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Abstract: The global climate change mitigation efforts have increased the efforts of national govern-

ment to incentivize local households in adopting individual renewable energy as a mean to help 

reduce the usage of electricity generated using fossil fuels and to gain independence from the grid. 

Since the majority of residential generation is made by PV panels that generate electricity at off-peak 

hours, the optimal management of such installations often considers local storage that can defer the 

use of locally generated electricity at later times. On the other hand, the presence of distributed 

generation can affect negatively the operating conditions of low-voltage distribution networks. The 

energy stored in batteries located in optimal places in the network can be used by the utility to 

improve the operation of the network. This paper proposes a metaheuristic approach based on a 

Genetic Algorithm that considers three different scenarios of using energy storage for reducing the 

losses in the network. Prosumer and network operator priorities can be considered in different sce-

narios inside the same algorithm, to provide a comparative study of different priorities in storage 

placement. A case study performed on a real distribution network provides insightful results.  

Keywords: residential electricity distribution networks; renewable generation sources; energy stor-

age; optimization; multipurpose algorithm; genetic algorithms.   

 

1. Introduction 

The transition from the old vertically integrated, government-owned electricity trad-

ing model to the deregulated market has brought in many parts of the world the supply-

demand balance as the main factor in establishing the price for electricity sold to end con-

sumers. On the wholesale market, which determines the prices offered by the suppliers to 

their clients, the short-term trading price can vary significantly between minimal values 

in off-peak intervals and maximal prices in high demand hours, which usually are coin-

ciding with the peak demand hours of residential demand and network loading. In Ro-

mania, this market behavior is more significant, since more than half of the electricity is 

traded daily in the day-ahead market, which, for instance for the date of August 10, 2021, 

shows a price variation from 77EUR/MWh at 04.00 to 212 EUR/MWh at hour 21.00 [1]. 

On the other hand, the developed countries see in the last decades a shift of consump-

tion from the heavy industrial branches to the energy-efficient knowledge-based econ-

omy, and a steady increase of the residential electricity demand [2]. At the same time, the 

growing concerns related to global warming have prompted international organizations 

and national governments to take concrete actions regarding the reduction of fossil fuel 

consumption and growth incentivization of the renewable electricity generation sector. 

The latest revision of the EU climate targets specify raising the share of renewable energy 

to 40% of total electricity consumption by 2030 and reducing the GHG emissions by 55% 

by 2030, from 1990 levels, with the aim of eliminating them by 2050 [3]. For the final con-

sumers, these ambitious goals translate into the proliferation of small-scale clean electric-

ity generation, especially in the residential sector. The national governments are offering 
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incentive packages to encourage individual residences to become prosumers, entities that 

consume and produce electricity at the same time [4]. 

The low-voltage (LV) electricity distribution networks (EDN), where the vast major-

ity of these residential consumers are located, have the distinction that they supply one-

phase consumers using a three-phase four-wire main feeder configuration. This generates 

the problem that in most cases the load is unbalanced between the three phases, leading 

to increased active energy losses and poor voltage quality. The presence of prosumers, 

which need to inject back in the network their unused generation surplus, outside the 

control of the distribution network operator (DNO) can further impact the secure and ef-

ficient operation of the supply infrastructure. It follows that an adequate prosumer sur-

plus management is required for the optimal operation of LV EDNs [5]. One method of 

achieving this goal is to use storage in the EDN. 

It is usually considered that the prosumers generate electricity mainly for their own 

use, but they have to manage their surplus. If they use PV panels as the mean for gener-

ating electricity, it is often the case that the hours in generation occurs do not coincide 

with the hours of maximum consumer and EDN load. In this case, the surplus can be 

injected back in the network or stored for later use. 

In Romania, the current regulations issued by the Romanian Energy Regulatory Au-

thority (RERA) specify that prosumers must sell back to the grid all surplus at regulated 

prices, computed as the average day-ahead market price for the previous year [6]. This 

results, for the year 2020, in an actual price of 40 EUR/MWh, much lower than the day-

ahead market price. Thus, storage can be used to replace the expensive energy used in 

peak demand hours with local generation, eliminating the need to sell back to the grid at 

low prices. Since the storage systems are not yet subsidized, they are accessible for a rela-

tive small number of prosumers.  

