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Abstract: Table detection is a preliminary step in extracting reliable information from tables in1

scanned document images. We present CasTabDetectoRS, a novel end-to-end trainable table detec-2

tion framework that operates on Cascade Mask R-CNN, including Recursive Feature Pyramid3

network and Switchable Atrous Convolution in the existing backbone architecture. By utilizing a4

comparatively lightweight backbone of ResNet-50, this paper demonstrates that superior results5

are attainable without relying on pre and post-processing methods, heavier backbone networks6

(ResNet-101, ResNeXt-152), and memory-intensive deformable convolutions. We evaluate the pro-7

posed approach on five different publicly available table detection datasets. Our CasTabDetectoRS8

outperforms the previous state-of-the-art results on four datasets (ICDAR-19, TableBank, UNLV,9

and Marmot) and accomplishes comparable results on ICDAR-17 POD. Upon comparing with10

previous state-of-the-art results, we obtain a significant relative error reduction of 56.36%, 20%,11

4.5%, and 3.5% on the datasets of ICDAR-19, TableBank, UNLV, and Marmot, respectively. Fur-12

thermore, this paper sets a new benchmark by performing exhaustive cross-datasets evaluations13

to exhibit the generalization capabilities of the proposed method.14

Keywords: table detection; table recognition; cascade Mask R-CNN; atrous convolution; recursive15

feature pyramid networks; document image analysis; deep neural networks; computer vision,16

object detection.17

1. Introduction18

The process of digitizing documents has received significant attention in various19

domains such as industrial, academic, and commercial sectors. The digitization of doc-20

uments facilitates the process of extracting information without manual intervention.21

Apart from the text, documents contain graphical page objects such as tables, figures,22

and formulas [1,2]. Albeit modern Optical Character Recognition (OCR) systems [3–5]23

can extract the information from scanned documents, they fail to interpret information24

from graphical page objects [6–9]. Figure 1 exhibits the problem of extracting tabular25

information from a document by applying open-source Tesseract OCR [10]. It is evident26

that even the state-of-the-art OCR system fail to parse information from tables in docu-27

ment images. Therefore, for complete table analysis, it is essential to develop accurate28

table detection systems for document images.29

The problem of accurate table detection in document images is still an open problem30

in the research community [8,11–14]. The high amount of intra-class variance (arbitrary31
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layouts of tables, varying presence of ruling lines) and low amount of inter-class variance32

(figures, charts, and algorithms equipped with horizontal and vertical lines look alike33

tables) makes the task of classifying and localizing tables in document images even more34

challenging. Owing to these involved intricacies in table detection, custom heuristics35

based methods lack in producing robust solutions [15,16].36

Figure 1. Illustrating the need of applying table detection before extracting information in doc-
ument images. We apply open source Tesseract-OCR [10] on a document image containing two
tables. Besides the textual content, the OCR system fails miserably in interpreting information
from tables.

Prior works have tackled the involved challenges of table detection through lever-37

aging meta-data or utilizing morphological information from tables. However, these38

methods are vulnerable in case of scanned document images [17,18]. Later, the utilization39

of deep learning-based approaches to attempt the task of table detection in document40

images have shown a remarkable improvement in the past few years [8]. Intuitively, the41

task of table detection has been formulated as an object detection problem [7,19–21], in42

which, a table can be a targeted object present in a document image instead of a natural43

scene image. Consequently, the rapid progress in object detection algorithms have led44

to the extraordinary improvement in state-of-the-art table detection systems [11–13,20].45

However, the prior approaches struggle in predicting precise localization of tabular46

boundaries in distinctive datasets. Moreover, they either rely on external pre/post-47

processing methods to further refine their predictions [11,13] or incorporate memory48

intensive deformable convolutions [12,20]. Furthermore, prior state-of-the-art methods49

relied on heavy and high resolution backbones such as ResNext-101 [22] and HRNet [23]50

which require expensive process of training.51

To tackle the above mentioned issues present in existing approaches, we present52

CasTabDetectoRS, an end-to-end trainable novel object detection pipeline by incorporat-53

ing the idea of Recursive Feature Pyramids (RFP) and Switchable Atrous Convolutions54

(SAC) [24] into Cascade Mask R-CNN [25] for detection of tables in document images.55

Furthermore, this paper empirically establishes that generic and robust table detection56

systems can be built without depending on pre/post-processing methods and heavy57

backbone networks.58

To summarize, the main contribution of this work are explained below:59

• We present CasTabDetectoRS, a novel deep learning-based table detection approach60

that operates on Cascade Mask R-CNN equipped with recursive feature pyramid61

and switchable atrous convolution.62

• We experimentally deny the dependency of custom heuristics or heavier back-63

bone networks to achieve superior results on table detection in scanned document64

images.65
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• We accomplish state-of-the-art results on four publicly available table detection66

datasets of ICDAR-19, TableBank, Marmot, and UNLV (See Table 2, 3, 4, and 5).67

• We demonstrate the generalization capabilities of the proposed CasTabDetectoRS68

by performing the exhaustive cross-datasets evaluation.69

The remaining paper is structured as follows. Section 2 categorizes the prior liter-70

ature into rule-based, learning-based, and object detection-based methods. Section 371

describes the proposed table detection pipeline by addressing all the essential modules72

such as RFP (Section 3.1), SAC (Section 3.2), and Cascade Mask R-CNN (Section 3.3).73

