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Abstract: Obesity represents a major public health problem with a prevalence increasing at an 

alarming rate worldwide. Continuous intensive efforts to elucidate the complex pathophysiology 

and improve clinical management have led to a better understanding of biomolecules like gut hor-

mones, antagonists of orexigenic signals, stimulants of fat utilization, and/or inhibitors of fat ab-

sorption. In this article, we will review the pathophysiology and pharmacotherapy of obesity in-

cluding intersection points to the new generation of antidiabetic drugs. We provide insight into the 

effectiveness of currently approved anti-obesity drugs and other therapeutic avenues that can be 

explored. 
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1. Introduction 

The leading causes for death and disability in the western world are chronic condi-

tions like diabetes, cardiovascular disease, and cancer [1–5], which are closely linked to 

obesity. Body mass index (BMI) (weight in kg/height in m2), the most used formula to 

define overweight (BMI 25 to 29.9 kg/m2) and obesity (BMI ≥30 kg/m2), is simple to use in 

health screenings and epidemiological surveys. The relation between BMI and clinical 

outcomes has been extensively analyzed and there is near universal acceptance of ranges 

of BMI consistent with good health. 

Obesity dramatically increases the risk for type 2 diabetes and both conditions rep-

resent major public health issues worldwide according to the latest reports from World 

Health Organization (WHO report 2020 and 2021). Also, obesity is considered to be the 

second most common, and may soon become the most common preventable cause of can-

cer, overtaking cigarette smoking [6]. 

 The incidence of obesity has tripled in the last few decades, such that more than two 

thirds (70.2%) of the United States adult population is overweight or obese and almost 

half of adults (48.5%) live with prediabetes or diabetes [5–7]. The pandemic proportions 

of obesity are still rapidly rising, challenging our concept of normality [8,9]. 

Currently recommended therapies with evidence-based support are lifestyle inter-

vention, pharmacotherapy, and bariatric surgery [2]. While clinical practitioners occupy a 

crucial role in the front line of obesity- and its related comorbidities management, they 
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receive minimal training in obesity management [2,10] leaving them ill-equipped to ad-

dress the environmental and socioeconomic drivers of the obesity pandemic. 

Significant scientific efforts consisting in elucidation of the complex physiopathol-

ogy, as well as the clinical management of obesity and weight-related comorbidities such 

as type 2 diabetes (T2D), have materialized in the last few years in effective and safe treat-

ment options [2,3,5,7,11–18]. The unprecedented amount of data to analyze in order to 

identify mechanisms and new targets can, though, easily become overwhelming. The 

pathophysiologic mechanisms of these metabolic conditions, lying at the crossroad of dif-

ferent highly specialized medical fields such as genetics, cellular and molecular biology, 

endocrinology etc. can only now be unveiled by taking advantage of ‘omics’ technologies, 

which may finally lead to a precision medicine approach. 

Weight loss is the most important factor to reduce comorbidities and T2D in obesity; 

however, except for bariatric surgery, which can only be used in a minority of patients 

and can lead to significant complications, other therapy options have not been sufficiently 

effective [4,19]. The role of pharmacotherapy in the management of obesity has not been 

exploited in clinical practice, mainly because of the moderate weight loss effects and side 

effects of previous weight loss medications [20]. More recently developed anti-obesity 

therapies promise to overcome previous concerns about low effect size and safety con-

cerns [6,21–28]. 

In the present review we deliver an update focused on the pathophysiology and phar-

macotherapy of obesity, including currently approved drugs and other potential therapeu-

tic targets. 

2. Obesity pathomechanisms 

In a simplistic view weight gain – and ultimately obesity – results from a long-term 

positive energy balance, yet the pathogenesis of obesity has been proven to be more com-

plex than this [29]. There is an intricate interplay between genetic, environmental, and 

psychosocial factors which mediate food intake and energy expenditure [30]. While the 

environment and socioeconomic conditions influence the behavior and cannot be molec-

ularly tackled, the identification of genes and molecules that determine the susceptibility 

to obesity uncovers pathophysiological mechanisms, which can be molecularly ad-

dressed. 

Studies on twins and families have estimated the rate of BMI heritability to be fairly 

high reaching 40–70 % [31,32]. Large-scale genome-wide association studies have identi-

fied more than 300 loci bearing common variants in the general population, which show 

a significant correlation with obesity traits [30]. However, the effects of these loci on the 

obesity risk is fairly small and can explain less than 5% in the BMI variation [33,34]. 

Whether the missing heritability can be explained by epigenetic processes or interactions 

between genetic and environmental factors remains to be investigated by newly devel-

oped branches of research. 

Research into monogenic obesity, where rare variants exert very large effects, has 

underlined the importance of biomolecules in the pathogenesis of obesity. Mapping mu-

tations which cause extreme obesity in mice proved to be a successful strategy in the iden-

tification of monogenic disorders. Prominent outcomes of this approach include the iden-

tification of genes involved in body weight homeostasis, which act in the central nervous 

system: e.g. leptin (Lep) and its receptor (Lepr), the melanocortin 4 receptor (Mc4r) and 

pro-opiomelanocortin (Pomc) [35]. Pathogenic variants in the human orthologous genes 

lead to monogenic obesity [36]. Thus, these were the first milestones in understanding the 

mechanisms that govern hunger and satiety. Energy balance is controlled by complex in-

teractions between the central nervous system, adipose tissue, and a plethora of other or-

gans including the gut, liver, and pancreas (Fig. 1). 

Already in the 1940s it was apparent that hypothalamus plays an important role for 

energy metabolism regulation [37]. The hypothalamus integrates signals reflecting long-

term energy stores and short-term nutritional input, which result in control of food intake, 
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physical activity, and basal energy expenditure [38]. Short-term eating behavior can addi-

tionally be controlled by the hindbrain where the nucleus of the tractus solitarius (NTS) 

receives input from vagus nerve afferent, which is stimulated by secretin (SCT) and chol-

ecystokinin (CCK) [39] (Fig. 1). 

 

 
Fig. 1. Energy balance signals integration. In the blue quadrant there is a simplified 

representation of hypothalamic energy balance regulation mechanisms: primary neurons 

in the arcuate nucleus include appetite-inhibiting neurons (red) – cocaine- and ampheta-

mine-stimulated transcript peptide (CART) and proopiomelanocortin (POMC) which re-

lease peptides that stimulate the melanocortin receptors (MC3 and MC4). MC3/4R stimu-

lation increases energy expenditure and decreases appetite. This circuit is stimulated by 

adiposity and anorexigenic signals. Peripheral signals related to long-term energy stores 

are produced by adipose tissue (leptin, adiponectin) and the pancreas (insulin). Gut hor-

mones with incretin-, hunger-, and satiety-stimulating effects: glucagon-like peptide-1 

(GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and potentially oxynto-

modulin (OXM) improve the response of the endocrine pancreas to absorbed nutrients; 

GLP-1 and OXM also centrally reduce food intake; secretin (SCT) and cholecystokinin 

(CCK) released from the gut inhibit appetite by way of vagus nerves, which stimulate 

hindbrain structures. 
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Appetite-stimulating neurons in the arcuate nucleus (green) contain neuropeptide Y 

(NPY), which stimulates Y receptors (Y1 and Y5), and agouti-related peptide (AgRP), an 

antagonist of MC3/4 receptor activity. Brain peptides that stimulate appetite are NPY, 

AgRP, and endocannabinoids. Ghrelin is released by the stomach and has an orexigenic 

effect. 