Taking into account all of the above, this paper proposes an algorithm for flexible 

energy storage management in residential low-voltage electricity distribution grids 

(ESMRG) that considers the optimization of storage placement in the network from the 

perspective of prosumer and DNO gain. 

The study assumes that storage could be installed in the network in two ways: 

• The individual prosumers acquire together with the PV system storage batteries and 

they employ them mainly for deferring the use of surplus generated at daytime for 

th peak load hours, in order to lower their daily cost with electricity. 

• The storage system is installed in the network at the initiative of the DNO, with the 

main aim of improving the operation conditions of the EDN. In this case, storage can 

be seen as 

o individual batteries placed in different locations in the network 

o a single community storage system [7]. 

The proposed algorithm investigates the advantages and disadvantages of each of 

the three proposed approaches, in term of reducing the active energy losses in the EDN 

over a time interval of 24 hours. For implementing the study, a genetic algorithm (GA) 

solution was used. The GA was preferred because, as the following subsection of the pa-

per will describe in detail, it allows a simple and efficient modelling of the mentioned 

storage use scenarios, that is the same as using the same basic approach in solving three 

different problems with minimal modifications to a base case. This is an advantage offered 

by the metaheuristic approach, which retains simplicity and flexibility with minimal per-

formance cost. 

The main contribution of the paper are: 

• The conceptualization of the mathematical model for three storage management ap-

proaches; 

• The adaptation of the general GA structure using a common encoding for the three 

proposed scenarios; 

• The validation of the proposed algorithm in a case study that uses a real LV EDN 

from Romania 
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• Discussions regarding the possible advantages and disadvantages of each simulated 

storage solution.      

The remaining sections of the paper are organized as follows: Section 2 discusses the 

state-of the art in the problem of storage management in EDNs and the use of metaheu-

ristic methods in this type of optimization; Section 3 presents the adaptation of the basic 

GA to the problem of storage management, as it has been developed by the authors; Sec-

tion 4 provides the results of the case study. The paper ends with discussion and conclu-

sions. 

2. Related Literature 

Prosumer surplus management is a key factor for the safe and efficient operation of 

EDNs. It is of importance for the prosumers, that seek to maximize their advantage in 

terms of energy cost savings, and also for the network operator, that seeks to minimize 

the potential negative effect of the presence of the prosumers with unpredictable power 

injections in the grid. The current research shows the need to understand better the effect 

of prosumer presence in LV distribution grids and their interaction with the DNO. Such 

a study is performed in [8] for Denmark and [9] for the United States of America. The 

uncertainty of renewable generation patterns is also a factor requiring attention. In [10], 

this issue is studied by comparing the efficiency of several short-term forecasting meth-

ods. Based on such data, the prosumer-network interaction is modelled in [11] as a profit 

model of DNO concurrent with a utility model of the PV prosumers, where the operator 

wants to maximize its profit and the prosumers adjust their energy consumption and shar-

ing according to the feed-in time-varying prices. Energy sharing between prosumers and 

its advantages and challenges are thoroughly reviewed in [12]. Paper [13] analyzes the 

possibility of DNO strategies that use price-based demand side management (DSM) 

schemes for incentivizing the demand reduction. Another approach, developed in [14], 

considers the possibility of optimally managing prosumers that are acting independently, 

only in their self-interest, to maintain the voltage stability in the network within accepta-

ble limits. The uncertainty of PV generation is managed in [10] by using a combination of 

load profiling and demand response techniques, and in [15] by creating energy hubs of 

prosumer communities. Prosumer management is more challenging for the network op-

erator in islanded networks, a problem that is approached in [16]. 

Energy storage is used by prosumers to defer self-generated electricity consumption 

in order to avoid paying for electricity at high, peak-load tariffs. In [17], it is analyzed the 

possibility of coordinating the operation of a PV prosumer with storage battery, with the 

goal of integrating it into the grid. At the level of an entire building, [18] proposes the 

management of HVAC systems by prosumers in cooperation with the grid operator and 

using storage for minimizing the energy cost. Paper [19] proposes specific billing mecha-

nisms to encourage selfish prosumers to combine energy exchange between households 

and to utilize their energy storage systems for minimizing the electricity cost. In [20], the 

same goal is pursued, but also for encouraging the creation of “energy coalitions” between 

prosumers. Such coalitions can use storage to participate in the wholesale market [21]. The 

optimal size of PV and power/energy capacities of the battery are investigated in [22] and 

[23]. 