Section 4 presents the comprehensive overview of employed datasets, experimental74

details, evaluation criteria, along with quantitative and qualitative analysis that follows75

with a comparison with previous state-of-the-art results and cross datasets evaluation.76

Section 5 concludes the paper and outlines possible future directions.77

2. Related work78

The problem of table detection in documents has been investigated over the past79

few decades [16,26]. Earlier, researchers employed rule-based systems to solve table de-80

tection [16,26–29]. Afterwards, researchers exploited statistical learning mainly machine81

learning-based approaches which are eventually replaced with deep learning-based82

methods [7,8,11,12,19,20,30–34].83

2.1. Rule-Based Methods84

To the best of our knowledge, Itonori et al. [26] addressed the problem of table de-85

tection in document images by employing a rule-based method. The proposed approach86

leveraged the arrangements of text-blocks and position of ruling lines to detect tables87

in documents. Chandran and Kasturi [27] proposed another method that operates on88

ruling lines to resolve table detection. Similarly, Pyreddy and Croft [35] published a89

heuristics-based table detection method that first identify structural elements from a90

document and then filters the table.91

Researchers have defined tabular layouts and grammars to detect tables in docu-92

ments [29,36]. The correlation of white spaces and vertical connected component analysis93

is employed to predict tables [37]. Another method that transforms tables present in94

HTML documents into a logical structure is proposed by Pivk et al.[36]. Shigarov et95

al. [18] capitalized the meta-data from PDF files and treated each word as a block of96

text. The proposed method restructured the tabular boundaries by leveraging bounding97

boxes of each word.98

We direct our readers to [15,16,38–40] for the thorough understanding of these99

rule-based methods. Although the prior rule-based systems detect tables in document100

having limited patterns, they rely on manual intervention to look for optimal rules.101

Furthermore, they are vulnerable in producing generic solutions.102

2.2. Learning-Based Methods103

Similar to the field of computer vision, the domain of table analysis have expe-104

rienced a notable progress after incorporating learning-based methods. Initially, re-105

searchers investigate machine learning-based methods to resolve table detection in106

document images. Unsupervised learning was implemented by Kieninger and Den-107

gel [41] to improve table detection in documents. Later, Cesarini et al. [42] employed108

supervised learning-based system to find tables in documents. Their system reforms109

document into MXY tree representation. later, the method predicts the tables by search-110

ing for blocks that are surrounded with ruling lines. Kasar et al. [43] proposed a blend111

of SVM classifier and custom heuristics [43] to resolve table detection in documents.112

Researchers have also explored the capabilities of Hidden Markov Models (HMMs)113

to localize tabular areas in documents [44,45]. Even though machine learning-based114

approaches have alleviated the research for table detection in documents, they require115
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external meta-data to execute reliable predictions. Moreover, they fail to obtain generic116

solutions on document images.117

Analogous to the field of computer vision, the power of deep learning has made a118

remarkable impact in the field of table analysis in document images [2,8]. To the best119

of our knowledge, Hao et al. [46] introduced the idea of implementing Convolutional120

Neural Network (CNN) to identify spatial features from document images. The authors121

merged these features with the extracted meta-data to predict tables in PDF documents.122

Although researchers have employed Fully Convolutional Network (FCN) [47,48]123

and Graph Neural Network (GNN) [34,49] to perform table detection in document124

images, object detection-based approaches [7,8,11,12,19,20,30–34] have delivered state-125

of-the-art results.126

2.3. Table Detection as an Object Detection Problem127

There has been a direct relationship with the progress of object detection networks in128

computer vision and table detection in document images [8]. Gilani et al. [19] formulated129

the problem of table detection as an object detection problem by applying Faster R-130

CNN [50] to detect tables in document images. The presented work employed distance131

transform methods to modify pixels in raw document images fed to the Faster R-CNN.132

Later, another Schreiber et al. [7] presented another method that exploits Faster133

R-CNN [50] equipped with pre-trained base networks (ZFNet [51] and VGG-16 [52]) to134

detect tables in document images. Furthermore, Siddiqui et al. [20] published another135

Faster R-CNN-based method equipped with deformable convolutions [53] to address136

table detection having arbitrary layouts. Moreover, in [33], the authors employed Faster137

R-CNN with a coroner locating an approach to improve the predicted tabular boundaries138

in document images.139

Saha et al. [54] empirically established that Mask R-CNN [55] produces better results140

as compared to Faster R-CNN [50] in detecting tables, figures, and formulas. Zhong141

et al. [56] presented a similar conclusion by applying Mask R-CNN to localize tables.142