 

Molecules acting on long-term energy balance 

The main players for regulating energy balance as result of long-term energy stores 

are leptin and insulin. 

 

Leptin 

Leptin is a 167 amino acid hormone secreted by white adipose tissue, which circulates 

at concentrations proportional to body fat mass. It promotes satiety and energy expendi-

ture by stimulating proopiomelanocortin (POMC) and inhibiting neuropeptide Y (NPY) / 

Agouti-related peptide (AgRP) neurons in the hypothalamus. A deficiency of leptin sig-

naling as a result of mutations of the leptin gene or its cognate receptor causes hyperpha-

gia and severe obesity in both humans and animals [40], which clearly demonstrates that 

normal body-weight requires intact leptin regulation. 

Although genetic defects affecting leptin signaling cause obesity, such individuals 

are fairly rare [41]. Usually, obese individuals display increased leptin levels proportional 

to their body fat content. This raised the possibility that obesity may be associated with a 

form of “leptin resistance”. This would imply the stimulating threshold of leptin is in-

creased and hence higher levels are needed to curb food intake and increase energy ex-

penditure. Yet, in diet-induced obesity leptin cellular signaling appears to be intact [42], 

suggesting that the higher leptin levels are not a result of resistance, but rather some indi-

viduals need higher levels in order to engage the neuronal circuits. 

Alternatively, it has been proposed that leptin could be more relevant for preventing 

loss of body fat, rather than reducing fat accumulation. In this setup only a decrease in 

leptin below the threshold of appetite inhibition becomes relevant and increased leptin 

circulating levels cannot further reduce energy intake [43]. More research is needed to 

fully understand leptin’s role in common obesity [44]. 

 

Insulin 

Insulin is secreted by pancreatic β-cells. Its levels are also positively correlated with 

body weight and adipose mass, and they provide a negative feedback signal to the central 

nervous system. Thus, like leptin, high levels of insulin result in reduced food intake. 

Obesity is characterized by insulin resistance and hyperglycemia, commonly accepted to 

be caused by increased levels of free fatty acids, which ultimately results in hyperinsu-

linemia [45]. Several studies have suggested that increased insulin secretion contributes 

to obesity pathogenesis by stimulating the adipocyte uptake of fatty acids and glucose 

and the caloric storage in form of fat, while concomitantly inhibiting lipolysis [43]. 

Dietary carbohydrates, refined sugars in particular, have been suggested to increase 

insulin secretion [43]. It would thus be tempting to assume that by replacing carbohy-

drates with fat, the effects of hyperinsulinism can be counteracted, which confers obesity 

protection. However, several observations have challenged this hypothesis. An analysis 

of weight-loss diets [46] showed that although low carbohydrate, higher fat diets led to 

slightly greater weight loss than did low-fat diets (~1 kg), the difference was fairly small 

and could not impose one diet over the other. Low-carbohydrate diets may increase en-

ergy expenditure and thus contribute to the maintenance of a reduced body weight [47], 

but differences in protein content of the alternative diet could confound the results. It thus 

becomes very clear that body fat accumulation cannot be tackled from only one direction 

but should be addressed rather in a systemic fashion. 
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Proopiomelanocortin (POMC) 

Adjacent to NPY/AgRP neurons, in the arcuate hypothalamic nucleus some neurons 

express POMC and release α-, β- and γ-MSH (melanocyte-stimulating hormone). α-MSH 

is a potent anorexic neuropeptide that reduces food intake by stimulating melanocortin 4 

receptors (MC4R) expressed on “downstream” target neurons from the paraventricular 

hypothalamic nucleus (Fig. 1). In conditions of leptin deficiency POMC neurons are in-

hibited, while NPY neurons are stimulated resulting in hyperphagia by releasing the 

break in both directions [48]. 

Since POMC targets the melanocortin system (Fig. 1), it is clear why mutations that 

impair this system (e.g. MC4R) determine hyperphagic obesity in both humans and ani-

mal models [48]. POMC neurons are viewed as the counterpoint of AgRP neurons. How-

ever, unlike AgRP neurons which affect appetite very fast, POMC neurons are extremely 

slow in affecting hunger (many hours). To close this loop recently a subset of oxytocin 

receptor-expressing excitatory neurons that powerfully and rapidly inhibit feeding and 

are modulated by α-MSH have been described [49]. Future studies are still needed to in-

tegrate all these circuits in the big picture of energy balance. 

 

Molecules leading to short-term positive energy balance – orexigenic stimuli 

 

Neuropeptide Y 

A major role in energy homeostasis is attributed to NPY/AgRP neurons. These are a 

subset of neurons found in the arcuate nucleus that can synthesize both NPY and AgRP 

[50].  

NPY is a neuropeptide composed of 36 amino acids that is involved in numerous 

physiological processes both in the central and peripheral nervous systems. It is one of the 

most powerful controllers of feeding and energy homeostasis regulation and is highly ex-

pressed in the central nervous system. In the brain it is produced in the arcuate nucleus, 

and is the most potent short-term stimulus for appetite [40]. NPY is also produced by 

neurons of the sympathetic nervous system and induces vasoconstriction and fat tissue 

expansion. Negative energy balance leads to an elevation of hypothalamic NPY levels 

triggering an increase in food intake (Fig. 1) and a simultaneous decrease in energy ex-

penditure mostly by inhibiting sympathetic output. However, NPY signaling also influ-

ences a variety of other physiological processes that are linked to altering mood and anx-

iety thereby limiting its potential use as a clinically feasible target for appetite inhibition 

and energy expenditure intervention [50,51]. 

 

Agouti-related peptide 

AgRP is also an appetite stimulating neuropeptide, which acts on the same neurons 

as NPY (Fig. 1). AgRP neurons are activated in conditions of negative energy balance (e.g., 

fasting), characterized by decreased plasma concentrations of leptin and insulin, that ton-

ically inhibit these neurons [52]. Selective AgRP neuron activation elicits hyperphagia to 

counteract the state of metabolic need [53]. Activation of these neurons shifts the energy 

balance towards intake either by stimulating rewarding mechanisms associated with food 

or by reducing the discomfort associated with not eating. Whether the mechanism favors 

reward promotion or discomfort alleviation is still controversial. Hence, the study by 

Chen et al. suggests that as long as food is available, AgRP neuron activation is highly 

rewarding [54], while Betley et al. propose that AgRP neuron activation is aversive when 

food is not available [55]. Thus, the psychological effect of AgRP neuron activation may 

be related to food availability. 

