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Abstract: Obesity represents a major public health problem with a prevalence increasing at an
alarming rate worldwide. Continuous intensive efforts to elucidate the complex pathophysiology
and improve clinical management have led to a better understanding of biomolecules like gut hor-
mones, antagonists of orexigenic signals, stimulants of fat utilization, and/or inhibitors of fat ab-
sorption. In this article, we will review the pathophysiology and pharmacotherapy of obesity in-
cluding intersection points to the new generation of antidiabetic drugs. We provide insight into the
effectiveness of currently approved anti-obesity drugs and other therapeutic avenues that can be
explored.
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1. Introduction

The leading causes for death and disability in the western world are chronic condi-
tions like diabetes, cardiovascular disease, and cancer [1-5], which are closely linked to
obesity. Body mass index (BMI) (weight in kg/height in m?), the most used formula to
define overweight (BMI 25 to 29.9 kg/m?) and obesity (BMI 230 kg/m?), is simple to use in
health screenings and epidemiological surveys. The relation between BMI and clinical
outcomes has been extensively analyzed and there is near universal acceptance of ranges
of BMI consistent with good health.

Obesity dramatically increases the risk for type 2 diabetes and both conditions rep-
resent major public health issues worldwide according to the latest reports from World
Health Organization (WHO report 2020 and 2021). Also, obesity is considered to be the
second most common, and may soon become the most common preventable cause of can-
cer, overtaking cigarette smoking [6].

The incidence of obesity has tripled in the last few decades, such that more than two
thirds (70.2%) of the United States adult population is overweight or obese and almost
half of adults (48.5%) live with prediabetes or diabetes [5-7]. The pandemic proportions
of obesity are still rapidly rising, challenging our concept of normality [8,9].

Currently recommended therapies with evidence-based support are lifestyle inter-
vention, pharmacotherapy, and bariatric surgery [2]. While clinical practitioners occupy a
crucial role in the front line of obesity- and its related comorbidities management, they
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receive minimal training in obesity management [2,10] leaving them ill-equipped to ad-
dress the environmental and socioeconomic drivers of the obesity pandemic.

Significant scientific efforts consisting in elucidation of the complex physiopathol-
ogy, as well as the clinical management of obesity and weight-related comorbidities such
as type 2 diabetes (T2D), have materialized in the last few years in effective and safe treat-
ment options [2,3,5,7,11-18]. The unprecedented amount of data to analyze in order to
identify mechanisms and new targets can, though, easily become overwhelming. The
pathophysiologic mechanisms of these metabolic conditions, lying at the crossroad of dif-
ferent highly specialized medical fields such as genetics, cellular and molecular biology,
endocrinology etc. can only now be unveiled by taking advantage of ‘omics’ technologies,
which may finally lead to a precision medicine approach.

Weight loss is the most important factor to reduce comorbidities and T2D in obesity;
however, except for bariatric surgery, which can only be used in a minority of patients
and can lead to significant complications, other therapy options have not been sufficiently
effective [4,19]. The role of pharmacotherapy in the management of obesity has not been
exploited in clinical practice, mainly because of the moderate weight loss effects and side
effects of previous weight loss medications [20]. More recently developed anti-obesity
therapies promise to overcome previous concerns about low effect size and safety con-
cerns [6,21-28].

In the present review we deliver an update focused on the pathophysiology and phar-
macotherapy of obesity, including currently approved drugs and other potential therapeu-
tic targets.

2. Obesity pathomechanisms

In a simplistic view weight gain — and ultimately obesity — results from a long-term
positive energy balance, yet the pathogenesis of obesity has been proven to be more com-
plex than this [29]. There is an intricate interplay between genetic, environmental, and
psychosocial factors which mediate food intake and energy expenditure [30]. While the
environment and socioeconomic conditions influence the behavior and cannot be molec-
ularly tackled, the identification of genes and molecules that determine the susceptibility
to obesity uncovers pathophysiological mechanisms, which can be molecularly ad-
dressed.

Studies on twins and families have estimated the rate of BMI heritability to be fairly
high reaching 40-70 % [31,32]. Large-scale genome-wide association studies have identi-
fied more than 300 loci bearing common variants in the general population, which show
a significant correlation with obesity traits [30]. However, the effects of these loci on the
obesity risk is fairly small and can explain less than 5% in the BMI variation [33,34].
Whether the missing heritability can be explained by epigenetic processes or interactions
between genetic and environmental factors remains to be investigated by newly devel-
oped branches of research.

Research into monogenic obesity, where rare variants exert very large effects, has
underlined the importance of biomolecules in the pathogenesis of obesity. Mapping mu-
tations which cause extreme obesity in mice proved to be a successful strategy in the iden-
tification of monogenic disorders. Prominent outcomes of this approach include the iden-
tification of genes involved in body weight homeostasis, which act in the central nervous
system: e.g. leptin (Lep) and its receptor (Lepr), the melanocortin 4 receptor (Mc4r) and
pro-opiomelanocortin (Pomc) [35]. Pathogenic variants in the human orthologous genes
lead to monogenic obesity [36]. Thus, these were the first milestones in understanding the
mechanisms that govern hunger and satiety. Energy balance is controlled by complex in-
teractions between the central nervous system, adipose tissue, and a plethora of other or-
gans including the gut, liver, and pancreas (Fig. 1).