Moreover YOLO [57], SSD [58], and RetinaNet [59] have been employed to exhibit the143

benefits of closed domain fine-tuning on table detection in document images.144

Recently, researchers have incorporated novel object detection algorithms like Cas-145

cade Mask R-CNN [25] and Hybrid Task Cascade (HTC) [60] to alleviate the performance146

of table detection systems in document images [11–14]. Although these prior methods147

have progressed state-of-the-art results, there is significant room for improvement in148

localizing accurate tabular boundaries in scanned document images.149

3. Method150

The presented approach incorporates RFP and SAC into a Cascade Mask R-CNN to151

attempt table detection in scanned document images as exhibited in Figure 2. Section152

3.1 discusses the RFP module, whereas Section 3.2 talks about SAC module. Section 3.3153

describes the employed Cascade Mask R-CNN along with complete description of the154

proposed pipeline.155

3.1. Recursive Feature Pyramids156

Instead of the traditional Feature Pyramid Networks (FPN) [61] in our table de-157

tection framework, we incorporate Recursive Feature Pyramids (RFP) [24] to improve158

the processing of feature maps. To understand the conventional FPN, let Nj denote the159

j-th stage of a bottom-up backbone network and Fj represent the j-th top-down FPN160

function. The backbone network N having FPN produces a set of feature maps, where161

total feature maps are equal to the number of stages. For instance, a backbone network162

with three stages is demonstrated in Figure 3. Therefore, with a number of stages S = 3,163

the output feature f j is given by:164

f j = Fj( f j+1, ij), ij = Nj(ij−1) (1)
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Figure 2. Presented table detection framework consisting of Cascade Mask R-CNN, incorporating RFP and SAC in backbone network
(ResNet-50). The modules RFP and SAC are illustrated in Figure 3 and 4, respectively.

where j iterates over 1, ..., S, i0 represents the input image and fS+1 is set to 0.
However, in the case of RFP, feedback connections are added to the conventional FPN as
illustrated in Figure 3 with solid black arrows. If we include feature transformations Tj
befoe joining the feedback connections from FPN to the bottom-up backbone, then the
output feature f j of RFP is explained in [24] as:

f j = Fj( f j+1, ij), ij = Nj(ij−1, Tj( f j)) (2)

where j enumerates over S, the transformation of FPN to RFP makes it a recursive
function. If we unfold the RFP to a sequence of T, mathematically, it is given by:

f t
j = Ft

j ( f t
j+1, it

j), it
j = Nt

j (i
t
j−1, Tt

j ( f t
j )) (3)

where t enumerates over U and U is the number of unfolded steps. The superscript165

t represents the function and the features at unfolded step t. We empirically set U = 2166

in our experiments. For a comprehensive explanation of the RFP module, please refer167

to [24].168

Figure 3. Illustrating design of Recursive Feature Pyramid module. The Recursive Feature Pyramid
includes feedback connections that are highlighted with solid lines. The top-down FPN layers
send the feedback to the bottom-up backbone layers by inspecting the image twice.

3.2. Switchable Atrous Convolution169

We replace the conventional convolutions present in backbone network ResNet [62]170

and FPN with SAC. The artous convolution also referred to as dilated convolution [63]171

enables to increase size of effective receptive field by introducing an atrous rate. For172

an atrous rate of l in atrous convolution, it adds l − 1 zeros between the values of173
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consecutive filter. Due to which the kernal with a size of k× k filter, enlarges to a size174

of k + (k− 1)(l − 1) without causing any change in the number of network parameters.175

Figure 4 depicts an example of a 3 × 3 artous convolution with the artous rate of 1176

(displayed in red), whereas an artous rate of 2 is demonstrated in green color.177

Switch On

Switch Off

Lock

Figure 4. Illustrating Switchable Atrous Convolution. The red symbol
⊗

depicts artous convolu-
tions with an artous rate set to 1, whereas the green symbol

⊕
denotes an artous rate of 2 in a 3 ×

3 convolutional layer.

To transform a convolutional layer to SAC, we employ the basic artous convolu-
tional operation Con that takes input i, weights w, and an artous rate l and outputs y.
Mathematically, it is given by:

y = Con(i, w, l) (4)

In case of SAC explained in [24], the above convolutional layer converts into:

Con(i, w, 1) SAC−−→ S(i) . Con(i, w, l) + (1− S(i)) . Con(i, w + ∆w, l) (5)

where S(.) defines the switch function which is implemented is a combination of an178

average pooling and convolution layer with kernel of 5× 5 and 1× 1, respectively. The179

symbol ∆w is trainable weight and l is a hyper-parameter. Owing to switch function,180

our backbone network adapts to arbitrary scales of tabular images, defying the need181

for deformable convolutions [53]. We empirically set the artous rate, l to 3 in our182

experiments. Moreover, we implement the idea of locking mechanism [24] by setting183

the weights to w + ∆w in order to exploit the backbone network pre-train on MS-COCO184

dataset [64]. Initially, ∆w = 0 and w is set according to the pre-trained weights. We refer185

readers to [24] for the detailed explanation on SAC.186

3.3. Cascade Mask R-CNN187

To investigate the effectiveness of Recursive Feature Pyramid (RFP) and Switchable188

