
   

 

 

Article 

Workflow to Investigate Subtle Differences in Wine Volatile 
Metabolome Induced by Different Root Systems and Irrigation 
Regimes 
Mani Awale1, Connie Liu1, and Misha T. Kwasniewski1,2* 

1 University of Missouri-Columbia, Division of Plant Sciences, 135 Eckles Hall, Columbia, Missouri, 65211, 
USA; maybd@mail.missouri.edu (M.A); liugw@missouri.edu (C.L) 

2 PennState University, Department of Food Sciences, 326 Rodney A. Erickson Food Science Building, Univer-
sity Park, PA, 16802, USA Affiliation 2; mtk5407@psu.edu  

* Correspondence: mtk5407@psu.edu; Tel.: +1 607-745-3349 

Abstract: To allow for a broad survey of subtle metabolic shifts in wine caused by rootstock and 
irrigation, an integrated metabolomics-based workflow followed by quantitation was developed. 
This workflow was particularly useful when applied to a poorly studied variety cv. Chambourcin. 
Allowing volatile metabolites that otherwise may have been missed with a targeted analysis to be 
included, this approach allowed deeper modeling of treatment differences which then could be used 
to identify important compounds. Wines produced on a per vine basis, over two years, were ana-
lyzed using SPME-GC-MS/MS. From the 382 and 221 features that differed significantly among 
rootstocks in 2017 and 2018 respectively, we tentatively identified 94 compounds by library search 
and retention index, with 22 confirmed and quantified using authentic standards. Own-rooted 
Chambourcin differed from other root-systems for multiple volatile compounds with fewer differ-
ences among grafted vines. For example, the average concentration of β-Damascenone present in 
own-rooted vines (9.49 µg/L) was significantly lower in other rootstocks (8.59 µg/L), whereas mean 
Linalool was significantly higher in 1103P rootstock compared to own-rooted. β-Damascenone was 
higher in regulated deficit irrigation (RDI) than other treatments. The approach outlined not only 
was shown to be useful for scientific investigation, but also in creating a protocol for analysis that 
would ensure differences of interest to industry are not missed. 

Keywords: rootstocks, untargeted metabolomics, features, grafted, multivariate analysis, aroma 
compounds 

1. Introduction  
Volatile composition plays a critical role in grape and wine quality and can capture 

information encompassing a year (or more) of vine growth in relation to its environment. 
Growing conditions (soil conditions, climate, temperature), vineyard management prac-
tices (irrigation, pruning, sun exposure) and vine genotypes, including both the scion and 
rootstock used, can all cause a cascade of metabolic shifts, some of which with direct im-
pact on volatile compounds, others impacting the non-volatile metabolome which con-
tributes to aroma precursors [1-3]. The process of wine-making and fermentation further 
impact metabolic processes, enhancing volatile metabolic differences in ways that may be 
complex and not intuitive [2]. To ensure all analytes of potential interest are included 
when studying such a complex system, using a metabolomics based approach can have 
clear advantages by first starting with a bias towards inclusivity of more analytes rather 
than limiting characterization to just a few  [4, 5]. However, when relating metabolic 
shifts to bioactivity parameters (e.g. aroma perception), it is not enough to demonstrate a 
difference, it is also necessary to characterize the amount of compound present and the 
difference observed [6, 7]. Additionally, in some metabolomic invesitigations focus is first 
placed on those compounds that show the largest concentration difference, as this indi-
cates metabolic importance, in aroma chemistry, this may miss critical changes in quality 
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(Figure 1) [8, 9]. This is why often in flavor work a quantitative, targeted approach is taken, 
to ensure perception threshold and other elements where actual concentration can be used 
to interpret the data. 

About 80% of all Vitis vinifera grapevines planted are grafted to rootstocks to protect 
against phylloxera [10, 11], tolerance to biotic stresses such as nematodes [12] as well as 
tolerance to abiotic stress such as drought [13, 14] and salinity. Grafting to rootstocks has 
been shown to impact the concentration of volatile compounds including esters, 2,3-bu-
tanediol [15], norisoprenoids and higher alcohols when compared to wines produced 
from own-rooted vines as well as across diferent rootstocks [16] [17]. Water availability 
also can impact fruit and wine composition [18-21]. Moderate water stress mediated 
through deficit irrigation leads to reduced water uptake and reduced shoot growth and 
yield leading to smaller berries with a higher concentration of aroma compounds in 
grapes and wine volatiles [17, 19, 22], thus correlating with positive wine sensory attrib-
utes (more fruity and less vegetal) [23]. Rootstocks can alter the plants' ability to tolerate 
water stress, and the interaction between different irrigation and rootstocks may also im-
pact the volatile profile of grapes and wines as water stress has been known to impact the 
wine volatiles [19, 20, 24, 25]. 

Traditionally, the studies of the impact of rootstocks, irrigation and other viticultural 
management on the complex wine aroma and flavor were focused on a few important 
compounds  including norisoprenoids and esters [17, 20, 22, 25]. Recently, non-targeted 
metabolomics has been used in grapes and wine studies to understand grapevine berry 
development, fungal pathogen in juice, comparison between wild and vinifera volatiles, 
wine classification, wine volatile, non-volatile and unspecified compounds that are pre-
sent in the wine as possible [4, 5, 26-30]. This approach was also used to study rootstock 
modulation of grape and wine aroma in Shiraz grapes, leading to the tentative identifica-
tion of 152 impacted compounds [16]. This approach has particular value in uncharacter-
ized and understudied cultivars as it can characterize complex general differences be-
tween populations and enable the identification of unknown compounds, or those not 
normally deemed as impertinent in wine aroma. Futher, the volatile metabolome has 
value beyond just aroma compounds but also in understanding overall treatment effects. 