 

Ghrelin 

Another hormone that reaches highest plasma levels during fasting and immediately 

before meals, similar to AgRP, is ghrelin [56]. Ghrelin is synthesized by cells located 
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throughout the gastrointestinal tract, at highest density in the fundus of the stomach 

[44,57] (Fig. 1). In the arcuate nucleus of the hypothalamus, ghrelin activates the same 

neurons as NPY and AgRP [58] (Fig. 1) and stimulates appetite. Additionally, ghrelin also 

stimulates growth hormone release [59]. 

Several human genetic studies identified rare mutations and single nucleotide poly-

morphisms (SNPs) in the gene encoding ghrelin receptor, which might be associated with 

human obesity and short stature [60]. Moreover, two SNPs in the receptor (Ala204Glu and 

Phe279Leu) have been associated with obesity and very short height [61]. Yet, the role of 

ghrelin in obesity is still not clarified, since knockout mice of both the ghrelin gene [62] 

and of the ghrelin receptor [63] do not display a distinguishable phenotype. Also, obese 

individuals usually display low ghrelin plasma levels and show an increased secretion 

only after weight loss [64]. However, ghrelin administration in cancer patients with ano-

rexia increased the energy intake, suggesting it may be a good option for anorexia treat-

ment [65]. Thus, the effect of ghrelin stimulation may be dependent on the overall endo-

crine milieu, making it hard to establish a direct role in obesity. 

 

Endocannabinoids 

One of the effects of cannabis (Cannabis sativa) consumption is increased appetite [66]. 

However, the discovery of the endocannabinoid system (ECS) [67], the receptors and its 

endogenous ligands, has substantiated the central role ECS plays in governing appetite, 

ingestive behavior, energy metabolism, and body weight [66]. There are two receptors 

CB1 and CB2, with CB1 being distributed throughout the brain, primarily in the hypo-

thalamus and limbic system, which are involved in the regulation of food intake and its 

rewarding capacities [67]. CB2 is on the other hand mainly present in immune cells and it 

is believed to play a role in immunogenicity [68]. Research suggests still there may be 

additional receptors to the ones already known [66]. CB1 knockout mice do not develop 

diet-induced obesity or insulin resistance on high-fat diet, although they are only slightly 

hypophagic [69]. This suggested that CB1 is implicated in peripheral metabolic regula-

tions. Indeed, peripheral treatment with the CB1 antagonist (Rimonabant) in rats activated 

lipid mobilization pathways in white adipose tissue and cellular glucose uptake and in-

terestingly, also reduced food intake and body weight [70]. Understanding the exact 

mechanisms of the CB1 peripheral stimulation appears to be of clinical relevance and fu-

ture research is warranted. 

 

Molecules leading to short-term negative energy balance – anorexigenic stimuli 

 

Secretin 

SCT is a 27-amino acid peptide produced by S-cells in duodenum as a response to 

acid. SCT is mostly known for bicarbonate secretion in the pancreas. Both the peripheral 

(via vagal activation) and central SCT can induce an anorectic effect without causing con-

ditioned taste aversion [71]. Feeding induced increase in circulating secretin activates 

brown adipose tissue thermogenesis by stimulating lipolysis through binding to secretin 

receptors in brown adipocytes, which is sensed in the brain and promotes satiation. The 

anorectic effect of peripheral and central SCT was confirmed experimentally in mice. In-

tracerebroventricular and intraperitoneal injections of SCT reduced food intake in wild-

type mice, but not in SCT-Receptor knockout mice [71,72]. Research on food intake mod-

ulations by SCT has been initiated for the past few years, but still requires further efforts 

to test its potential in therapeutic interventions. 
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Cholecystokinin 

CCK is the prototype of a satiety hormone produced by mucosal enteroendocrine 

cells of the duodenum and jejunum, neurons from the enteric nervous system, and the 

brain [73]. The secretion of CCK is stimulated by the presence of food in the gut lumen 

and leads to meal termination [74]. 

CCK activates vagal afferent neurons that convey the gastrointestinal signal to hind-

brain areas, including the nucleus of the solitary tract [75] (Fig. 1). Some of these hindbrain 

neurons project to the parabrachial nucleus, a central hub involved in appetite regulation. 

A variety of stimuli linked to food intake, like gastric distention, secretion of CCK or glu-

cagon-like peptide 1 (GLP-1) activate calcium gene-related peptide expressing neurons in 

the parabrachial nucleus (CGRPPBN) which leads to the physiological meal termination 

[76]. Activation of these neurons has also been implicated in rapid-onset severe, life-

threatening anorexia [77]. Because hypothalamic AgRP neurons inhibit CGRPPBN neurons, 

AgRP stimulation appears to promote feeding, in part, by inhibiting CGRPPBN neurons 

[76]. Yet, unlike what is observed in mice with defective melanocortin signaling, CGRPPBN 

neuron inactivation does not result in diet-induced obesity [77]. Whereas POMC neurons 

play a physiological role to limit food intake over long time intervals, CCK-stimulated 

CGRPPBN neurons appear to constitute an acute break to food consumption during indi-

vidual meals [43]. 

 

Incretin hormones 

Incretin hormones are peptides secreted by specialized entero-endocrine cells at dif-

ferent gut levels in response to food intake leading to stimulation of insulin secretion. The 

known incretin hormones are GIP (glucose-dependent insulinotropic polypeptide) and 

GLP-1 (glucagon-like peptide-1). They are responsible for a two- to three-fold higher in-

sulin secretory response to oral as compared to intravenous glucose administration, a phe-

nomenon called the incretin effect [78]. In addition to their insulinotropic activity, incretin 

hormones also affect glucagon release. GIP stimulates glucagon secretion [78] especially 

at lower glucose concentrations, while GLP-1 suppresses glucagon secretion [78,79], in 

particular at hyperglycemia. GIP can also lead to increased insulin-stimulated glucose 

transport, fatty acid synthesis, and incorporation into triglycerides [40]. 

GLP-1, in addition, has significant effects on multiple organ systems. Most relevant 

are a reduction in appetite and food intake, leading to weight loss in the long term.  

 Both GIP and GLP-1 are rapidly degraded by the enzyme dipeptidyl peptidase IV 

(DPP-IV), leading to a circulating half-life of only 2 min for GLP-1 [80]. Long-acting DPP-

IV–resistant GLP-1 agonists reduce food intake [81], while the GLP-1 antagonists leads to 

increased food intake [82]. However, the mouse knockout of the GLP-1 receptor does not 

develop obesity [83]. Conversely, knockout of GIP receptor protects against diet induced 

obesity by increasing energy expenditure [84].  