Atrous Convolution (SAC) modules on the task of table detection in scanned document189

images, we fuse these components into a cascade Mask R-CNN. The cascade Mask190

R-CNN is a direct combination of Mask R-CNN [55] and a recently proposed Cascade191

R-CNN [25]. The architecture of our utilized cascade Mask R-CNN closely follows the192

cascaded architecture introduced in [25] along with the addition of segmentation branch193

at the final network head [55]. The proposed CasTabDetectoRS consists of three detectors194

operating on rising IoU thresholds of 0.5, 0.6, and 0.7, respectively. The Region of Interest195

(ROI) pooling takes learned proposals from the Region proposal Network (RPN) and196

propagates the extracted ROI features to a series of network heads. The first network197
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head receives the ROI features and performs classification and regression. The output198

of the first detector is treated as an input for the subsequent detector. Therefore, the199

predictions from the deeper network are refined and less prone to produce false positives.200

Furthermore, each regressor is enhanced with the localization distribution estimated by201

the previous regressor instead of the actual initial distribution. This enables the network202

head operating on a higher IoU threshold to predict optimally localized bounding boxes.203

In the final stage of cascaded networks, along with regression and classification, the204

network performs segmentation to advance the final predictions further.205

As illustrated in Figure 2, the proposed CasTabDetectoRS employs ResNet-50 [62]206

as a backbone network. The lightweight ResNet-50 backbone equipped with SAC,207

generates feature maps from the input scanned document image. The extracted feature208

maps are passed to the RFP that optimally transforms the features by leveraging feedback209

connections. Subsequently, these optimized features are passed to the RPN and ROI210

Pooling to make the final tabular predictions.211

4. Experimental Results212

4.1. Datasets213

4.1.1. ICDAR-17 POD214

The competition about detecting graphical Page Object Detection (POD) [1] is215

organized at ICDAR in 2017, which yielded the ICDAR-2017 POD dataset. The dataset216

contains bounding box information for tables, formulas, and figures. From 2417 images217

present in the dataset, 1600 images are used to fine-tune our network, and 817 images218

are utilized as a test set. Since the previous methods [12,20,30] have reported results219

on varying IoU thresholds, we present our results with an IoU threshold value ranging220

from 0.5− 0.9 to draw a direct comparison with prior methods.221

4.1.2. ICDAR-19222

Another competition for Table Detection and Recognition (cTDaR) [65] is organized223

at ICDAR in 2019. For the task of table detection (TRACK A), two new datasets (historical224

and modern) are introduced in the competition. The historical dataset comprises hand-225

written accounting ledgers, train timetables, whereas the modern dataset consists of226

scientific papers, forms, and commercial documents. In order to have a direct comparison227

against prior state-of-the-art [11], we report results on the modern datasets with an IoU228

threshold ranging from 0.5-0.9.229

4.1.3. TableBank230

Currently, TableBank [66] is one of the enormous datasets publicly available for231

the task of table detection in document images. The dataset comprises 417K annotated232

document images that are obtained by crawling documents from the arXiv database. It233

is important to highlight that we take 1500 images from the splits of Word and Latex and234

3000 samples from Word+Latex split. This enables our results to have a straightforward235

comparison with earlier state-of-the-art results [11].236

4.1.4. UNLV237

UNLV [67] dataset comprises scanned document images collected from commercial238

documents, research papers, and magazines. The dataset has around 10K images.239

However, only 427 images contain tables. Since prior state-of-the-art methods [20] have240

only used tabular images, we follow the identical split for direct comparison.241

4.1.5. Marmot242

Earlier, Marmot [68] was one of the most widely exploited datasets in the table com-243

munity. This dataset is published by the Institute of Computer Science and Technology244

(PekingUniversity) by collecting samples from Chinese and English conference papers.245

The dataset consists of 2K images with an almost 1:1 ratio between positive to negative246
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samples. For direct comparison with previous work [20], we used the cleaned version of247

the dataset by [7] and did not incorporate any sample of the dataset in the training set.248

4.2. Implementation Details249

We implement CasTabDetectoRS in Pytorch by leveraging the MMdetection frame-250

work [69]. Our table detection method operates on ResNet-50 backbone network [62]251

pre-trained on ImageNet [70]. Furthermore, we transform all the 3× 3 conventional252

convolutions present in the bottom-up backbone network to SAC. We closely follow253

the experimental configurations of Cascade Mask R-CNN [25] in order to execute the254

training process. All input documents images are resized with a maximum size of 1200255

× 800 by preserving the actual aspect ratio. We train all the models for straight 14 epochs256

by initially setting the learning rate of 0.0025 with a learning rate decay of 0.1 after six257

epochs and ten epochs. We set the IoU threshold values to [0.5, 0.6, 0.7] for the respective258

three stages of R-CNN, respectively. We use a single anchor scale of 8, whereas the259

anchor ratios are set to [0.5, 1.0, 2.0]. We train all the models with a batch size of 1. We260

train all the models on NVIDIA GeForce RTX 1080 Ti GPU with 12 GB memory.261

4.3. Evaluation Protocol262

Analogous to the prior table detection method on scanned document images [7,263

8,11,12,19,20,30–33], we assess the performance of our CasTabDetectoRS on precision,264

recall, and F1-score. We have reported the IoU threshold values along with the achieved265

results for direct comparison with the existing approaches.266

4.3.1. Precision267

The precision [71] computes the ratio of true positive samples over the total pre-
dicted samples. Mathematically, it is calculated as:

Precision =
True Positives

True Positives + False Positives
(6)

4.3.2. Recall268

The recall [71] is defined as the ratio of true positives over all all correct samples
from the ground truth. It is calculated as:

Recall =
True Positives

True Positives + False Negatives
(7)

4.3.3. F1-Score269

The f1-score [71] is defined as the harmonic mean of precision and recall. Mathe-
matically, it is given by:

F1-Score =
2× Precision × Recall

Precision + Recall
(8)

4.3.4. Intersection Over Union270

Intersection over Union (IoU) [72] computes the intersecting region between the
predicted and the ground truth region. The formula for the calculation of IoU is:

IoU(A,B) =
Area of Overlap region
Area of Union region

=
|A ∩ B|
|A ∪ B| (9)

4.4. Result and Discussion271

To evaluate the performance of the proposed CasTabDetectoRS, we report the272

results on five different publicly available table detection datasets. This section presents273
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Figure 5. Performance evaluation of our CasTabDetectoRS in terms of f1-score over the varying
IoU thresholds ranging from 0.5 to 1.0 on the ICDAR-2017-POD table detection dataset.

a comprehensive quantitative and qualitative analysis of our presented approach on all274

the datasets.275

4.4.1. ICDAR-17 POD276

The ICDAR-17 POD challenge dataset consists of 817 images with 317 tables in277

the test set. For direct comparison with previous entries in the competition [1] and278

previous state-of-the-art results, we report the results on the IoU threshold value of 0.6279

and 0.8. Table 1 summarizes the results achieved by our model. On an IoU threshold280

value of 0.6, our CasTabDetectoRS achieves a precision of 0.941, recall of 0.972, and281

f1-score of 0.956. On increasing the IoU threshold from 0.6 to 0.8, the performance of282

our network only indicates a slight drop with a precision of 0.962, recall of 0.932, and283

f1-score of 0.947. Furthermore, Figure 5 illustrates the effect of various IoU thresholds on284

our table detection system. The qualitative performance of our proposed method on the285

ICDAR-17 POD dataset is highlighted in Figure 6. Analysis of incorrect results discloses286

that the network fails to localize precise tabular areas or produce false positives.287

Comparison with State-of-the-art Approaches288

By looking at Table 1, it is evident that our network achieves comparable results with289

the existing state-of-the-art approaches on the ICDAR-17 POD dataset. It is important to290

emphasize that methods introduced in [20] and [1] either rely on the heavy backbone291

with memory-intensive deformable convolutions [53] or are dependent on multiple292

pre and post-processing methods to achieve the results. On the contrary, our CasTab-293

DetectoRS operates on a lighter weight ResNet-50 backbone with switchable atrous294

convolutions. Furthermore, it is vital to mention that the system [54] that produced295

state-of-the-art results on this dataset learns to classify tables, figures, and equations.296

However, the proposed system only trains on the limited tabular information and has297

no idea about other similar graphical page objects like figures and equations. Therefore,298

having low inter-class variance between the different graphical page objects and tables299

in this dataset, our network tends to produce more false positives and fail to surpass300

state-of-the-art results.301
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Table 1. Performance comparison between the proposed CasTabDetectoRS and previous state-of-the-art results on table detection
dataset of ICDAR-17 POD.

IoU = 0.6 IoU = 0.8
Method Recall Precision F1-score Recall Precision F1-score

DeCNT [20] 0.971 0.965 0.968 0.952 0.946 0.949

NLPR-PAL [1] 0.953 0.968 0.960 0.958 0.943 0.951

VisInt [1] 0.918 0.924 0.921 0.823 0.829 0.826

GOD [54] - - 0.989 - - 0.971

CDeC-Net [12] 0.931 0.977 0.954 0.924 0.970 0.947

HybridTabNet [14] 0.997 0.882 0.936 0.994 0.879 0.933

CasTabDetectoRS (Ours) 0.941 0.972 0.956 0.932 0.962 0.947

Figure 6. CasTabDetectoRS results on the ICDAR-2017 POD table detection dataset. Green represents true positive, red denotes false
positive, and blue colour highlights false negative. In this figure, part (a) represents a couple of samples containing true positives. Part
(b) highlights true positive and false positives, and part (c) depicts a true positive and a false negative.

Table 2. Performance comparison between the proposed CasTabDetectoRS and previous state-of-the-art results on the
dataset of ICDAR 19 Track A (Modern).

