of failure. Lastly,
in the case of minor changes in the physical system, the proposed method only has to be retrained
given the new data acquired from the system and no further updates in the remaining parts of the
proposed model is required.
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Abbreviations

The following abbreviations are used in this manuscript:

PdM Predictive maintenance
R2F Run-to-failure
CI Condition indicator
HI Health index
RUL Remaining useful lifetime
AE Autoencoder
GP Gaussian process
LSTM Long short-term memory
MSE Mean squared error
AFFC Adaptive feed forward controller
MAE Mean absolute error
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