Grapes with some non-vinivera parentage are known to have unique aroma charac-
teristics. One such example is V. labrusca grapes and hybrids of this species have methyl 
anthranilate and o-aminoacetophenone compounds, impact odorants for these varieties, 
that cause the characteristic foxy taste of these grapes, which were not present in V. vinifera 
grapes [31]. However in many cases these clear impact odarants are not present, with it 
beyong hypothesized that what constitutes hybrid grape character is the sum of its com-
plex aroma chemistry [32]. Given the great genetic diversity and unique odorants that can 
be found in North American species, it is clear that a targeted approach based on V. vinif-
era, is likely to miss important compounds in hybrid grapes. Whereas an untargeted ap-
proach alone aiming at identifying the tentative compounds will not be sufficient as it 
lacks the ability to relate compounds to bioactivity, and often overstates the influence of 
compounds at high concentrations.  

Targeted analysis of specific metabolites has been traditionally used to understand 
wine aroma, and to decouple the effect of different factors on fruit and wine quality. This 
approach involves identifying a selection of compounds from the chromatogram and 
quantifying those compounds in order to perform comparative analysis of the metabolic 
phenotypes using multivariate statistics (Figure 1). The advantage of this approach, is that 
by designing analysis around those compounds to be identified and quantified you can 
assure the overall method measures compounds in the ranges that have biological signif-
icance. The complexity of plant samples including wine, presents multiple challenges such 
as coelution of metabolites, high variability in metabolic quantity within samples that re-
sults in reliable quantification due to method optimization for compound of interest. 
However this is done for only limited number of metabolites [8]. Despite these limitations, 
it could be argued that this practice may be suitable in V. vinifera cultivars where 
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important odorants have generally been identified. However, in understudied beverages, 
such as wines made from interspecific Vitis hybrid cultivars, a more all-encompassing ap-
proach such as untargeted metabolomics is essential to avoid missing important but not 
yet identified volatiles that could be critical to a wines overall character. This is all more 
the case when considering that compounds are not perceived in isolation but that compo-
nents of the volatile metabalome may interact to impact perception. For example, recent 
work by Poivet, et al. [33] demonstrates the interactions between odor active compounds, 
which would make measurements of a handful of compounds insufficient in characteriz-
ing aroma differences. The volatile metabalome is also not just of interest due to odor 
activity, but also demonstrate the impacts of all the factors outlined above, with grapes 
and other fruits acting as a “black box” whose information is released following fermen-
tation.  

An untargeted, or metabalomics based approach, is comprehensive and unbiased. 
Where spectral information from chromatograms is automatically transformed into coor-
dinates based on mass, retention time and associated signal intensity, which are then 
aligned across all samples to detect features or putative compounds without prior identi-
fication of the ompounds. Various univariate and multivariate statistics are used to iden-
tify the metabolic features (m/z at the definite retention time) (Figure 1) [29, 34, 35]. How-
ever, this method also suffers from the limitations that it aims at identification of as many 
compounds as possible but often obtaining relative differences without the quantitiave 
data needed to relate to bioactivity or flavor. Similarly, unknown compounds makes the 
biological interpretation of the data even more challenging [8]. Both these approaches 
have benefits, however, due to complexity of plant systems, both of these approaches can 
also fall short especially in systems where subtle differences in trace compounds are im-
portant. This is often the case when investigating flavor as small diffrences in compounds 
below ng/mL level may have dramatic differences in quality or plant metabolic regulation 
where organisms work to remain healthy and productive through pathways promoting 
equilibrium rather then dramatic shifts in chemistry [8]. 

To overcome the limitations of both the targeted and untargeted method, we devel-
oped an integrated metabolomics workflow that encompasses the benefits of both the ap-
proaches. Our workflow aims at untargeted data processing of the spectral data followed 
by various univariate and multivariate analysis to unbiasedly identify the compounds 
that are truly important in the experimental design. Our workflow then goes forward to 
intergrate the components of the targeted approach where the significant compounds are 
confirmed with the authentic standards and then quantified so that the data is meaningful 
and interpretative in the real field situations (Figure 1). 

2. Results and Discussion  
An integrated metabolomics workflow was successfully used to find subtle differ-

ences in volatiles within rootstocks and irrigation treatments that would otherwise have 
been missed using traditional approaches. Targeted analysis of volatiles has been the 
standard for decades as it allows predictable quantification of selected compounds of in-
terest which in turn can be related to odor thresholds and theoretically explain treatment 
impacts on aroma (Figure 1) [20, 22, 36-40].This however assumes that all compounds of 
importance have been identified, as well as that odor thresholds are accurate (and immo-
bile) [8]. Also, the complexity of plant samples poses problems such as compound coelu-
tion despite effective prior chromatographic separation that complicates their discrimina-
tion. While these assumptions may be accurate in well-studied plants and foods such as 
V. vinifera-based wines, poorly studied food such as wines made from interspecific hy-
brids benefit from a more holistic approach to data collection to avoid missing key ana-
lytes [29, 41]. As such it is appropriate to adopt inclusive initial analysis to avoid missing 
differences induced by the treatments, before deciding what compounds are of interest 
(Figure 1). The untargeted approach avoids the time consuming need for the prior assign-
ment of chemical information to the molecular structure for hundreds of datasets that 
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makes it faster and more unbiased [8]. This approach has proved invaluable in situations 
where stark differences are expected such as comparing mutant and wild type popula-
tions or infected and healthy individuals [5]. However, this type of analysis has not been 
widely used to characterize subtle differences that are inherent in a biological system, with 
researchers focusing on analytes with a 2-fold or higher change to ensure metabolic influ-
ence [41, 42]. Usually, the variations in the metabolic phenotype in field conditions due to 
natural variability are not very contrasting in comparison to lab or green house studies 
where all factors are controlled except the factor in study. Such phenotypes show subtle 
differences that needed to be analyzed so that they are not overlooked. When dealing with 
a genetically identical grapevine scion (cv. Chambourcin in this case) grafted to genet-
ically different root-systems with three different irrigation, a hybrid integrated metabo-
lomics approach that encompasses both the benefits of targeted and untargeted data anal-
ysis was used to allow inclusive characterization of even subtle differences on wine vola-
tiles (Figure 1). This allowed for the comprehensive charechterization of wine volatiles, 
prior to the laborious step of chemical identification, with quantitation and identification 
using authentic standards for only those compounds that are relevant to explaining treat-
ment variation. 