Method IoU = 0.8 IoU = 0.9

Recall Precision F1-Score Recall Precision F1-Score

TableRadar [65] 0.940 0.950 0.945 0.890 0.900 0.895

NLPR-PAL [65] 0.930 0.930 0.930 0.860 0.860 0.860

Lenovo Ocean [65] 0.860 0.880 0.870 0.810 0.820 0.815

CascadeTabNet [11] - - 0.925 - - 0.901

CDeC-Net [12] 0.934 0.953 0.944 0.904 0.922 0.913

HybridTabNet [14] 0.933 0.920 0.928 0.905 0.895 0.902

CasTabDetectoRS (Ours) 0.988 0.964 0.976 0.951 0.928 0.939
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Figure 7. Performance evaluation of our CasTabDetectoRS in terms of f1-score over the varying
IoU thresholds ranging from 0.5 to 1.0 on the ICDAR-2019 Track A (Modern) dataset.

4.4.2. ICDAR-19302

In this paper, the ICDAR-19 represents the Modern Track A part of the table de-303

tection dataset introduced in the table detection competition at ICDAR 2019 [65]. In304

order to draw strict comparisons with participants of the competition and existing305

state-of-the-art results, we evaluate the performance of our proposed method on the306

higher IoU threshold of 0.8 and 0.9. Table 2 presents the quantitative analysis of our307

proposed method, whereas the performance in terms of f1-score of our table detection308

method on various IoU thresholds are illustrated in Figure 7. The qualitative analysis is309

demonstrated in Figure 8. After analyzing false positives yielded by our network, we310

realize that the ground truth of the ICDAR-19 dataset has unlabelled tables present in311

the modern document images. One instance of such a scenario is exhibited in Figure312

8(b).313

Comparison with State-of-the-art Approaches314

Along with presenting our achieved results on the ICDAR-19 dataset, Table 2 com-315

pares the performance of our CasTabDetectoRS with the prior state-of-the-art approaches.316

It is evident that our introduced cascade network equipped with RFP and SAC surpassed317

the previous state-of-the-art results with a significant margin. We accomplish a precision318

of 0.964, recall of 0.988, and an f1-score of 0.976 on an IoU threshold of 0.8. Upon increas-319

ing the IoU threshold to 0.9, the proposed table detection method achieves a precision of320

0.928, recall of 0.951, and f1-score of 0.939. The higher difference between the f1-score of321

our method and the previously achieved f1-score clearly exhibits the superiority of our322

CasTabDetectoRS.323

4.4.3. TableBank324

We evaluate the performance of the proposed method on all the three splits of Table-325

Bank dataset [66]. To establish a straightforward comparison with the recently achieved326

state-of-the-art results [11] on TableBank, we report the results on the IoU threshold of327

0.5. Furthermore, owing to the superior predictions of our proposed method, we present328

results on a higher IoU threshold of 0.9. Table 3 summarizes the performance of our329

CasTabDetectoRS on the splits of TableBank-Latex, TableBank-Word, and TableBank-330
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Figure 8. CasTabDetectoRS results on the table detection dataset of ICDAR-2019 Track A (Modern). Green represents true
positive, whereas red denotes false positive. In this figure, part (a) highlights a couple of samples containing true positives,
whereas part (b) represents a true positive and a false positive.

(a) TableBank-LaTeX. (b) TableBank-Word.

Figure 9. Performance evaluation of our CasTabDetectoRS in terms of f1-score over the varying IoU thresholds ranging
from 0.5 to 1.0 on TableBank-LaTeX and TableBank-Word datasets.
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Figure 10. Performance evaluation of our CasTabDetectoRS in terms of f1-score over the varying
IoU thresholds ranging from 0.5 to 1.0 on the TableBank-Both dataset.

Both. Along with the quantitative results, we demonstrate the performance of the pro-331

posed system in terms of f1-score by increasing the IoU thresholds from 0.5 to 1.0. Figure332

9 depicts the drop in performance on the split of TableBank-Latex and TableBank-Word,333

whereas, Figure 10 explains the f1-score on the split of TableBank-Both. Figure 11 depicts334

a couple of true positives and one instance each of false positive and a false negative.335

Comparison with State-of-the-art Approaches336

Table 3 provides the comparison between existing state-of-the-art table detection337

methods and our proposed approach. It is clear that our proposed CasTabDetectoRS has338

surpassed the previous baseline and state-of-the-art methods on all the three splits of339

the TableBank dataset. On the dataset split of TableBank-Latex, we achieve an f1-score340

of 0.984 and 0.935 with an IoU threshold of 0.5 and 0.9, respectively. Similarly, we341

accomplish f1-scores of 0.976 and 0.972 on the IoU threshold of 0.5 and 0.9, respectively,342

on the TableBank-Word dataset. Moreover, we attain f1-scores of 0.978 and 0.957 on IoU343

of 0.5 and 0.9, respectively on TableBank-(Word+LaTex) dataset.344

4.4.4. Marmot345

The Marmot dataset consists of 1967 document images comprising 1348 tables. Since346

prior state-of-the-art approaches [12,20] have employed the model trained on the ICDAR-347

17 dataset to evaluate the performance on the Marmot dataset, we have identically348

reported the results to have a direct comparison. Table 4 presents the quantitative analysis349

of our proposed method, whereas Figure 12 illustrates the effect of our CasTabDetectoRS350

on increasing the IoU threshold from 0.5 to 1.0. Figure 13 portrays the qualitative351

assessment of our table detection system on the Marmot dataset by illustrating samples352

of true positives, false positives, and a false negative.353
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Table 3. Performance comparison between the proposed CasTabDetectoRS and previous state-of-the-art results on various splits of
TableBank dataset. The double horizontal lines divide the different splits.