The research presented above concentrates on the optimization of prosumer opera-

tion and improving their goals. However, a second party that is directly interested in the 

behavior of the prosumer is the network operator. The accomplishment of the goals pur-

sued by the prosumer must be correlated with the technical and economic interests of the 

DNO, which are directly influenced by the presence of the prosumer, as it is modeled in 

[24]. The intermittent nature of prosumer generation can negatively influence the energy 

losses [25] or bus voltage levels [26]. Current research suggests the optimization of the 

power injected to the grid by prosumers by using storage, resulting in over-voltage [27], 

generation-demand balance [28] or power loss [29] mitigation. 
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The latest trends regarding the use of storage for prosumer management is the im-

plementation of community-shared storage, that can reduce the investment costs for 

prosumers and give network operators supplementary tools for optimizing the state of 

the distribution network [30, 31]. 

Regarding the computational effort, the study carried out in [32] concluded that 

prosumer scheduling in microgrids is a NP-hard problem, for which optimization algo-

rithms will find approximate solutions. It follows that, if the prosumer management is 

formulated as an optimization problem, the computational-intensive classical algorithms 

could be successfully replaced with other methods, with marginal performance decrease. 

The literature survey from above lists several methods used for prosumer management 

problems: game theory [11, 14, 19, 20], clustering [13], neural networks, random forest 

[10], mixed integer linear optimization [15, 22, 31], genetic algorithm [23], linear program-

ming [21], alternating direction method of multipliers [18, 30], dynamic programming 

[24], optimal power flow [26], proof-of-stake blockchain trading algorithm [29]. 

The classic optimization methods rely on deterministic analytical algorithms and 

converge to the optimal solution [33, 34]. However, they are computational intensive and 

are not suitable for problems with discrete search spaces. For problems belonging to this 

category, heuristic algorithms proved to be more flexible and efficient, with the drawback 

of decreased performance when the complexity of the problem increases [35]. 

Considering the particularities of the problem solved in the paper, a metaheuristic 

approach was chosen by the authors for implementing the optimization of storage place-

ment in the LV distribution networks. Metaheuristic algorithms such as the Genetic Algo-

rithm, Particle Swarm Optimization, Differential Evolution, Whale Algorithm, Fireworks 

Algorithm, are nature-inspired optimization techniques that proved their performance in 

problems regarding the optimization of operation conditions in electrical networks. In the 

latest years, they were applied for integrating electric vehicles and distributed generation 

into smart grids [36], optimal reconfiguration of distribution networks [37], optimal 

power flow analysis in DC distribution networks [38], reliability improvement [39], opti-

mal consumption planning [40]. In the paper, a Genetic Algorithm was used to determine 

the optimal buses and phases of connection for a fixed number of storage units (batteries), 

with the aim of reducing the energy losses over a time interval of 24 hours, according to 

the assumptions and scenarios described in Section 1. 

3. Materials and Methods 

The Genetic Algorithm (GA) is a well-known metaheuristic, belonging to the class of 

population-based evolutionary algorithms. Like many metaheuristics, it is inspired from 

natural behaviors and patterns, in this case the Darwinian natural selection. The algorithm 

mimics the continuous adaptation of a species to its environment, by the means of the 

‘survival of the fittest’ principle. In the natural world, populations of variable sizes survive 

by reproduction and adaptation, the most powerful or intelligent individuals being fa-

vored for passing their strong genes to the next generation. The GA uses a mathematical 

representation of this process, and its application in solving NP-hard problems has been 

successful in a multitude of research and industry fields, such as: scheduling, multimedia 

content processing, network optimization, engineering, data mining, IoT, blockchain [41-

43]. 

The authors have chosen the GA for implementing the energy storage management 

in residential electricity distribution grids algorithm (ESMRG) because of its specific tech-

nique of manipulating the elements of an individual from the population for obtaining 

the optimal solution. The following subsections describe the basic structure of the GA and 

the implementation chosen by the authors for the ESMRG algorithm. 

 

3.1. The Genetic Algorithm 

 The mathematical model of the GA considers a (usually) fixed size population 

where each member is hierarchized by a using a numerical value called ‘fitness function’, 
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which measures the performance in solving an optimization problem. Each member from 

the population is called a ‘chromosome’, and its elements are ‘genes’. The genes encode 

the parameters of a solution and each of them constitutes a search direction (dimension) 

for the algorithm. Thus, the GA can be considered a parallel search algorithm. 