 
 
 
 
 

Figure 1: Comparative GC-MS based metabolomic approaches showing steps of conventional 
targeted approach, untargeted metabolomic approach and our integrated metabolomic approach that 
uses parts of both targeted and untargeted approaches. 
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2.1 Untargeted Metabolomics Results: 

Data processing transforms the raw chromatographic data files into a format that is 
useable for further analysis which include measurement of m/z, retention time of the ion 
and ion intensity from each raw data file and are mostly done by softwares. Data pro-
cessing includes removing noise, feature detection, alignment, retention time correction 
and normalization. Using XCMS online, we identified a total of 682 and 877 metabolite 
features in 2017 and 2018 respectively (Figure 1), which is within the expected range of 
the number of features to be found in similar metabolomics studies [5, 43]. While in many 
cases one compound can result in several features due to multiple ions making up its mass 
spectra, this still demonstrates a great increase in potential analytes over similar targeted 
studies of wine volatiles, with minimal front-end effort [44]. This step can be acomplished 
using other platforms such as PARADISe, MZmine 2 and openchrom however after ex-
tensive testing we opted for XCMS online due to wide array of chromatagram normaliza-
tion and feature detection options, which facilitated including features at low concentra-
tions for further statistical analsys. 

Following feature identification, the next step in our integrated metabolomics work-
flow, is statistical analysis of the detected features, to identify features of interest. Specifi-
ally finding those features impacted by the treatment. Data analysis for each year was 
performed separately as the analysis were conducted in different years adding an instru-
mental effect to the raw data, and because vintage difference has been widely reported in 
previous studies as the largest influence in aroma variation [45-47]. Using ANOVA, 221 
and 328 features were found to be significantly impacted by root-system (pvalue <0.05)(Fig-
ure 1, Supplemental Table S1 and S3), and 380 and 85 features were found to be signifi-
cantly impacted by various irrigation regimes in 2017 and 2018 respectively (pvalue <0.05) 
(Figure 1, Supplemental Table S2 and S4). The root-system and irrigation influence on 
wine features in both years is visualized using heatmaps, where the top 25 most signifi-
cant features are shown as mean values within treatments (Figure 2). Both root-system 
and irrigation had yearly differences in metabolite feature grouping between treatments. 
In 2017, the top 25 wine features were similarly expressed in RDI and None whereas in 
2018, wine metabolite features were similar between Full and RDI (Figure 2A). Between 
root-systems, own-rooted vines had the strongest differences of the root-systems, for the 
top 25 metabolic features contrasting them from all grafted vines (Figure 2C and 2D).  

As the initial analysis conducted separately for years to avoid instrumental impacts 
and to focus on treatment variation, the overlap between features was compared. We 
found 45 significant features that were common in 2017 and 2018 between root systems as 
demonstrated by the Venn diagram (Figure 3A). This overlap was important to note as 
one of the limitations of untargeted analysis is the value in running all samples to be com-
pared in one continuous set to avoid changes with the instrumentation driving the differ-
ence [29]. Despite the instrument being used at different times, a subset of features signif-
icantly explaining treatment effect were shared between years when the initial analysis 
was first grouped by analysis period (year) and then untargeted results compared across 
years. In an initial analysis of treatment effects, it was observed that a total of 170 and 16 
features were common in 2017 and 2018 respectively between root-system and irrigation 
treatments (Figure 3B and 3C). Demonstrating that some shared metabolites were being 
significantly impacted both by irrigation and root-system, whereas others were impacted 
solely by one or the other. 
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  Figure 2: Heatmaps of the top 25 most influential features for differentiating wine volatiles by (A) irrigation 
regime in 2017, (B) irrigation regime in 2018, (C) root-system in 2017 and (D) root-system in 2018. While only 
top contributors are shown the heatmaps were generated using all the features. The rows in the heatmap 
represent features (M(m/z).T(time in minutes) and the columns indicate sample categories. The colors of the 
heatmap cells indicate the abundance of compounds across different samples. The color gradient, ranging 
from dark blue through white to dark red, represents low, middle and high abundance of a compound.   
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Figure 3: A) Venn diagram showing common and unique features between wines in 2017 and 
2018. Only 45 features were common in both years showing yearly differences in metabolites. B) 
Venn diagram showing common and unique features between root-systems and irrigation treat-
ments in wines in 2017. 170 features were similar between root-system and irrigation treatments. 
C) Venn diagram showing common and unique features between root-system and irrigation treat-
ments in wines in 2018. Few features were similar between root-system and irrigation treatments. 
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2.2 Identification of significant features:  

Only those features found to be significantly influenced by treatment were included 
moving forward, as the ultimate goal was to identify those compounds impacted by treat-
ments. Unsupervised principal components analysis (PCA) was performed to model sig-
nificant features most important to treatment differences to determine patterns between 
multivariate samples. The impact of root-systems on wine features can be observed in the 
PCA scores plot in which 38.4 % and 10.6% of the total variance was explained by PC1 
and PC2 respectively in 2017 (Figure 4A). In 2018, PC1 explained 37.6% of the variance, 
and PC2 captured about 10% of the variance (Figure 4B). The PCs were also found to be 
significantly different from each other based on the ANOVA followed by Tukey’s HSD 
(pvalue <0.05). While there is not complete separation between root-systems or irrigation 
treatments in both years, this partial separation suggests distinct patterns in at least some 
metabolite concentrations that may differentiate between the groups. However further 
analysis was conducted to investigate this observation below. Such patterns may be weak 
due to the confounding effect of metabolites with strong variations due to other factors. 
This is often the case when modeling wine chemical differences, where even inclusion of 
measurement shown to have some treatment influence, similarities across treatments will 
also be apparent in all but the most extreme cases [9, 23, 48, 49]. A subtle but significant 
impact was also observed between rootstocks grafted to the same scion for many fruit 
composition and quality traits by [44], which reiterates the need for a careful holistic in-
vestigation when exploring subtle differences. Unlike in certain untargeted research, mi-
nute differences in chemistry can have large sensory and economic impacts, even though 
made from the same grape variety [50].  