The two hormones also have multiple additional effects in adipose cells, bone, and 

the cardiovascular system. Recently, multiple clinical outcome trials have shown that 

GLP-1 receptor agonists reduce cardiovascular adverse events and prolong life in patients 

with type 2 diabetes [3,13,17,18,85,86]. The incretin system currently provides an im-

portant anti-obesity therapeutic target. 

 

Oxyntomodulin 

Preproglucagon gene product yields two important satiety peptides, GLP-1 and ox-

yntomodulin (OXM). Like GLP-1, OXM is released from entero-endocrine cells in re-

sponse to nutrients in the form of free fatty acids and carbohydrates. OXM activates both 

glucagon-like peptide-1 receptor (GLP1R) and the glucagon receptor (GCGR) resulting in 

reduced food intake [87,88] and increased energy expenditure [89]. Interestingly, although 

both GLP-1 and OXM activate GLP1R, GLP1 stimulates mainly areas in the brainstem [90], 

while OXM acts on the arcuate nucleus [91]. Moreover, studies on Glp1r knockout mice 
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suggested that the ligand-specific activation of the receptor results in differentially potent 

inhibition of appetite and increase of energy expenditure [92]. However, the differential 

effect of OXM vs. GLP1 may be explained by the additional activation of the GCGR 

through OXM [89]. 

Nevertheless, preclinical studies demonstrated the anti-obesity effect of OXM since a 

chronic administration leads to superior weight loss and comparable glucose lowering to 

a GLP1R-selective peptide [93,94]. OXM acutely improves glucose metabolism in both ro-

dents [95] and humans by significantly increasing insulin secretion and lowering glucose 

levels even in type 2 diabetes patients [96]. Thus, targeting OXM in therapy could prove 

beneficial not only for addressing obesity, but also its comorbidities. 

 

Polypeptide fold (PP-fold) family 

The PP-fold family consists of neuropeptide Y (NPY), peptide tyrosine tyrosine 

(PYY), and pancreatic polypeptide (PP), which are all 36 amino acids hormones. These 

hormones are important mediators along the gut-brain axis and act via four subtypes of 

G-protein-coupled receptors (Y1, Y2, Y4, Y5) [97]. NPY is, as detailed above, the most po-

tent orexigenic stimulus, mainly expressed in the arcuate nucleus in hypothalamus. 

PP and PYY, on the other hand, are gut-derived peptides released after food ingestion 

with an anorexigenic effect [98]. PYY is mainly produced by intestinal enteroendocrine L 

cells, while PP is synthesized by endocrine F cells of the pancreatic islets [99]. The release 

of both PP and PYY occurs proportionally to the caloric intake [100] and results in the 

inhibition of the hypothalamic orexigenic pathways [101]. PYY acts via Y2 receptors and 

inhibits the release of NPY in the arcuate nucleus [102] and PP activates vagal cholinergic 

pathways in the brainstem via Y4 receptors [103]. In obese patients intravenous infusion 

of physiological levels of PYY reduces the caloric intake [104]. Similarly, PP reduces ap-

petite and food intake in healthy human volunteers [105]. However, chronic peripheral 

administration of PP in lean and obese mice reduces caloric intake, but central administra-

tion leads to increases caloric intake [106]. Such disparities, also seen with OXM and GLP-

1 effects, may be caused when stimulating different receptors. E.g. for PP stimulation of 

Y4 receptors in the area postrema can reduce food intake, while activation of Y5 receptors 

expressed elsewhere in the brain leads to increase food intake [40]. 

Nonetheless, obese patients usually display reduced circulating PYY [104] and PP 

[107] as well as elevated NPY [108] levels which suggests a role of the PP-fold family in 

the pathophysiology of obesity. 

 

Amylin 

Amylin is secreted by pancreatic β cells and co-released with insulin [109]. It is also 

expressed in the lateral hypothalamus where it acts synergistically with leptin to reduce 

energy intake [110]. In addition to leptin function, amylin increases energy expenditure 

and it influences hedonic aspects of eating that may lead to food type selection [111,112]. 

While amylin acts together with leptin in the arcuate nucleus, the hindbrain area postrema 

is the one critically involved in mediating the satiating effect [113]. Here, amylin increases 

cGMP [114] and phosphorylates ERK [115], signals that trigger the anorexic effect. 

Recent studies suggest that amylin can influence the rewarding properties of food 

[116]. Direct activation of amylin receptors in rats reduces not only the intake of low pal-

atable chow, but also the intake of a palatable sucrose solution [117]. Additionally, central 

administration of amylin reduces reward-driven behaviors like lever pressing for sucrose 

solution in rats, suggesting that both the consummatory phase and the appetitive phase 

of eating are affected [118]. Thus, these results have prompted the amylin-based pharma-

cotherapy as detailed below. 
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Cocaine- and amphetamine- regulated transcript 

Cocaine- and amphetamine- regulated transcript (CART) is a biologically active pep-

tide that has emerged as a potent regulator of food intake and energy balance in mammals. 

It is widely distributed in the brain of mammals and plays a role in neuroendocrine and 

autonomic regulation, controls physiological and behavioral functions, including feeding 

inhibition and anxiety stimulation [119,120]. Intracerebroventricular administration of 

CART potently suppresses food intake in fed and fasting animals and CART expression 

in the brain is reduced during fasting. In the vertebrate hierarchy, CART and NPY appear 

as a classic example of two signaling agents which have coevolved to exert antagonistic 

effects in energy homeostasis [119]. 

 

Adipose tissue secreted molecules 

The adipose tissue is no longer considered to be only an inert storage tissue, but ra-

ther a metabolically dynamic organ capable of producing biologically active molecules 

involved in metabolic homeostasis. 

 

Adiponectin 

Adiponectin was one of the earliest adipokines described [121]. This peptide is se-

creted by adipocytes in large quantities and, counterintuitively, circulating levels are 

lower in obese compared to lean subjects [122]. A reduced adiponectin secretion has been 

suggested to play a central role in obesity-related diseases, including insulin re-

sistance/type 2 diabetes, and cardiovascular disease [123]. Based on animal models adi-

ponectin was suggested to be an essential regulator for health- and lifespan [124]. 

Adiponectin acts over adiponectin receptor (AdipoR)1 and AdipoR2. It mediates 

fatty acid metabolism and energy expenditure by inducing AMP-activated protein kinase 

(AMPK) phosphorylation and increasing peroxisome proliferative-activated receptor 

(PPAR)-α expression, which activate PPAR gamma coactivator 1 alpha (PGC-1α), increase 

the phosphorylation of acyl CoA oxidase, and upregulate the uncoupling proteins in-

volved in energy consumption [125]. The enhanced insulin sensitivity primarily mediated 

by adiponectin is a result of increased fatty acid oxidation and suppressed hepatic glucose 

production [126]. Although, the main function of adiponectin is peripheric, adiponectin 

and leptin have a synergistic action on the brain and both promote weight loss [127]. How-

ever, while leptin inhibits the appetite, adiponectin increases energy expenditure. 