Based on the values of their fitness functions, the chromosomes from the initial pop-

ulation are subjected to an iterative process in which their genetic structure is being sub-

jected to change through crossover (reproduction, gene exchange from parents to siblings) 

and mutation (random small changes in gene values). In each iteration (‘generation’), the 

chromosomes that are favored for reproduction are chosen using a selection procedure. 

The literature lists various procedures for the selection and crossover operators [44], 

that must be chosen according to the specificities of the solved problem. To improve con-

vergence, elitism techniques can be used to propagate the best-known solution from the 

current generation to the next. The basic flowchart of the GA is presented in Figure 1. 

 

Figure 1. The basic Genetic Algorithm. 

3.2. The energy storage management problem 

The problem studied in the paper can be formulated as follows: given a low-voltage 

residential electricity distribution network in which a number of prosumers are active and 

can generate a surplus of electricity that otherwise would be injected back in the grid, find 

the optimal position of a number of storage devices (batteries) of known, fixed capacity, 

so that the active energy losses resulting from the operation of the network over a given 

time interval will be minimized. 

The implementation chosen by the authors considers the following assumptions: 

• the LV network is operated in three-phase, four-wire configuration and supplies one-

phase residential consumers; 

• the demand pattern is unbalanced in space, due to the uneven distribution of the 

consumers (as number and power demand, as connection on the phases), and unbal-

anced in time because of the normal demand variation of each consumer; 

• the prosumers connected in the network use PV panels for generating electricity, pri-

marily for their own consumption; 

• to avoid injecting the prosumer surplus back into the grid, a number of equal capacity 

storage batteries will be placed in the network; 

• the optimal placement of the batteries is performed so that the energy loses computed 

in the network for a time interval of 24 hours, with the bus loads affected by the 

charge and discharge of the stored energy, will be minimized. 

In the literature, the surplus management is performed centered on maximizing the 

wellbeing of the prosumers. One of the main contributions proposed in the paper is the 

consideration of DNO priorities in the optimization of storage management. 

Storage equipment is mainly installed in the network by the prosumers, together 

with the PV system, and used to defer the consumption of the surplus at peak hours. This 

way, the prosumer will contribute to reducing the peak load in the EDN, and replace for 

himself expensive electricity brought from the grid with the stored surplus, at no imme-

diate cost. In this case, the batteries are managed by the prosumer using its own home 

energy management system and the benefits for the DNO are minimal and indirect, in the 
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form of lower loss due to unoptimized power flow reduction in prosumer buses. In this 

scenario, the main beneficiary is the prosumer. 

By contrast, the paper investigates the benefits that can arise for the DNO if the stor-

age system is developed independently from the prosumers. One way to achieve this goal 

is the use of a community storage system [30], in which a limited number of batteries is 

used across the entire network, charged during night time, at low cost tariff, and dis-

charged when needed. In this case, by optimal placement and sizing, the DNO can derive 

improved benefits in terms of loss reduction. The paper proposes a new hybrid approach 

that capitalizes on the advantages of both sides. Considering a fixed number of one-phase 

storage batteries managed by the DNO, with a nominal storage capacity compatible with 

equipment used generally by individual prosumers, the ESMRG algorithm needs to find 

the optimal placement of storage to buses and connection phase (a, b or c), with the goal 

of minimizing active energy losses. The storage can be installed at a single bus or at inde-

pendent buses for each battery. The first case can be considered as a low-investment case, 

since all the batteries are grouped, and the second is the high-optimality case, with the 

best potential of reducing the energy losses. In both cases, it is considered that the initial 

investment and the management for the batteries is governed by the DNO, which will 

choose the bus(es) and connection phase for each battery. The efficiency of the two ap-

proaches is compared with the case when the storage management is performed by the 

prosumers, and the connection phase of the battery is limited by the prosumer connection 

phase and bus. 