For a better understanding of the metabolic characteristics and interpretation of the 
results obtained by the unsupervised analysis model and to highlight the similarities and 
differences between treatments, the PLS-DA method was applied. The PLS-DA analysis 
revealed the subtle separation between treatments. The PLS-DA models obtained were 
evaluated using leave one out cross-validation (LOOCV) where the quality of the fit was 
evaluated with R2 and the predictive capacity with Q2. In 2017, the PLS-DA model for the 
separation of rootsystems was R2 0.37 and Q2 was 0.24 with two components. Similarly,  
for Irrigation R2 was 0.39 and Q2 was 0.14). In 2018, the R2 for PLS-DA model was 0.42 and 
Q2 was 0.11 for the classification of root systems and R2 was 0.36 and Q2 0.18 for the PLS-
DA model for classification between irrigation treatments (Supplemental table 5). We ob-
tained 153 and 125 features that have VIP scores >1 that cause separation between roots 
ystems and irrigation respectively in 2017. In 2018, 150 and 146 features had VIP score >1 
which showed that these features contributed to separation between treatments due to 
root systems and irrigations respectively (Supplemental table 6). The validation of the 
models were also performed through 1000 permutation tests, where the probability that 
the model was created by chance was less than 0.0001%, showing a level of confidence 
that the subtle separations are caused by the differences in the treatments. PLS-DA has 
been very commonly used in metabolomic studies to find the significant features that have 
treatment differences [8, 42, 51].  

As PC1 And PC2 could not explain the complete separation between treatments, a 
linear regression model was created that included root-system (own-rooted, SO4, 1103P 
and 3309C), irrigation (none, RDI, Full), and root-system by irrigation interaction effect 
using the first 20 PCs. We observed that up to 35% of the variation in the root-system was 
explained by a single PC (PC1) in 2017 (Figure 5A). Irrigation had a significant effect on 
PC2, PC9, PC10, PC11, PC12, PC13, PC14, and PC20, contributing up to 20% of the varia-
tion in wine volatiles (Figure 5A). Similarly, in 2018, root-system contributed significantly 
to 5 PCs, explaining up to 35% of the variation, and irrigation contributed to 8 PCs ex-
plained significant variation up to 15% of variation by irrigation in 2018 (Figure 5B). We 
also observed some significant root-system by irrigation interaction impact in both years 
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as explained by PC15 (contributed 15% of variation) in 2017 (Figure 5A) and PC5, PC8, 
PC9, and PC12 (contributed up to 16% of variation) in 2018 (Figure 5B). 

 

 

 

  
Figure 4: PCA Scores plot of wine metabolite features separated by root-system in (A) 
2017 and (B) in 2018 regardless of the irrigation treatment. PCA Scores plot of wine me-
tabolite features separated by irrigation treatments in (C) 2017 and (D) 2018 regardless 
of the rootstock treatment. PCA was performed using log-transformed and autoscaled 
significant features. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 September 2021                   doi:10.20944/preprints202109.0081.v1

https://doi.org/10.20944/preprints202109.0081.v1


 10 of 24 
 

 

 

 

  Figure 5: A linear model was estimated for wine 2017 and 2018 PCs 1 to 20. The model included rootstock 
(own-rooted, ‘1103P’, ‘3309C’, ‘SO4’), irrigation (Full, RDI, None), and rootstock by irrigation interaction. 
The 20 PCs capture 85.79% and 78.34% of the variance in 2017 and 2018. Only factors which explained a 
significant portion of the variance (p<0.05) are plotted. The percent variation explained by each factor is 
indicated using color. 
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2.3 Compound Identification and confirmation: 

Untargeted metabolomics data is most useful when the analytical signals (features) 
are used to identify metabolites or compounds and relate their intensities or concentra-
tions to knowledge about the biological system. Using significant features from ANOVA 
and PCA loadings, identification of the compounds derived from the non-targeted analy-
sis was conducted by comparing obtained mass spectra, at a definite time, with the NIST 
library. As well as by comparing the calculated retention index of tentatively identified 
compounds with that published by others. This two-way confirmation was crucial for the 
correct assignment of annotation of the compounds [51]. For example in 2018, we identi-
fied m/z 69, 105, 121, 190 at retention time 21.73 to 21.82 min which was identified by the 
NIST library as β-Damascenone with 48% match probability. The calculated RI was 1820 
which is close to that of literature (1832) [52]. A subset was further confirmed by compar-
ison to authentic standards. Alternatively, compound identification can be confirmed us-
ing a second column type, however, this then necessitates duplicating all efforts to this 
point, including doubling the number of GC-MS runs [51]. We opted for confirmation via 
authentic standards as this would be needed for calibration curve generation. In this way, 
we tentatively identified a total of 94 unique compounds in wines from 2017 and 2018, 
from the features that were significantly different due to root-system and irrigation (Sup-
plemental Table 7). There were many orphaned spectra that showed significance, which 
could not be identified with the NIST library. For example, in 2017, 11 spectra could not 
be definitively related to any compound. While further efforts could have been taken we 
opted to prioritize those compounds with tentative identification given the large number 
still remaining. 

  

2.4 Quantitation of the compounds: 

To confirm tentative identification, and quantify the compounds identified from the 
significant features (non-targeted analysis), we used authentic standards and an internal 
standard to generate calibration curves. For all compounds included in quantitative data 
linearity was calculated using a 1/x weighted regression and all-values were within the 
linear range (R2 0.99 or higher). The spectra and retention time of the tentative compound 
were matched with that of the authentic standard that was run using Agilent MassHunter 
Qualitative Analysis (Agilent Technologies). In this way, we were able to confirm and 
quantify a subset of 21 and 22 compounds for 2017 and 2018 respectively among the 94 
compounds identified using features. Many compounds could not be confirmed due to 
lack of authentic standards, or several of the top matches in the NIST database having an 
erroneous match when compared with an authentic standard (a critical error that may not 
have been avoided with robust confirmation). This step was similar to traditional targeted 
analysis where the compounds are quantified or semi-quantified using a calibration curve 
of an authentic standard [51]. The benefit of taking the analysis through to this step was 
to obtain concentration information which critical inunderstaning what impact a com-
pound has on the final wine aroma by calculating their odor threshold values. The ap-
proach of quantification after untargeted compound identification was also successfully 
adopted by Weingart et al 2011 where they were able to identify 63 metabolites and quan-
tify 47 compounds [51]. 