 

Resistin 

The counterpart of adiponectin is resistin, an adipose-derived hormone expressed in 

adipocytes in rodents and, in humans, mainly in peripheral blood mononuclear cells [128]. 

The molecule was named “resistin” to be suggestive for the induced insulin resistance and 

impaired glucose tolerance observed in mice that underwent treatment with a recombi-

nant form [129]. 

The structure and secretion levels of resistin in humans differ from that of rodents, 

such that several functions might also vary between the species. Thus, the role of resistin 

in inducing insulin resistance is controversial in humans. Several studies found positive 

correlations between resistin and insulin resistance [130,131], while others failed to find 

any correlations between resistin and insulin resistance [132,133]. A recent meta-analysis 

suggests that type 2 diabetes and obesity do not necessarily need to be associated with 

resistin, but when resistin displays high circulating levels insulin resistance occurs [134]. 

Future research is necessary to decide on the utility of targeting resistin for obesity inter-

ventions. 
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Visfatin 

Visfatin is another adipokine, which at the time of its description was believed to be 

mainly secreted by visceral fat. However, much like for resistin, visfatin was later found 

to be released predominantly from macrophages which infiltrate the visceral adipose tis-

sue [135]. While it was initially reported to have insulin-mimetic effects, the binding to 

the insulin receptor appeared to be spurious, since recombinant receptors with structural 

changes that lead to decreased insulin affinity did not show changed visfatin binding 

[136]. This lead to controversy with respect to its function and a retraction of the original 

paper describing the molecule [136]. Visfatin is involved in regulation of inflammation 

[135]. While obese subjects display increased levels [137], the exact role of the adipokine 

and how it may influence energy balance is still under investigation. 

 

Vaspin 

Visceral adipose tissue-derived serine protease inhibitor (vaspin) or SERPINA12 was 

identified in the visceral fat of the Otsuka Long-Evans Tokushima rat, an animal model, 

characterized with central obesity and type 2 diabetes [138]. Vaspin induces activation of 

the PI3K/AKT axis, independent of insulin receptor activation, promotes GLUT4 expres-

sion and translocation and hence improves insulin sensitivity [139,140]. A meta-analysis 

of studies on obese and type 2 diabetic subjects showed that these individuals display 

increased vaspin serum levels [141]. This suggests that unlike visfatin, vaspin upregula-

tion in obesity is a compensatory mechanism to combat insulin resistance. Additional to 

GLUT4 mobilization the improved insulin sensitivity is likely mediated also by inhibition 

of proteases involved in insulin degradation; hence, vaspin action leads to an increase of 

insulin half-life [142]. 

Vaspin prompted the search for proteases as potential drug targets treatment of obe-

sity and its comorbidities [143]. 

 

3. Pharmacotherapy options 

Therapeutic interventions based on lifestyle and diet changes have shown only mod-

est results [144]. Thus, there is growing interest in drug therapy that can support and pro-

mote weight loss. Generally, pharmacotherapy either enhances satiety and inhibits hun-

ger or increases catabolism. As detailed above increasing the understanding of the under-

lying pathophysiology of obesity holds promise for developing new more potent medica-

tions to curb the obesity epidemic. 

Currently there are six major anti-obesity medications approved by the United States 

Food and Drug Administration (FDA) (Table 1, Fig. 2). Of these as of August 2021 the 

European Medicines Agency (EMA) has approved only four substances, since the combi-

nation therapy phentermine/topiramate was rejected in 2013 and semaglutide is under 

evaluation since January 2021. 

Except for orlistat, liraglutide, and the recently FDA-approved semaglutide the other 

approved drugs influence only central nervous system pathways that either reduce appe-

tite or enhance satiety (Fig. 2). 
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Fig. 2. Summary of the mechanism of action for FDA/EMA approved anti-obesity 

drugs. 

 

Approved anti-obesity drugs for long-term weight management 

 

Orlistat 

Available since 1999 in many countries, orlistat is one of the approved anti-obesity 

drugs by both FDA and EMA, which acts only in periphery. It is a selective inhibitor of 

pancreatic lipase, that decreases fat absorption by 30% [12,145]. 

Efficacy: Orlistat is indicated in conjunction with a reduced-calorie diet for patients 

with a BMI ≥ 30 kg/m2 or ≥ 28 kg/m2 with comorbidities like hypertension, diabetes, hy-

perlipidemia [38]. A systematic review observed a mean weight loss of 3.1 kg / year asso-

ciated with orlistat therapy [146]. Orlistat was shown to reduce the incidence of type 2 

diabetes [147] and of LDL and total cholesterol regardless of the weight-loss impact [148]. 

Safety: Gastrointestinal side effects, reduced absorption of fat-soluble vitamins and 

steatorrhea are very frequent [38]. Orlistat is also over-the-counter at a lower dose of 60 

mg compared with the prescription-compulsory 120 mg formulation, suggesting no major 

side effects are of concern [149]. 

Clinical insight: Orlistat 120 mg is administered three times daily. Although not se-

vere the adverse effects which include flatulence or fecal urgency and only a modest av-

erage weight loss make orlistat less popular than the appetite-suppressants described 

above [149]. 

 

Naltrexone/bupropion 

Naltrexone is an opiate antagonist, which blocks opioid receptor-mediated POMC 

auto-inhibition, whilst bupropion selectively inhibits reuptake of dopamine and nora-

drenaline. The combination therapy is approved since 2012 by both the FDA and EMA. 

The combination promotes satiety via enhancement of hypothalamic POMC-mediated re-

lease of melanocyte-stimulating hormone (MSH) resulting in reduced food intake and in-

creased energy expenditure [150]. 

Efficacy: Four major 56-week phase III randomized, placebo-controlled trials have 

evaluated the efficacy [151–154]. A meta-analysis reported an annual weight loss of 4.8% 

total body weight (mean 4.4 kg) [146]. 
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Safety: Common adverse events include nausea, constipation, headaches, vomiting, 

dizziness, and dry mouth [149]. The drug is not recommended for patients with a history 

of seizures, drug addiction, and bulimia and/or anorexia nervosa. Patients should not 

combine the medication with other opiates [149]. 

Clinical insight: The current naltrexone SR/bupropion SR combination is available in 

8 mg naltrexone SR and 90 mg bupropion dosing, which is upwards titrated over a 4-week 

period for a total dosage of two tablets twice daily: one tablet once daily in the morning 

during week 1, one tablet twice daily during week 2, two tablets in the morning and one 

tablet in the evening during week 3, and finally two tablets twice daily during week 4 

[149]. During the initial stage, if significant adverse effects occur, the dose should not be 

further escalated until better tolerability is established. If within 12 weeks less than 5% of 

initial body weight is lost the drug should be discontinued. Naltrexone SR/bupropion SR 

appears to have good effects in patients with food addiction [154] and binge-eating disor-

der concomitant with alcohol abuse [155]. 