The optimization problem can be formulated mathematically as: find the bus and 

phase connection for each storage system, s = 1, …, NSS: 

     2 2, , , , ...., ,1 1 NSS NSSb ph b ph b ph    (1) 

so that the following objective function will be minimized: 

( ) ( )
1 1

min min
H NB

b

tot h h

h b

F W P t
= =

=  =    (2) 

where ΔWtot represents the total energy losses, and ΔPhb are the hourly active power losses 

for each branch b = 1,...,NB, computed as: 

2

1 1

( )
NB NB

b b b b

h h h

b b

P R I K
= =

  =  +    (3) 

where Rb is the branch resistance, Ihb – the branch current flow on branch b at hour h, Khb- 

the loss increase factor accounting for the supplementary current flow on the neutral wire 

due to the phase load unbalance on branch b at hour h [45].   

The formulation in (1)-(3) is subjected to a set of technical restrictions: 

• The voltage magnitude Uhn must not exceed the allowable upper and lower limits in 

each bus n = 1, …, NN and in each hour h in the interval of analysis h = 1, …, H: 

max

n n n

min hU U U   (4) 

• The current flow Ihb must be lower than the allowable ampacity (Imax) on all branches 

from the EDN, b = 1,...,NB and in each hour h in the interval of analysis h=1, …, H: 

max

b b

hI I  (5) 

• The state of charge (SOC) limits for the storage batteries should not exceed the tech-

nical limits for all the batteries s = 1, …, NSS, in each hour h in the interval of analysis 

h = 1, …, H: 

s

min h maxSOC SOC SOC   (6) 

3.3. The adaptation of the Genetic Algorithm for the storage management problem 
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As stated in Subsection 3.2., the goal of the ESMRG algorithm is to find the optimal 

bus and phase of connection for a given number of storage devices with the aim of mini-

mizing the active energy losses. For that purpose, the structure of the chromosome was 

chosen in such a way as to encode in a straightforward manner the principle illustrated 

by expression (1). Thus, the individuals used by the GA use the structure from Figure 2. 

The chromosome is divided in two parts of equal length. The first part encodes the buses, 

while the analogue elements from the second part specify the phases of connection for 

each battery installed in the EDN. The chromosome from Figure 2 can be decrypted as 

follows: there are NSS batteries in the network; a battery will be placed in bus 14, on phase 

a, and another in bus 38, on phase c. 

1 … NSS 1 … NSS 

b1 … bNSS ph1 … phNSS 

14 … 38 1 … 3 

Figure 2. A chromosome for the ESMRG algorithm. 

This structure can be adapted to describe all the three scenarios compared in the 

study. The following assumptions and constraints must be considered: 

• for DNO priority: 

o Scenario 1 (all the batteries should be installed at the same bus): all the 

values from b1 to bNSS must be positive integers and equal, in the range (1, 

NN) (the total number of buses in the EDN); the values from ph1 to phNSS 

can have the value 1, 2 or 3, denoting the phases a, b or c: 

1, [1, ], ...
:

, [1,3]

i NSS

i i

b b NN b b
SC1

ph ph

  = =


 
 (7) 

o Scenario 2 (the batteries can be installed at different buses and phases): 

all the values from b1 to bNSS must be positive integers, in the range (1, 

NN); the values from ph1 to phNSS can have the value 1, 2 or 3, denoting the 

phases a, b or c. 

, [1, ]
:

, [1,3]

i

i i

b b NN
SC2

ph ph

 


 
 (8) 

• for prosumer priority: 

o Scenario 3: (batteries installed at prosumer residences): all the values 

from b1 to bNSS must be positive integers, denoting prosumer codes (be-

cause more than one prosumer can be located at a given bus), for prosum-

ers that have surplus, a small subset of the entire bus range; the values 

from ph1 to phNSS can be 1, 2 or 3, depending on the phase of connection 

used by the prosumer PS chosen for storage installation. 

, [ ,..., ],
:

, [1,3], ( )

i 1 NPS

i i i i

b b PS PS
SC3

ph ph ph taken from PS b

 


 
 (9) 

This approach shows the flexibility of the GA chromosome structure, which allows 

the simultaneous encoding of three problems with distinctive limitations inside the same 

algorithm. 

The GA was chosen over other metaheuristics that can solve this type of problem 

because, as equations (7)-(9) show, all the elements from a solution are integer numbers, 

bounded in specified intervals. This is the ideal case for the crossover and mutation pro-

cedures used by the GA. At the same time, it would create validation problems for other 

methods such as the well-known Particle Swarm Optimization, Fireworks Algorithm, 
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Honey Bees Mating Algorithm etc., that use multiplication with random sub-unit num-

bers to change the values of individual elements from a solution. 