Using ANOVA (pvalue <0.05) for each compound followed by Tukey HSD, each compound 
was analyzed for significance based on both treatments and interaction as factors to make 
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sure if the identified compounds were causing differences due to rootstocks as well as 
irrigation treatments. We found that the rootstock and irrigation interaction effect was 
significant for both 2017 and 2018 for several compounds (Table 1). We found 11 volatiles 
with significant rootstock and irrigation interaction effect in 2017 while Linalool was the 
only compound that showed significant rootstock and irrigation interaction effect in 2018 
(Table 1). The compounds which were also significant in rootstock and irrigation main 
effect are shown in (Supplemental table 7). Important wine volatiles such as β-Dama-
scenone, Methyl Octanoate, Ethyl Nonanoate, and Linalool was significantly different be-
tween root-system in 2017. In 2018, the wine volatiles that showed a significant difference 
between root-system at a 5% level of significance was shown in table S6. Generally, graft-
ing Chambourcin vine to different rootstocks caused either an increase or decrease in vol-
atile compounds in wines in both years. Linalool and Ethyl nonanoate were found to be 
higher in concentration in wines in rootstocks than own-rooted Chambourcin wines in 
2018 (Figure 6) while wines from own-rooted vines showed higher concentration for β-
Damascenone and TDN in both 2017 and 2018 (Figure 7). 

A full list of compounds that are also found to be significantly different from irriga-
tion treatments in 2017 in 2018 are presented in Supplemental table 8. RDI resulted in a 
higher concentration of compounds in 2017 but not in 2018 (Supplemental table 8). In 2018, 
not applying any irrigation led to an increase in the concentration of compounds (Supple-
mental table 8).  Deficit irrigation has been previously shown to increase volatile content 
in apples and grapes [53-55]. Water deficit activates the hydraulic and chemical signals 
(such as ABA) from the drying roots to the shoots that subsequently lead to reduced water 
use through decreased stomatal conductance through stomata closure. Deluc, Quilici, 
Decendit, Grimplet, Wheatley, Schlauch, Mérillon, Cushman and Cramer [21] using 
metabolomics and transcriptomics found that water deficit affected the ABA metabolic 
pathway in Cabernet Sauvignon and Chardonnay, with a high abundance of 9-cis-
epoxycarotenoid dioxygenase (NCEDI) transcripts. The metabolic responses of grapes to 
water deficit varied with the cultivar, showing differences in ABA, isoprenoid, carotenoid, 
amino acid, and fatty acid metabolism.  

We observed significant differences between own-rooted Chambourcin and Cham-
bourcin grafted to rootstocks in many volatiles which indicated grafting is causing signif-
icant changes to the scion (Table 1). Such differences in volatile profiles of wines between 
own-rooted and rootstocks were also been observed in Shiraz [16] and Monastrell grapes 
[17]. Monastrell grapes grafted to different rootstocks and treated with deficit irrigation 
showed significant differences in aroma profile between rootstocks and irrigation. Being 
a vigorous rootstock, 1103P wines showed a higher concentration of aromatic compounds 
including alcohols, esters, and acetic acid than wines from other rootstocks. However, in 
that study, own-rooted Monastrell grapes were not included in the study. No significant 
interaction between rootstock and irrigation was observed. Wang, Chen, Gao, He, Yang, 
He, Duan and Wang [38] found a higher concentration of total esters on own-rooted vines 
than on grafted vines in Cabernet Sauvignon.  

The quantitative (and semi-quantitative) data from 2017 and 2018 differed from each 
other in concentrations (Supplemental table 8). This is likely due to differences in growing 
conditions and environmental factors in both years that can significantly impact the aroma 
profile of grapes and wines. Analysis of the quantitative data of 2017 and 2018, showed a 
significant increase in concentrations of isoamyl acetate in wines regardless of treatments 
(Table 1). Fermentation results in many compounds in wine that are not seen in berries, 
created from berry precursors. Isoamyl acetate is an important ester derived during fer-
mentation by Saccharomyces cerevisiae [56]. In 2017 Chambourcin wines, isoamyl acetate 
is present at a concentration of 495 ug/L, which is 16.5 times higher than the odor thresh-
old, thereby, showing the significance of this compound in the aroma of Chambourcin 
wines. This concentration was found to decrease in 2018 with an average concentration of 
298.5 µg/L, which is about 10-fold higher than the odor threshold. Isoamyl acetate was 
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found to be the compound responsible for the characteristic fermentation bouquet in Pi-
notage wine (avg concentration 15.6 mg/L) and found to vary significantly from one vin-
tage to another [56]. The synthesis of isoamyl acetate by S. cerevisiae during fermentation 
of wine had been found to be due to the activity of isoamyl alcohol acetyltransferases from 
the precursors present in the grapes, especially fatty acids [57].  

By using the untargeted workflow, new compounds, as well as compounds that were 
not known to have a significant impact due to treatments based on only targeted studies 
can be identified [51]. For example, in our study, isoamyl acetate was identified as one of 
the significant compounds contributing to Chambourcin aroma which was impacted by 
both irrigation and rootstocks. Generally, this compound was not identified and quanti-
fied as an important compound in irrigation and rootstock studies. Thus, our metabolom-
ics-based approach was able to identify a compound that was known to be a fermentation 
compound but not usually studied as an important grape precursor-derived compound 
of significance in studies. Weingart, Kluger, Forneck, Krska and Schuhmacher [51] also 
identified 19 metabolites that were not known in grapes leaves using an approach that 
combined both untargeted and targeted approaches.  