 

Phentermine/topiramate 

Phentermine/topiramate is an extended-release combination which was FDA-ap-

proved in 2012. EMA refused its marketing authorization in Europe in 2013 raising con-

cerns with respect to cardiovascular safety and adverse psychiatric effects [156]. Phenter-

mine is a sympathomimetic that stimulates noradrenaline and suppresses appetite. Topir-

amate is an antiepileptic also used to treat migraine. The exact anorexigenic mechanism 

of topiramate is not known; its effect of appetite suppression is postulated to result from 

modulation of various neurotransmitters, like inhibition of voltage-dependent sodium 

channels, glutamate receptors, and carbonic anhydrase and the potentiation of γ-amino-

butyrate activity [157]. The combination of the two drugs has greater weight-loss- and 

lower side-effects than monotherapy with each one [149]. 

Efficacy: Two large randomized, double-blind, placebo-controlled trials over 52 

weeks [158,159] and one 2-year extension trial with an additional 52 weeks of treatment 

have been conducted [160]. A recent meta-analysis noted a mean weight loss of 9.8 kg per 

year in the randomised-controlled trials [146]. Patients also benefitted from improved li-

pid profile, glycemic control, and waist circumference [158–160]. 

Safety: While EMA has not approved the usage, FDA expressed concerns in respect 

to teratogenicity, cardiovascular side effects (triggered by phentermine), as well as cogni-

tive, psychiatric, and metabolic acidosis (this three being triggered by topiramate) [149]. 

Abrupt withdrawal of topiramate increases the risk of seizures, thus gradual downward 

titration of the combination drug, over 3–5 days is recommended [158–160]. Common side 

effects include insomnia, dizziness, and paresthesia [38]. 

Clinical insight: This combination drug shows one of the highest weight-loss effects, 

but the price of $232/kg weight loss can be a limiting factor [161]. The individual active 

substances can be prescribed separately in available monotherapy dosages (phentermine 

8 mg, 15 mg, 30 mg and 37.5 mg; topiramate 15 mg, 25 mg, 50 mg, 100 mg and 200 mg) 

[149]. Topiramate monotherapy is not approved for the treatment of obesity, but it has 

shown benefits for treating binge-eating disorder [162] and against weight regain follow-

ing bariatric surgery [163]. 

 

Liraglutide 

Liraglutide is a GLP1 receptor agonist of the incretin hormone which affects glucose 

homeostasis, food intake, and satiety. It is approved since 2012 at 1.8 mg for T2D and at a 

higher dose of 3.0 mg for obesity. Due to the incretin properties, the drug was originally 

marketed for the treatment of type 2 diabetes [38]. Liraglutide and semaglutide are the 

only approved injectable anti-obesity drug, while all others are oral drugs [149]. 

Efficacy: The efficacy of 3.0 mg liraglutide in combination with a reduced-calorie diet 

and increased physical activity was assessed in four 56-week randomized, placebo-
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controlled trials [164–167]. A meta-analysis noted an additional annual weight loss of 5.3–

5.9 kg compared to placebo [146]. 

Safety: Most common side effects are transient and mild to moderate intensity gas-

trointestinal symptoms like: nausea, diarrhoea, constipation, vomiting, dyspepsia, and ab-

dominal pain [164–167]. Liraglutide is contraindicated in patients with a family or per-

sonal history of medullary thyroid carcinoma or patients with multiple endocrine neo-

plasia type 2 (MEN2) syndrome [149]. The reason for the contraindication is that rats and 

mice exposed to liraglutide developed malignant thyroid C-cell carcinomas; however the 

implication for humans has not been established yet [168]. There appears to be an in-

creased risk for pancreatitis, although some studies did not find this to be statistically 

significant [169]. A recent meta-analyses addressing this issue followed patients up to 3 

years and concluded that GLP-1 receptor agonists including liraglutide and semaglutide 

can be used with no safety concerns related to malignant neoplasia [170]. 

Clinical insight: The initial dose is 0.6 mg subcutaneously once daily for the first week 

followed by 0.6 mg increments every week, to a maximum of 3.0 mg. In case of persisting 

adverse effects the dose is not increased until better tolerability is achieved [149]. 

 

Setmelanotide 

Setmelanotide is an MC4R agonist, which acts in the paraventricular nucleus of the 

hypothalamus and in the lateral hypothalamic area to suppress the appetite [38]. It has 

been recently approved by FDA (November 2020) [171] and EMA (July 2021) [172] for the 

treatment of monogenic forms of obesity.  

Setmelanotide is approved starting age six in patients with obesity in the presence of 

genetic variants in POMC, PCSK1, or LEPR genes classified as pathogenic, likely patho-

genic, or of uncertain significance [171] according to the American College for Medical 

Genetics Guidelines [173]. 

Efficacy: The treatment of two patients with POMC deficiency resulted in massive 

weight loss of 51.0 kg and 20.5 kg over 42 and 12 weeks, respectively [173]. A clinical trial 

including obese participants with heterozygous MC4R deficiency and setmelanotide lead 

to a placebo-adjusted weight loss of 2.6 kg, which is far less than in individuals with 

POMC defects [174]. There is a recently completed clinical trial (March 8th 2021), which 

evaluated the effect of setmelanotide in patients with Bardet-Biedl and Alström Syn-

dromes suffering from obesity [175]. Results from this study are not published at the time 

of the present manuscript writing (August 2021). A long-term trial including 150 partici-

pants with genetic defects upstream of the MC4 Receptor (Fig. 1) in the leptin-melano-

cortin pathway is expected to finish in March 2023 [176]. 

Safety: Common side effects include injection site reactions, skin hyperpigmentation, 

headache, and gastrointestinal symptoms like nausea, diarrhea, and abdominal pain [171]. 

Clinical insight: Setmelanotide is administered subcutaneously with a starting dose 

of 2 mg / day for two weeks. If the initial dose is not tolerated, the dose should be reduced 

to half till the desired tolerability is achieved. If the initial dose is well tolerated it can be 

titrated to 3 mg / day. If weight loss is not ≥5% of baseline body weight after 12–16 weeks 

of treatment, the administration should be discontinued. 

 

Semaglutide 

Semaglutide, the most recently approved anti-obesity drug, is another GLP1 receptor 

agonist with similar mechanism of action as liraglutide. It was initially designed as a po-

tent long-acting drug that could be administered up to 1 mg subcutaneously once weekly, 

and was approved for treatment of type 2 diabetes in 2017 [177]. In June 2021 FDA ap-

proved semaglutide at a higher dose (2.4 mg) once weekly [25] for chronic weight man-

agement in obese or overweight adults with at least one weight-related condition. It is also 

currently under review by EMA. 