In the study, the tournament selection method was used for GA selection, and the 

uniform crossover was preferred for the reproduction step. To observe the limitations (7)-

(9), the crossover operator has been modified. The uniform crossover was applied on the 

second half of the chromosome, where the phases are encoded. Then, based on the result 

and scenario, one of the following procedures was used: 

• for Scenario 1: the connection buses for the offspring chromosomes, that must be the 

same for all the batteries, were chosen with random probability from the buses used 

by the parent chromosomes (as in Figure 3a); 

• for Scenarios 2 and 3, the crossover for buses was applied using the same random 

mask as for the phases (as in Figure 3b). 

 

  

(a) (b) 

Figure 3. The uniform crossover procedure modified for the ESMRG algorithm: (a) Scenario 1; (b) 

Scenario 2 and 3. 

The mutation was performed by randomly selecting and altering a gene on the entire 

length on the chromosome, but particularized for each scenario: 

• for Scenario 1: a phase gene can be mutated to any value 1, 2 or 3; but if a bus gene is 

selected from mutation, then the entire first half of the chromosome is also mutated; 

• for Scenario 2: any phase gene can be randomly mutated to any value 1, 2 or 3, and 

any bus gene can be mutated to any value describing a valid bus number; 

• for Scenario 3: the mutation is first performed on the buses, by randomly replacing a 

prosumer with another from the available pool; then, its corresponding phase is re-

placed accordingly in the second half of the chromosome. 

These assumptions ensure that for each scenario its constraints are always fulfilled, 

and also that the chromosomes resulting from crossover and mutations are always valid, 

reducing the computational effort and the number of solutions evaluated by the algo-

rithm, thus increasing the speed of convergence towards the optimal solution. Using a 

more randomized scheme for updating the chromosome would require complex valida-

tion procedures, built separately for each scenario. By contrast, the GA eliminates the need 

for this step. 

4. Results 

The ESMRG algorithm was tested on a real LV EDN from northern Romania, for 

which consumption data was measured for an interval of 24 hours using the local Smart 

Metering infrastructure. The general data for this network and its one-line diagram are 

provided in Table 1 and Figure 4. In the network there are 8 active prosumers, at buses 

depicted in black in Figure 4, that use PV panels and generate electricity at daytime, in the 

06:00 – 18:00 hours interval. The electricity not used for local consumption constitutes the 

surplus that can be injected back in the grid or stored in batteries for later use, if storage 

capabilities exist. This surplus is represented, for each prosumer, in Figure 5. 

On the other hand, the charge and discharge of the batteries influences the power 

demand from the grid at the buses where the batteries are located. For reference, the ag-

gregated hourly consumption on each phase is presented in Figure 6, that shows that the 

load is highly unbalanced, with phase b having the lowest loading. With an optimal place-

ment, the batteries can be used to balance the load and to reduce the active energy losses 

in the network. 
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Table 1. Summary data for the network used in the case study 

Number of buses 121 

Number of consumers 113 

Total load  

(24 h / 06:00 – 18:00) 

219.85 / 76.01 kW 

Total prosumer generation 122.00 kW 

Total prosumer surplus 75.38 kW 

Network type Overhead, classic 

Total/ main feeder length 4840 / 2240 m 

 

Figure 4. The EDN used in the study. 
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Figure 5. The hourly surplus of each prosumer. 

 

Figure 6. The hourly consumption in the network. 

4.1. The reference case 

The presence of storage in the network has the potential to reduce the energy losses 

in several ways. First, in the battery charging phase, the energy stored at the prosumers  

will not be injected in the network and the power flow on the branches adjacent to the 

respective bus will not increase. Depending on the operating scenario, the total losses in 

the network will also be affected (will increase or will decrease, according to the location 

of prosumer buses). In the discharging phase, if this operation occurs at peak load, the 

total load of the network will be reduced, also reducing the energy losses. The loss reduc-

tion will depend on the placement of the batteries in the network, at specific buses and 

connection phases. To analyze the effect of each storage placement solution, the losses 

obtained in each case will be compared in this paper with the reference active losses value 

obtained when the consumption is using the pattern from Figure 6 and the entire surplus 

from Figure 5 is injected back in the grid. In this case, the losses computed by a load flow 

algorithm amount to 8.74 kWh in the interval 0:00 – 24:00, 6.90 kWh in the interval 06:00 

– 24.00 and 5.04 kWh between 18:01 -24:00 (Figure 7). These intervals were delimited con-

sidering as initial assumption in the study that the prosumers begin to generate electricity 

at hour 06:00 and the batteries will begin to discharge at hour 18:01.  