Some of the compounds that were known to be important to wine aroma and mostly 
included in targeted wine studies were also found using this metabolomics-based ap-
proach, for example, β-Damascenone. β-Damascenone is an important wine volatile, a 
C13-norisoprenoid formed from the degradation of carotenoids and is known to increase 
with shading. This volatile was found higher in own-rooted vines (mean of 9.49 ug/L) 
than grafted vines (mean of 8.59 ug/L) in both years (Supplemental table 8, Figure 7A, 7B). 
The decrease in vigor using low to medium vigor rootstocks (1103P, 3309C, and SO4) 
might have contributed to the lower concentration of this compound in vines grafted with 
rootstocks than high vigor own-rooted Chambourcin (Figure 7). Studies have also found 
an increase in β-Damascenone with the water stress which is consistent with the results 
of higher β-Damascenone concentration in wines from vines treated with RDI and None. 
The presence of this compound in all wines above the threshold (4-5 ug/L in wine matrix) 
demonstrated that this compound is a key aroma component in Chambourcin wines. Alt-
hough this compound has honey, rose, baked apple aroma, it has been known to impact 
the wine aroma by interacting with other aroma components. Thus, this metabolomics-
based approach was useful to identify compounds that are significant for wine including 
those that are known as well as unknown compounds. 

Using a metabolomics-based approach followed by quantitation, we were able to 
identify subtle differences between rootstocks and irrigation in a hybrid cultivar Cham-
bourcin grafted to three different rootstocks and own-rooted. This approach helped us to 
narrow down 800 features to 94 unique compounds using multivariate analysis. We con-
firmed and quantified 24 compounds in 2017 and 2018. In 2017, 12 compounds showed 
significant rootstock and irrigation interaction effect, whereas only one compound has a 
significant interaction effect between rootstock and irrigation in 2018. Rootstocks caused 
either increase or decrease of volatile compounds in wines in both years. In irrigation, RDI 
resulted in a higher concentration of compounds, however, yearly variation exists. Un-
derstanding the impact of rootstocks and irrigation on wine volatiles will prove useful in 
developing viticulture practices to manipulate grape aroma to produce wine with desired 
aroma quality. This metabolomics-based approach not only helps to identify and quantify 
compounds that are known to be important in wine but also those that are lesser-known 
but significant. 
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 Figure 6: Boxplots of (A) β-Linalool (Linalool) and (B) Ethyl hexanoate concentrations differ-

ences in rootstocks and own-rooted Chambourcin. Rootstocks increased concentrations of Lin-
alool and Ethyl nonanoate in wines 2018. Concentrations were measured in ppb (ug/L). 
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Figure 7: A) Boxplots of β-Damascenone concentrations differences in rootstocks and own-rooted Cham-
bourcin in 2017 and B) in 2018. C)Boxplots of 1,1,6-trimethyl-1,2-dihydronapthalene (TDN) concentrations 
differences in rootstocks and own-rooted Chambourcin in 2017 D) in 2018. Both β-Damascenone TDN con-
centrations were found in higher in own-rooted Chambourcin in wines in both 2017 and 2018. Concentrations 
were measured in ppb (µg/L). 
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Table 1: Mean concentrations of wine volatiles in 2017 and 2018 between rootstocks and irrigation observed in wine volatiles in 2017 and 2018. 1 
The concentration was measured in ug/L. The concentration was measured in ug/L. Different letters within a row indicate significant differences 2 
for Duncan's Multiple Range test at p<0.05 among the rootstock irrigation interaction effect. 3 

  2017 

Compounds 
Full Full Full Full RDI RDI RDI RDI None None None None 

p-value 

1103P 3309C SO4 Own 1103P 3309C SO4 Own 1103P 3309C SO4 Own 

Isoamyl acetate 407.1 b1 1080.8 a 391.2 b 381.8 b 559.5 b 553.2 b 431.5 b 244.9 b 449.2 b 573.5 b 483.4 b 386.0 b 0.0202 

Ethyl 
heptanoate 

397.7 c 295.1 cd 422.7 c 
589.5 

ab 
203.1 d 443.0 bc 367.9 c 640.7 a 363.8 c 352.7 c 366.3 c 583.2 ab 0.030 

Ethyl octanoate 38.3 c 26.7 cd 44.7 bc 67.1 a 15.6 d 44.3 bc 38.0 c 76.6 a 37.9 c 35.1 cd 37.3 c 61.1 ab 0.040 
1-octanol 15.8 cd 15.7 cd 14.5 cd 14.3 cd 19.4 a 15.9 cd 16.3 bcd 13.6 d 14.9 cd 16.7 bc 18.7 ab 14.0 cd 0.000 
1-Nonanol 12.3 ab 13.2 ab 12.6 ab 12.3 ab 14.5 a 12.3 ab 14.7 a 11.0 b 12.7 ab 15.2 a 12.9 ab 12.5 ab 0.100 
Ethyl 
hydrocinnamat
e 

3.0 bc 2.5 bcde 1.9 cdef 1.6 def 4.7 a  2.6 bcde 2.7 bcd 1.4 f 2.7 bcd 
2.2 

bcdef 
3.2 b 1.5 ef 0.000 

1-Dodecanol 
0.4 

abcd 
0.3 bcd 0.4 abc 0.5 ab 0.3 d 0.4 abcd 0.3 bcd 0.4 abc 0.5 a 0.3 d 

0.4 
abcd 

0.5 ab 0.030 

Ethyl-
tetradecenoate  

42.6 bc 46.6 bc 46.6 bc 52.2 bc 56.8 ab 69.3 a 48.3 bc 36.9 c 55.2 ab 44.7 bc 55.9 ab 40.8 bc 0.000 

Ethyl 
hexadecanoate  

192.4 
bc 

168.6 bc 186.5 bc 
234.1 
abc 

249.0 ab 317.9 a 222.5 bc 153.1 bc 249.5 ab 145.2 c 
238.8 
abc 

185.2 bc 0.000 

Isoamyl 
hexanoate 

1.6 bc 1.5 bc 1.4 cd 1.3 cd 2.3 a 1.8 b 1.6 bc 1.0 d 1.5 bc 1.9 b 1.8 b 1.24cd 0.000 

2-phenylethyl 
acetate 

1.6 bc 35.2 bcd 28.6 cde 
28.2 
cde 

60.4 a 41.8 bc 39.8 bcd 15.7 e 35.2 bcd 46.70 b 
39.1 
bcd 

24.9 de 0.000 
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  2018 
Linalool 15.6 a 11.5 bcd 9.7 cd 8.4 de 16.1 a 10.6 bcd 11.4 bcd 5.6 e 11.5 bcd 12.1 bc 13.4 ab 6.1 e 0.005 
1Values represent g/L concentration generated by comparing the peak area, relative to the internal standard (2-Octanol) and comparing to 
calibration curve generated with an authentic standard. 