Efficacy: The efficacy and safety of semaglutide 2.4 mg/week versus placebo was 

evaluated in four 68-week trials [21–24]. In three of the trials including patients without 
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diabetes mellitus the treatment group attained an almost incredible 15%–18% weight loss 

(corresponding to a placebo-subtracted 10.6–15.8 kg) over 68 weeks. In one trial including 

only patients with type 2 diabetes and a BMI of at least 27 kg/m2, the mean weight loss 

was a placebo-subtracted of 6.2%. These findings are seen as a major breakthrough for 

obesity treatment and the drug is considered a game-changer [26].  

Safety: Semaglutide is generally well-tolerated. The most common side effects were 

nausea, diarrhea, vomiting, constipation, abdominal pain, headache, fatigue, dyspepsia, 

dizziness, abdominal distension, eructation, hypoglycemia for diabetic patients, flatu-

lence, gastroenteritis, and gastroesophageal reflux disease. Serious adverse events (SAE) 

were reported in 9.1%and 2.9% of the participants in the semaglutide and placebo groups 

respectively, including hepatobiliary disorders and infections[24]. Like liraglutide, there 

is a warning for potential risk of thyroid C-cell tumors. It is contraindicated for patients 

with a personal or family history of medullary thyroid carcinoma or MEN2 [25]. 

Clinical insights: Semaglutide is administrated once weekly, initiated at 0.25 mg, with 

dose escalation every 4 weeks to 0,5 mg, 1 mg, 1,7 mg until the target dose of 2.4 mg/week 

is reached. If participants cannot tolerate the 2.4-mg dose, they can receive 1.7 mg instead. 

They should be encouraged to make at least 1 attempt to reescalate to the 2.4-mg dose. 

 

Other drugs in potential use for anti-obesity treatment 

Lorcaserin (withdrawn from market in February 2020) 

Lorcaserin is a 5-hydroxytryptamine receptor 2C (5-HT2c) agonist that acts on ano-

rexigenic POMC neurons in the hypothalamus to suppress the appetite. It was approved 

for use by the FDA in 2012 as support for diet and lifestyle changes in adults with a BMI 

≥30 kg/m2 or those with a BMI ≥27 kg/m2 and at least one weight-related comorbid condi-

tion such as diabetes, hypertension, hyperlipidemia or sleep apnoea [178]. Three major 

randomized, double-blind, placebo-controlled trials of 52-week or 104-week duration 

evaluated the efficacy of lorcaserin [179–181]. A systematic review noted a mean annual 

weight loss of 3.1 kg [146] additional to improved metabolic parameters like blood pres-

sure, total and LDL cholesterol [182]. 

However, despite good weight-loss results EMA did not approve the use of lorca-

serin and FDA requested withdrawal from market in February 2020 because of possible 

increased risk of colorectal, pancreatic, and lung cancer. 

 

Sodium-Glucose Co-Transporter-2 Inhibitors (not indicated for obesity alone) 

Inhibitors of Sodium-Glucose Co-Transporter-2 (SGLT2) were initially introduced as 

orally available treatment option for type 2 diabetes mellitus. In healthy individuals the 

glucose filtered at the renal glomerulus is almost completely reabsorbed up to a threshold 

of 10 mmol/L (180 mg/dL) of plasma glucose concentration [183,184]. The SGLT2 is re-

sponsible for the glucose reabsorption in the proximal convoluted renal tubule of >90% of 

the glucose filtered at the glomerulus [185]. SGLT2 inhibitors lead to ca. 50% of filtered 

glucose to be excreted, thus improving glycemic control and reducing body mass typically 

by 2 kg compared with placebo [186]. 

While in the large outcome trials of SGLT2 inhibitors their effects on atherosclerotic 

cardiovascular disease endpoints were moderate, an unexpected and consistent effect on 

the risk of heart failure was observed. These findings led to the initiation of dedicated 

heart failure trials [15,183,187–189]. Both dapagliflozin and empagliflozin were shown to 

reduce heart failure risk independently of the presence of type 2 diabetes in patients with 

reduced ejection fraction (HFrEF) [3]. Moreover, in July 2021 Boehringer Ingelheim and 

Eli Lilly announced that empagliflozin in a landmark trial proved to be the first and only 

drug successful for the treatment of heart failure with preserved ejection fraction (HFpEF) 

[28]. Also, in April 2021 FDA has approved dapagliflozin for treatment of patients with 

chronic kidney disease (CKD), irrespective of whether they have diabetes. The complete 

spectrum of mechanisms that lead to clinical benefits are being extensively investigated 
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because they are unlikely to be related to the improved glycemic control alone. The reduc-

tion in heart failure risk is likely to be due to different mechanisms, including diuresis, 

changes in myocardial metabolism, and effects on the myocardium and the vasculature 

[190,191]. In a genetic analysis, SNPs in the SGLT2-encoding gene were associated with 

reduced risk of heart failure, while the main mediators of this association were changes in 

HbA1c, HDL cholesterol, and uric acid [192]. Further research is required to provide a 

deeper understanding of the mechanisms of action. 

Treatment with SGLT2 inhibitors is not indicated for the treatment of obesity. How-

ever, there is an indication and approval for common co-morbidities of obesity such as 

type 2 diabetes and heart- and renal failure. Since SGLT2 inhibitors beneficially influence 

many factors that contribute to the development of complications of obesity and a poor 

prognosis in general – such as blood pressure, body weight, blood glucose, uric acid, and 

kidney function – it appears justified to assume that patients with obesity and an indica-

tion for SGLT2 inhibitors will especially benefit from treatment with a member of this 

drug class. 

 

Cardiovascular comorbidities outcomes for anti-obesity medication 

While cardiovascular outcomes trials are ongoing with anti-obesity agents, none of 

the drugs at the dose and indication to treat obesity has shown to reduce major cardiovas-

cular adverse events (MACE) [6]. However, following weight loss, many anti-obesity 

drugs improve the cardiovascular risk factors. Also, in patients with T2DM SGLT2 inhib-

itors and GLP1-RA (in the dose indicated for diabetes treatment) can reduce MACE, and 

in some cases, reduce overall mortality [3,5,6,193]. Ongoing cardiovascular outcome stud-

ies are evaluating subcutaneous semaglutide 2.4 mg per week in patients with obesity 

(SELECT-Trial). 
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Table 1. Overview of the FDA/EMA approved pharmacotherapy options 

Drug 

Mean weight loss at 

≥1 year, placebo-

subtracted 

Side effects Precaution 

Phentermine/topiramate 9.8 kg 

insomnia, dizziness, paresthesia, 

depression, anxiety, memory prob-

lems 

abrupt withdrawal of topiramate in-

creases the risk of seizures 

Naltrexone/bupropion 4.4 kg 
nausea, constipation, headaches, 

vomiting, dizziness, dry mouth 

not recommended for patients with 

seizures, drug addiction, bulimia, 

anorexia nervosa. Or in combination 

with opiates 

Liraglutide 5.3–5.9 kg 

nausea, diarrhoea, constipation, 

vomiting, dyspepsia, abdominal 

pain 

contraindicated in patients with a 

family or personal history of medul-

lary thyroid carcinoma or with 

MEN2 syndrome (rats and mice de-

veloped thyroid C-cell carcinomas; 

unclear implication for humans) 