 

Figure 7. The active energy losses in the reference case 
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Starting from this case, the three scenarios were run and the optimal solutions were 

determined for each case. The algorithm used each time 100 generations and 100 individ-

uals in the population, with a crossover rate of 0.9 and a mutation rate of 0.1. The solutions 

are presented in Table 2. The first part of the chromosomes for Scenario 1 and 2 uses bus 

codes, while Scenario 3 uses prosumer codes, taken from the input data provided in the 

supplementary file attached to this paper. The correspondent bus numbers are given for 

Scenario 3 in round brackets. Also, the losses are given for the entire 24 hours period. For 

Scenarios 1 and 2, it is considered that the batteries are loaded at 95% at the beginning of 

the interval of analysis. For Scenario 3, the batteries start at the minimum loading limit 

(20%) and can be charged up to the maximum limit of 95% from the prosumer surplus. 

The hour at which the batteries begin to discharge is at the beginning of the peak load 

time from Figure 7 (18:01 – 19:00). A number of 5 batteries of maximum 4 kWh storage 

capacity each are considered for placement. 

Table 2. The solutions obtained using the ESMRG algorithm 

Scenario Solution 
ΔW, 

kWh 

Scenario 1 85 85 85 85 85 1 1 3 1 2 6.63 

Scenario 2 85 119 119 85 56 1 2 2 1 1 5.62 

Scenario 3 107 (85) 83 (63) 107 (85) 94 (119) 44 (37) 1 2 1 2 3 7.61 

4.2. Scenario 1 – Batteries installed at the same bus 

For this scenario, an interesting fact occurs. The algorithm chooses for installation 

bus 85, that is located near the far end of the network and has the highest demand in the 

interval of discharge 18:01 – 24:00, 6.81 kWh. For this case, taking into account the imposed 

20% - 95% charging limits, in bus 85 can be discharged a maximum of 3 batteries, that are 

placed by the algorithm on phase a, where the entire bus consumption is measured. Two 

batteries will be discharged down to the lowest limit of 20%; one will be discharged par-

tially, while the remaining two will not be used at all, as presented in Figure 8. For refer-

ence purposes, this figure contains also the battery loading level an hour before the dis-

charging begins. 

The total hourly load from Figure 6 will change starting from 18:01, only on phase a, 

resulting in a more balanced operation of the network at peak load hours. Consequently, 

the energy losses see an important reduction, from 8.74 kWh in the reference case, to 6.63 

kWh. This reduction, of 2.11 kW is concentrated in the (18:01 – 24:00) interval, as depicted 

in Figure 9. 

4.3. Scenario 2 - Batteries can be installed at different buses and phases 

In this case, the algorithm chooses 3 buses for installing the batteries: 85, 56 (on phase 

a, batteries 1, 4 ,5) and 119 (on phase b, batteries 2, 3). All three are prosumer buses, with 

high load and located near the far end of the network. The batteries discharge differently. 

Those located on phase a discharge faster and are almost depleted at the end of the day. 

The batteries installed on phase b discharge later and slower, according to the load of the 

bus in the same time interval. This behavior can be seen in Figure 10. Battery 3 retains half 

of its load because of insufficient consumption in bus 119. 

Because of the higher amount of energy used from the batteries, the energy loss re-

duction is much higher, the total energy loss in 24 hours being only of 5.62 kWh, a signif-

icant improvement compared to Scenario 1. The loss reduction in the interval 18:01 – 24:00 

is presented in Figure 11, and amounts to 3.02 kWh. 