IoU = 0.5 IoU = 0.9
Method Dataset Recall Precision F1-score Recall Precision F1-score

CascadeTabNet [11] TableBank-LaTeX 0.972 0.959 0.966 - - -

Li et al. [66] TableBank-LaTeX 0.962 0.872 0.915 - - -

HybridTabNet [14] TableBank-LaTeX - - 0.980 - - 0.934

CasTabDetectoRS (Ours) TableBank-LaTeX 0.984 0.983 0.984 0.935 0.935 0.935

CascadeTabNet [11] TableBank-Word 0.955 0.943 0.949 - - -

Li et al. [66] TableBank-Word 0.803 0.965 0.877 - - -

HybridTabNet [14] TableBank-Word - - 0.970 - - 0.962

CasTabDetectoRS (Ours) TableBank-Word 0.985 0.967 0.976 0.981 0.963 0.972

CascadeTabNet [11] TableBank-Both 0.957 0.944 0.943 - - -

Li et al. [66] TableBank-Both 0.904 0.959 0.931 - - -

HybridTabNet [14] TableBank-Both - - 0.975 - - 0.949

CasTabDetectoRS (Ours) TableBank-Both 0.982 0.974 0.978 0.961 0.953 0.957

Figure 11. CasTabDetectoRS results on the TableBank dataset. Green represents true positive, red denotes false positive,
and blue colour highlights false negative. In this figure, part (a) represents a couple of samples containing true positives.
Part (b) illustrates false positives, and part (c) depicts true positives and false negatives.

Table 4. Performance comparison between the proposed CasTabDetectoRS and previous state-of-the-art results on the Marmot dataset.

IoU = 0.5 IoU = 0.9
Method Recall Precision F1-score Recall Precision F1-score

DeCNT [20] 0.946 0.849 0.895 - - -

CDeC-Net [12] 0.930 0.975 0.952 0.765 0.774 0.769

HybridTabNet [14] 0.961 0.951 0.956 0.903 0.900 0.901

CasTabDetectoRS (Ours) 0.965 0.952 0.958 0.901 0.906 0.904
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Figure 12. Performance evaluation of our CasTabDetectoRS in terms of f1-score over the varying
IoU thresholds ranging from 0.5 to 1.0 on the Marmot dataset.

Comparison with State-of-the-art Approaches354

Table 4 summarizes the performance comparison between the previous state-of-355

the-art results and the results achieved by our CasTabDetectoRS Marmot dataset. Our356

proposed method outperforms the previous results with an f1-score of 0.958 and 0904 on357

the IoU threshold values of 0.5 and 0.9, respectively.358

4.4.5. UNLV359

The UNLV dataset comprises 424 document images containing a total of 558 tables.360

We evaluate the performance of our presented method on the UNLV dataset to exhibit the361

completeness of our approach. Similarly, for direct comparison with prior works [12,19]362

on this dataset, we present our results on the IoU threshold of 0.5 and 0.6 as summarized363

in Table 5. Moreover, Figure 14 explains the deterioration in performance of the system364

on increasing the IoU threshold from 0.5 to 1.0. For the qualitative analysis on the UNLV365

dataset, examples of true positives, false positives and a false negative are illustrated in366

Figure 15.367

Comparison with State-of-the-art Approaches368

The performance comparison between the proposed method and previous attempts369

on the UNLV dataset is summarized in Table 5. With the obtained results, it is apparent370

that our proposed system has outsmarted earlier methods with f1-scores of 0.946 and371

0.933 on the IoU threshold values of 0.5 and 0.6, respectively.372

4.4.6. Cross-Datasets Evaluation373

Currently, the deep learning-based table detection methods are preferred over rule-374

based methods due to their better generalization capabilities over distinctive datasets. To375

investigate how well our proposed CasTabDetectoRS generalize over different datasets,376

we perform cross-dataset evaluation by incorporating four state-of-the-art table detection377

models inferred over five different datasets. We summarize all the results in Table 6.378

With the table detection model trained on the TableBank-Latex dataset, apart from379

ICDAR-19, we achieve impressive results on ICDAR-17, TableBank-Word, Marmot, and380

UNLV with an average f1-score of 0.865. After manual inspection, we observe that the381

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 September 2021                   doi:10.20944/preprints202109.0059.v1

https://doi.org/10.20944/preprints202109.0059.v1


Version September 2, 2021 submitted to J. Imaging 16 of 21

Figure 13. CasTabDetectoRS results on the Marmot dataset. Green represents true positive, red denotes false positive, and
blue colour highlights false negative. In this figure, part (a) exhibits a couple of samples containing true positives. Part (b)
illustrates false positives, and part (c) depicts true positives and false negatives.