  

2Analysis of variance was used to compare data with Rootstocks, Irrigation and Rootstock x Irrigation as factors  

 4 
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3. Materials and Methods 
3.1 Study design and sampling: 
The samples were collected from an experimental vineyard at The University of Mis-

souri Southwest Center, Mount Vernon, Missouri in 2017 and 2018. The experimental 
vineyard consisted of Chambourcin scion grafted onto three different commercial root-
stocks: 1103P, 3309C, S04 as well as non-grafted, own-rooted Chambourcin (‘3309C’- V. 
riparia x V. rupestris; ‘1103P’-V. berlandieri x V. rupestris; ‘SO4’- V. berlandieri x V. riparia). In 
addition to the four different root systems, three irrigation regimes were implemented in 
a full factorial design with irrigation treatments including Full irrigation, regulated deficit 
irrigation (RDI), and No irrigation (full compensation of evapotranspiration losses (ET), 
50% compensation of ET, and non-irrigated respectively). Among the 9 rows used in the 
study, each row had a different randomly assigned irrigation treatment and consists of 4, 
4-vine rootstock blocks randomly ordered with two guard vines at either end of a study 
row.  For this study, only the middle two vines (vine 2 and 3) were sampled from each 
block. Irrigation treatments were initiated when water stress was observed, usually sev-
eral weeks before veraison, as the site has ample spring precipitation. The fruit was har-
vested in 2017 and 2018 from the 71 plants (9 rows*4 blocks *2 vines) individually into 
separate bins. Vine 2 in row 10 reverted to its SO4 rootstock, so this rootstock vine was 
not included in the analysis. More information about the vineyard design can be found at 
[58, 59]. 

3.2 Winemaking: 
The wine was made on a per vine basis. Grapes were harvested in relatively similar 

time post veraison and with similar brix rate in both years (average of 22.79 and 20.6 in 
2017 and 2018 respectively with standard deviation of 0.92 and 0.63).  Grapes from all 
vines were harvested on the same day irrespective of the maturity stage of vines. Fruit 
from each vine was separately harvested and transported to the winery at the University 
of Missouri. The grapes were stored in a cold room at 4˚C overnight and processed the 
day following harvest. The grapes were crushed and destemmed using Enoitalia 
destemmmer-crusher (Cerreto Guidi, Italy). Sulfur dioxide (50mg/L total) was added to 
each fermenter immediately after the crush, with inoculation occurring approximately 12 
hours later. The fermentations were carried out in 1-gallon fermentation vessels equipped 
with airlocks. Must was inoculated with GRE yeast (Lallemand, Petaluma, CA) at the rate 
of 1g/L on day 2 and rehydrated with Go-Ferm yeast nutrient (Lallemand) according to 
the manufacturer’s rehydration protocol. Go-Ferm was added to confirm healthy yeast 
hydration and no other additions were made in the winemaking process. The ferments 
were punched down twice a day for 10 days, at which point they were pressed based on 
the clinitest. Malolactic fermentation was not initiated. The wines were racked approxi-
mately 21 days after pressing. To decrease the headspace, marbles were added to contain-
ers as needed as well as any headspace purged with nitrogen gas. The wines were filtered 
and bottled in 355ml amber bottles. Following bottling, all wines were stored at 4 °C until 
analysis. Wines from 2017 were analyzed two years after bottling, whereas in 2018, wines 
were analyzed one year after bottling.  

3.3 Reagents and Chemicals: 
All aroma standards other than 1,1,6-trimethyl-1,2-dihydronapthalene (TDN) were 

purchased from Sigma-Aldrich (St. Louis, MO, USA) at >98.8%. TDN was synthesized and 
donated from Dr. Gavin Sacks lab at Cornell University [60]. A C7-C30 hydrocarbon mix-
ture, used for the determination of Kovat’s retention indices, was obtained from Sigma-
Aldrich. Sodium chloride was purchased from Fisher Chemicals (Fair Lawn, NJ, USA). 
Ultrapure water (Type 1 water) was prepared using the ELGA Lab Water PURELAB Clas-
sic (High Wycombe, UK).  L-Tartaric acid (99%) was obtained from Sigma-Aldrich.  
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3.4 Extraction of wine volatiles: 
In a 15 ml amber glass vial, 5 ml wines were spiked with 50 µl of the internal standard 

solution to yield a final internal concentration of 0.5 mg/L (50 ppb) 2-Octanol, 1 mg/L (100 
ppb) of 4-methyl-2-pentanol and 0.5 mg/ L (50 ppb) 3-Octanonone. While 2-Octanol was 
used to standardize response for initial metabolomic analysis, the other two internal 
standards were used for quality control. To the sample vials, 2g of NaCl was added to 
inactivate the enzymes and improve headspace partitioning [37]. The glass vials were 
sealed and then loaded into the GC-MS/MS where the samples were processed for volatile 
aroma compounds using the HS-SPME-GC-MS/MS method outlined below. All 71 sam-
ples were run in duplicate in randomized order in two sequential order and internal 
standards were added for both metabolomic and quanititative analyses to ensure all con-
ditions remain comparable throughout the experiments. 

3.5 HS-SPME-GC-MS/MS: 
In 2017 and 2018 semi-quantitative analyses were conducted using the triple quad-

rupole in a scan or using MRM mode for some compounds as needed. A 65 µm 
PDMS/DVB 1-cm SPME fiber, 23 gauge, coated with Polydimethylsiloxane-divinylben-
zene-carboxen (PDMS/DVB 65 µm; Supelco) was used for sampling and extraction [61]. 
Fibers were conditioned before use according to the manufacturer’s recommendations. 
Wine samples in 15 ml sample vials were pre-incubated for 15 minutes at 45˚C. The fiber 
was exposed for 45 min at 45˚C in the headspace for volatile extraction. Samples were 
agitated at 500 rpm during extraction.  