4.4. Scenario 3 - Batteries can be installed only in prosumer buses 

This scenario illustrates another set of operating conditions that can occur in the net-

work. The results from Table 2 show that in Scenario 2 the batteries were placed in 

prosumer buses located at significant distance from the MV/LV substation, while the bat-

teries are considered to be charged. This placement scheme could be considered a valid 
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solution also for Scenario 3. However, in scenario 3, where the assumption is that the bat-

teries start at the minimum level of charge and are charged during the day by each 

prosumer using its surplus, the charging sequence changes the hourly loss profile during 

daytime. Thus, the optimal solution changes, and the battery discharge pattern is modi-

fied as in Figure 12, supplemented with the charge pattern from Figure 13 (hours 06:00 – 

17:59). The corresponding loss patterns in the same intervals are presented in Figure 14 

and Figure 15. 

 

Figure 8. The discharge pattern for the batteries, Scenario 1 

 

Figure 9. The energy loss reduction at peak hours, Scenario 1 

 

Figure 10. The discharge pattern for the batteries, Scenario 2 

 

Figure 11. The energy loss reduction at peak hours, Scenario 2 
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Figure 12. The discharge pattern for the batteries, Scenario 3 

 

Figure 13. The charge pattern for the batteries, Scenario 3 

 

Figure 14. The energy loss pattern at battery discharging hours, Scenario 3 

 

Figure 15. The energy loss pattern at battery charging hours, Scenario 3 

As Figure 15 shows, the increase in losses during the charge of the batteries is respon-

sible for the high loss difference from Scenarios 2 and 3. The energy used to charge the 

batteries would be otherwise injected in the grid, replacing an equivalent supply from the 

substation. A high quantity of energy imported from the grid, that needs to supply con-

sumption near the far end of the network, is likely to create equivalently high losses, that 

account for the increase seen between hours 06:00 and 14:00, in Figure 15. The loss reduc-

tion at peak time is of 2.74 kWh, but the increase in the 06:00 - 17:59 interval is of 1.61 kWh. 

Another aspect, emphasized by Figure 13, is the fact that if the batteries are managed 

by the prosumer, they could be not used to their maximum capacity, depending on their 

available surplus. This is the case of battery 2, that does not reach the maximum allowed 

loading of 95%. 
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4. Discussion 

The authors have proposed an algorithm capable of managing one-phase storage bat-

teries installed in a three-phase low-voltage distribution network. Three scenarios were 

considered for optimization, and each of them shows possible situations that can occur in 

the operation of this type of network and storage, in real conditions. 

In Scenario 1, where all the batteries need to be concentrated in one bus, the network 

operator is able to manage the batteries with minimal cost, but its options can be limited 

in reducing the energy losses. The electricity consumption is, in this case, lower than the 

available storage capacity, that is used sub-optimally. Two batteries are installed, but not 

discharged in the peak load interval. The operator will need to sustain minimal invest-

ment costs for storage installation, but will also obtain sub-optimal loss reduction. 

Scenario 2 is the optimal case from the technical standpoint, because the loss reduc-

tion is maximal. However, the investment cost will increase for the network operator, be-

cause it will need to install and remotely mange batteries in three separate locations. 

Scenario 3 shows that, even if the management of the batteries is outside the control 

of the DNO, the presence of storage can still provide energy loss reduction, although it 

can be significantly lower compared to the previous scenarios. 

The genetic algorithm proves to be an efficient tool for computing the different for-

mulations of the storage management problem. By properly choosing a chromosome 

structure that can be adapted to simulate these scenarios, it eliminates the need to build 

and solve each problem separately and can provide the necessary results for quick and 

meaningful comparison of the specificities encountered in each analyzed scenario. 

Another aspect to be mentioned is the initial assumption for Scenarios 1 and 2, where 

the batteries are fully loaded at the beginning of the study. In real operation conditions, 

they would need to be charged at no-load night hours. As the loss profile from Scenario 3 

shows, the charge could significantly impact the total daily losses. However, different 

strategies used for this purpose can result in significant differences (fast charge vs low 

charge). A pertinent analysis should also take into account the price of electricity at night 

time, and the load profile of the network in the charging interval. These problems require 

an in-depth study and will be addressed in future research derived from this paper. 

The results obtained in the paper show the necessity of optimal use of storage in low-

voltage unbalanced distribution networks. The problem is the cost of the batteries for the 

network operator, but, given the EU initiatives sustaining renewable electricity genera-

tion, it is foreseeable that these costs could be partially mitigated, but this also depends 

on local energy policies put forward by national governments. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, the con-

sumer and prosumer data used in the study: file InputData.xlsx. 
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