Table 5. Performance comparison between the proposed CasTabDetectoRS and previous state-of-the-art results on the UNLV dataset.

IoU = 0.5 IoU = 0.6
Method Recall Precision F1-score Recall Precision F1-score

Gilani et al. [19] 0.907 0.823 0.863 - - -

CDeC-Net [12] 0.906 0.914 0.910 0.805 0.961 0.883

HybridTabNet [14] 0.926 0.962 0.944 0.914 0.949 0.932

CasTabDetectoRS (Ours) 0.928 0.964 0.946 0.914 0.952 0.933

system produces several false positives due to the varying nature of document images382

in ICDAR-19 and TableBank-LaTeX. The table detection model trained on the ICDAR-17383

dataset yields the average f1-score of 0.812 owing to the poor results achieved on the384

ICDAR-19 and UNLV datasets. The network trained on the ICDAR-19 dataset becomes385

the most generalized model accomplishing the average f1-score of 0.924. Although the386

size of the UNLV dataset is small (424 document images), the model trained on this387

dataset generates second-best results with an average f1-score of 0.897.388

Manual investigation of cross-datasets evaluation yields the misinterpretation of389

other graphical page objects [2] with tables. However, with the obtained results, it is390

evident that our proposed CasTabDetectoRS produces state-of-the-art results on a specific391

dataset and generalizes well over the other datasets. Such types of well-generalized table392

detection systems for scanned document images are required in several domains. [8].393

5. Conclusion and Future Work394

This paper presents CasTabDetectoRS, the novel table detection framework for395

scanned document images, which comprises Cascade Mask R-CNN with a Recursive396

Feature Pyramid (RFP) network with Switchable Atrous Convolutions (SAC). The pro-397

posed CasTabDetectoRS accomplishes state-of-the-art performances on the four different398

table detection datasets (ICDAR-19 [65], TableBank [66], UNLV [67], and Marmot [68])399

while achieving comparable results on the ICDAR-17-POD [1] dataset.400
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Table 6. Examining the generalization capabilities of the proposed CasTabDetectoRS through
cross datasets evaluation.

Training Dataset Testing Dataset Recall Precision F1-Score Average
F1-Score

TableBank-Latex

ICDAR-19 0.605 0.778 0.680

0.865
ICDAR-17 0.866 0.958 0.910

TableBank-Word 0.967 0.947 0.957

Marmot 0.893 0.963 0.927

UNLV 0.918 0.856 0.885

ICDAR-17

ICDAR-19 0.649 0.778 0.686

0.812TableBank-Word 0.983 0.943 0.963

Marmot 0.965 0.952 0.958

UNLV 0.607 0.685 0.644

ICDAR-19

ICDAR-17 0.894 0.917 0.906

0.924TableBank-Word 0.981 0.921 0.950

Marmot 0.925 0.956 0.940

UNLV 0.898 0.876 0.887

UNLV

ICDAR-17 0.867 0.879 0.881

0.897TableBank-Word 0.903 0.941 0.922

Marmot 0.874 0.945 0.908

ICDAR-19 0.839 0.918 0.877

Figure 14. Performance evaluation of our CasTabDetectoRS in terms of f1-score over the varying
IoU thresholds ranging from 0.5 to 1.0 on the UNLV dataset.

Upon direct comparison against previous state-of-the-art results on ICDAR-19401

Track A (Modern) dataset, we reduce the relative error by 56.36% and 29.89% in terms402
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Figure 15. CasTabDetectoRS results on the UNLV dataset. Green represents true positive, red denotes false positive, and
blue colour highlights false negative. In this figure, part (a) highlights a couple of samples containing true positives. Part (b)
represents a true positive and a false positive, whereas part (c) depicts true positives and false negatives.

of achieved f1-score on IoU thresholds of 0.8 and 0.9, respectively. On the dataset of403

TableBank-Latex and TableBank-Word, we decrease the relative error by 20% on each404

dataset splits. On TableBank-Both, we reduce the relative error by 12%. Similarly, on405

the Marmot dataset [68], we observe a 4.55% reduction, whereas the system achieves406

a relative error reduction of 3.5% on the UNLV dataset [67]. Furthermore, this paper407

empirically establishes that instead of incorporating heavy backbone networks [11,408

12] and memory exhaustive deformable convolutions [20], state-of-the-art results are409

achievable by employing a relatively lightweight backbone network (ResNet-50) with410

SAC. Moreover, this paper demonstrates the generalization capabilities of the proposed411

CasTabDetectoRS through extensive cross-datasets evaluations.412

In the future work, we plan to extend the proposed framework by tackling the even413

more challenging task of table structure recognition in scanned document images. We414

expect that our cross-datasets evaluation sets a benchmark that will be followed in future415

examinations of table detection methods. Furthermore, the backbone network and the416

region proposal network of the proposed pipeline can be enhanced by exploiting the417

attention mechanism [73,74].418
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