Semaglutide 6.6–15.8 kg 

nausea, diarrhea, vomiting, consti-

pation, abdominal pain, headache, 

fatigue, dyspepsia, dizziness, hy-

poglycemia for diabetic patients, 

flatulence, gastroenteritis 

potential risk of thyroid C-cell tu-

mors. It is contraindicated for pa-

tients with a personal or family his-

tory of medullary thyroid carci-

noma or MEN2 

Orlistat 3.1 kg 
vitamin deficiency, steatorrhea, fe-

cal urgency, fecal incontinence 

daily multivitamin intake is recom-

mended because of malabsorption 

of fat-soluble vitamins 

Setmelanotide 

2.6 kg in MC4R defi-

ciency, 51 and 20,5 

kg in 2 patients with 

POMC deficiency 

injection site reactions, skin hyper-

pigmentation, headache, nausea, 

diarrhea, abdominal pain 

 approved for monogenic forms of 

obesity 

    

 

Further potential pharmacotherapeutic targets 

 

Polyagonists of the incretin system 

A drug that affects multiple receptors may have a greater weight loss effect compared 

with single mechanism molecules. This has led to the development of several incretin-

related therapies such as GLP-1/glucagon receptor dual agonists, GLP-1/GIP dual ago-

nists, and GLP-1/GIP/glucagon receptor triple agonists [194,195]. As detailed above GLP1 

controls glycemic regulation and induces satiety. Glucagon receptor stimulation via ox-

yntomodulin enhances energy expenditure by increasing oxygen consumption, lipid ca-

tabolism, and thermogenesis [196]. GIP increases pancreatic insulin release, and in low 

glucose state it also stimulates glucagon secretion [38]. GIP analogues can thus potentiate 

the diabetogenic glucagon effect but given the opposing effect of GLP1 on glucagon se-

cretion, the combined therapy showed better outcomes. While these drugs are not yet ap-

proved for use preclinical and recent clinical trials show promising results [194,195,197]. 
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Amylin mimetics 

Amylin induces satiety and inhibits glucagon secretion. The amylin analogue pram-

lintide was licensed by the FDA in 2005 for patients with insulin-treated diabetes [38]. In 

diabetic patients the amylin analogue can induce weight loss by curbing the appetite [198]. 

However, results with different analogues appeared to be quite variable, which lead to 

discontinuation of most mono- and combination therapies [38]. 

 

Leptin analogues 

Metreleptin is a recombinant analog of human leptin with an additional methionine 

compared to the leptin amino acid sequence. While based on the energy balance physiol-

ogy, detailed above, there is a strong rationale for leptin analogues in obesity treatment, 

metreleptin failed to achieve clinically meaningful weight loss with a mean of just 1.5 kg 

lost over 24 weeks [199]. To enhance the effect of leptin analogues, a combination therapy 

with amylin mimetics such as pramlintide was tested with good results showing 11.5 kg 

weight loss over 20 weeks compared with 7.4 kg and 7.9 kg for metreleptin or pramlintide 

monotherapy, respectively [200]. However, following commercial reassessment the fur-

ther development of the combination therapy was discontinued in 2011 [38]. Still, in 2014 

FDA approved the use of metreleptin in patients with leptin deficiency or lipodystrophy 

as subcutaneous injection in a once or twice daily administration [38]. 

 

Ghrelin vaccine and antagonists of ghrelin and NPY 

Ghrelin is the only known hormone secreted by the digestive system with an orexi-

genic effect. As detailed above, ghrelin stimulates NPY- and inhibits POMC-neurons lead-

ing to increased appetite. An interesting therapy approach was vaccination against 

ghrelin, which slowed weight gain in rats by decreasing feeding efficiency [201]. Also 

ghrelin antagonists promoted weight loss and improved insulin tolerance in rats [202], 

but both strategies showed no success in human studies and clinical studies are currently 

not undertaken [38,203]. Similarly, NPY inhibition did not achieve clinically meaningful 

results to justify obesity treatment [204]. It appears thus that inhibiting the appetite stim-

ulants reaches less effective results compared to the stimulation of anorexic stimuli medi-

ators. 

 

Cannabinoid type-1 receptor antagonists 

Rimonabant, a CB1 antagonist showed excellent weight loss outcomes with an addi-

tional mean weight loss of 4.7 kg in clinical trials [205]. Similar to the animal models [70], 

rimonabant use improved metabolic markers including glycemic and lipid control [206]. 

Yet, in 2009 three years after EMA approval, the drug had to be withdrawn because of the 

increased risk of severe mood disorders and suicide [207]. Based on the peripheral effects 

of CB1 antagonists in rats [70] it appears of clinical relevance to design less hydrophobic 

CB1 antagonists to reduce the blood-brain barrier penetration and therefore the centrally 

mediated psychiatric side effects [38]. 
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4. Conclusion 

The Obesity Medicine Association defines obesity as a chronic, progressive, relaps-

ing, and treatable multi-factorial, neurobehavioral disease, wherein an increase in body 

fat promotes adipose tissue dysfunction and abnormal fat mass physical forces, resulting 

in adverse metabolic, biomechanical, and psychosocial health consequences [6]. The com-

plicated definition testifies for the complexity of the problem. The more simple and prag-

matic definition of overweight and obesity, as a body mass index (BMI) over 25 and 30 

respectively is nearly universally accepted. Obesity represents a rapidly escalating public 

health issue, taking over many parts of the world [208,209] that contrary to conventional 

belief is not limited to industrialized countries [209], with the majority of affected children 

living now in developing countries [208]. Considering the worldwide number of individ-

uals affected, there are good arguments to see obesity as the biggest pandemic of all time. 

Thus, it is high time to develop preventive and therapeutic strategies. An improved un-

derstanding of the pathophysiology, including fat redistribution and accumulation is a 

prerequisite for developing more potent therapies. Insights gained from animal [210] and 

cellular [211–213] models for obesity may eventually help identify additional relevant 

pathways and molecules, which can ultimately lead to better treatments. In this article we 

have highlighted known players in the physiology of energy balance and the correspond-

ing potential or already approved therapies. The rapidly evolving diabetes pharmacother-

apy will surely contribute to the introduction of new drugs to tackle this pandemic. Con-

sidering the history of other metabolic diseases (i.e. hypertension, dyslipidemia and dia-

betes mellitus) if the ongoing trials provide evidence that anti-obesity agents can improve 

MACE, their acceptance and use in clinical practice can increase dramatically. 
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