The HS-SPME GC-MS/MS system consisted of a MicroCal autosampler (MicroCal, 
LLC) mounted on an Agilent 7890A gas chromatograph (Santa Clara, CA, USA) coupled 
with an Agilent 7000 Triple Quadrupole detector. The 65 µm PDMS/DVB SPME fiber was 
desorbed in the inlet at 250˚C for 2 min in splitless mode (inlet glass liner/SPME direct, 
0.75, I.D., Supelco), after which the split flow was turned on (50ml/min) for the remainder 
of the GC-MS run; the SPME fiber was conditioned in the inlet for 14.7 min before it was 
inserted into the next sample. No carry-over was observed between samples. 71 wine sam-
ples, in duplicate, were analyzed in random order in two sequential order with the fea-
tures averaged. To prevent carry over of samples, a blank was run after every 4 or 5 sam-
ples. A DB-WaxETR column (30m x 0.25 mm ID., 0.25 µm film thickness; Agilent Santa 
Clara, CA, USA) and helium carrier gas (flow rate: 1.2 mL/min) was used for all analyses. 
The GC oven temperature program was as follows: the initial temperature was 40˚C for 
1.0 min then was increased to 200˚C at 5˚C/min followed by a second increase at 12˚C/min 
to the final temperature of 240˚C, which was held for 10 min [61]. For GC-MS/MS, the 
temperature of the transfer line was 240˚C, and nitrogen (1.5ml/min) was used as the col-
lision gas. The mass spectrometer was operated in electron ionization mode at 70eV with 
multiple reaction monitoring (MRM) for quantification, with the monitored transitions (β-
Damascenone 190m/z-121 m/z; p-Cymene 134 m/z-119m/z; Terpinolene 136 m/z-121 m/z; 
β-Linalool 136m/z-93 m/z; TDN 157 m/z-142 m/z; Methyl Salicylate 152 m/z-120 m/z; α-
Terpineol 136 m/z-121 m/z; Caryophyllene 201 m/z-189 m/z; β-Ionone 192 m/z-177 m/z; 
Ethyl dihydrocinnamate 178 m/z-104 m/z) . Data acquisition and qualitative analyses were 
performed using the MassHunter Workstation software version B.07.00 (Agilent Technol-
ogies). 

3.6 Data processing using untargeted metabolomics analysis: 
Data collected by scan mode were processed using XCMS Online [35, 62], available 

at https://xcmsonline.scripps.edu/. The raw chromatographic data files (.D format) ac-
quired by Masslynx from GC-MS were converted to .mzML data using the msconvert tool 
from Proteowizard [63]. The data files (.mzML files) were uploaded to XCMS online and 
each year’s data was processed as a single job, for peak detection, retention time correc-
tion, chromatogram alignment, metabolite feature annotation, statistical analysis, and pu-
tative identification using the default parameters (feature detection: centWave method, 
min. and max. peak width=5 and 20, S/N thresholds=6, mzdiff=0.01, integration method=1, 
prefilter peaks=3, prefilter intensity=100, Noise filter=0, Retention time correction: 
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Obiwarp method, profStep=1; Alignment: mzwid=0.015, minfrac=0.5, bw=5, max=100, 
minsamp=1) [35, 62]. Results were downloaded from the XCMS online on June 11-12, 2019. 
The extracted features (intensity of a given m/z at a certain time) were used for further 
analysis in defining treatment differences. The features that are significant for rootstock 
or irrigation using ANOVA (FDR adjusted pvalue <0.05) [64] were filtered and used for fur-
ther analysis. Principal component analysis (PCA) applied after unit variance (UV) was 
evaluated for sample discrimination. Eliipses were used to represent 95% confidence in-
terval.  

3.7 Identification and confirmation of the compounds: 
After identification of significant features using ANOVA and PCA loadings, the sig-

nificant features were grouped based on their retention time. The compounds represented 
by the features were tentatively identified using the NIST MS Search v2.2, NIST 14 Mass 
Spectral Library database (Scientific Instrument Services, Ringoes, NJ, USA) by matching 
the mass spectral data with that of the compound. Only the compounds that has higher 
match value in the NIST database were only considered. Additionally. Linear retention 
indices (RI) were calculated using Kovats’ equation from a sequence of linear hydrocar-
bons from C7 to C30 to verify the NIST match with that of literature. Thus, two-step iden-
tification was made for the volatile compounds as possible matches were first identified 
by comparison of the mass spectral data within the NIST library and then verified as a 
valid prospect based on RI data.  

The confirmation and quantitation of volatile compounds were achieved using cali-
bration curves for each standard at five different concentration levels in cases where 
standards are available. For compounds whose standards were not available, semi-quan-
titative analysis was done by assuming a response factor equal to one to 2-Octanol IS 
equivalents. Agilent MassHunter Quantitative Analysis (for QQQ) B.07.01 (Agilent Tech-
nologies) was used. Each standard was prepared in model wine solution (8 g/L of tartaric 
acid, dissolved in 13% ethanol solution (v/v), at pH 3.2, adjusted with NaOH). Due to a 
large number of features and potential compounds (Supplemental table S1, S2 and S3), a 
further level of filtering was needed to keep authentic standard costs to a reasonable level. 
Odor activity value was chosen as a way to ensure priority was given to compounds likely 
to impact wine quality rather than just metabolic shifts of unknown importance. Odor 
thresholds of compounds found in the literature were used to calculate their odor activity 
values which show the relative contribution of each volatile compound to the final aroma 
of the wine. 
 
Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: 
List of the metabolic features (M/z, RI) identified from XCMS online that are significantly different 
between rootstocks in wines 2017, Table S2: List of the metabolic features identified from XCMS 
online that are significantly different due to irrigation treatments in wines 2017, Table S3: List of the 
metabolic features that are significantly different between rootstocks in 2018, Table S4: List of the 
metabolic features that are significantly different due to irrigation treatments in 2018, Table S5: Com-
pounds identified in wines 2017 and 2018 that are significant because of irrigation and rootstock 
treatments, Table S6: Concentrations of Wine volatiles quantified (µg/L(ppb)) in 2017 and 2018 us-
ing GC-MS/MS. The p-values for significance for rootstocks and irrigations are also shown. 
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