Already in the 1940s it was apparent that hypothalamus plays an important role for
energy metabolism regulation [37]. The hypothalamus integrates signals reflecting long-
term energy stores and short-term nutritional input, which result in control of food intake,
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physical activity, and basal energy expenditure [38]. Short-term eating behavior can addi-
tionally be controlled by the hindbrain where the nucleus of the tractus solitarius (NTS)
receives input from vagus nerve afferent, which is stimulated by secretin (5CT) and chol-
ecystokinin (CCK) [39] (Fig. 1).
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Fig. 1. Energy balance signals integration. In the blue quadrant there is a simplified
representation of hypothalamic energy balance regulation mechanisms: primary neurons
in the arcuate nucleus include appetite-inhibiting neurons (red) — cocaine- and ampheta-
mine-stimulated transcript peptide (CART) and proopiomelanocortin (POMC) which re-
lease peptides that stimulate the melanocortin receptors (MC3 and MC4). MC3/4R stimu-
lation increases energy expenditure and decreases appetite. This circuit is stimulated by
adiposity and anorexigenic signals. Peripheral signals related to long-term energy stores
are produced by adipose tissue (leptin, adiponectin) and the pancreas (insulin). Gut hor-
mones with incretin-, hunger-, and satiety-stimulating effects: glucagon-like peptide-1
(GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and potentially oxynto-
modulin (OXM) improve the response of the endocrine pancreas to absorbed nutrients;
GLP-1 and OXM also centrally reduce food intake; secretin (SCT) and cholecystokinin
(CCK) released from the gut inhibit appetite by way of vagus nerves, which stimulate
hindbrain structures.
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Appetite-stimulating neurons in the arcuate nucleus (green) contain neuropeptide Y
(NPY), which stimulates Y receptors (Y1 and Y5), and agouti-related peptide (AgRP), an
antagonist of MC3/4 receptor activity. Brain peptides that stimulate appetite are NPY,
AgRP, and endocannabinoids. Ghrelin is released by the stomach and has an orexigenic
effect.

Molecules acting on long-term energy balance

The main players for regulating energy balance as result of long-term energy stores
are leptin and insulin.

Leptin

Leptin is a 167 amino acid hormone secreted by white adipose tissue, which circulates
at concentrations proportional to body fat mass. It promotes satiety and energy expendi-
ture by stimulating proopiomelanocortin (POMC) and inhibiting neuropeptide Y (NPY) /
Agouti-related peptide (AgRP) neurons in the hypothalamus. A deficiency of leptin sig-
naling as a result of mutations of the leptin gene or its cognate receptor causes hyperpha-
gia and severe obesity in both humans and animals [40], which clearly demonstrates that
normal body-weight requires intact leptin regulation.

Although genetic defects affecting leptin signaling cause obesity, such individuals
are fairly rare [41]. Usually, obese individuals display increased leptin levels proportional
to their body fat content. This raised the possibility that obesity may be associated with a
form of “leptin resistance”. This would imply the stimulating threshold of leptin is in-
creased and hence higher levels are needed to curb food intake and increase energy ex-
penditure. Yet, in diet-induced obesity leptin cellular signaling appears to be intact [42],
suggesting that the higher leptin levels are not a result of resistance, but rather some indi-
viduals need higher levels in order to engage the neuronal circuits.

Alternatively, it has been proposed that leptin could be more relevant for preventing
loss of body fat, rather than reducing fat accumulation. In this setup only a decrease in
leptin below the threshold of appetite inhibition becomes relevant and increased leptin
circulating levels cannot further reduce energy intake [43]. More research is needed to
fully understand leptin’s role in common obesity [44].

Insulin

Insulin is secreted by pancreatic B-cells. Its levels are also positively correlated with
body weight and adipose mass, and they provide a negative feedback signal to the central
nervous system. Thus, like leptin, high levels of insulin result in reduced food intake.
Obesity is characterized by insulin resistance and hyperglycemia, commonly accepted to
be caused by increased levels of free fatty acids, which ultimately results in hyperinsu-
linemia [45]. Several studies have suggested that increased insulin secretion contributes
to obesity pathogenesis by stimulating the adipocyte uptake of fatty acids and glucose
and the caloric storage in form of fat, while concomitantly inhibiting lipolysis [43].

Dietary carbohydrates, refined sugars in particular, have been suggested to increase
insulin secretion [43]. It would thus be tempting to assume that by replacing carbohy-
drates with fat, the effects of hyperinsulinism can be counteracted, which confers obesity
protection. However, several observations have challenged this hypothesis. An analysis
of weight-loss diets [46] showed that although low carbohydrate, higher fat diets led to
slightly greater weight loss than did low-fat diets (~1 kg), the difference was fairly small
and could not impose one diet over the other. Low-carbohydrate diets may increase en-
ergy expenditure and thus contribute to the maintenance of a reduced body weight [47],
but differences in protein content of the alternative diet could confound the results. It thus
becomes very clear that body fat accumulation cannot be tackled from only one direction
but should be addressed rather in a systemic fashion.
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Proopiomelanocortin (POMC)

Adjacent to NPY/AgRP neurons, in the arcuate hypothalamic nucleus some neurons
express POMC and release -, 3- and y-MSH (melanocyte-stimulating hormone). a-MSH
is a potent anorexic neuropeptide that reduces food intake by stimulating melanocortin 4
receptors (MC4R) expressed on “downstream” target neurons from the paraventricular
hypothalamic nucleus (Fig. 1). In conditions of leptin deficiency POMC neurons are in-
hibited, while NPY neurons are stimulated resulting in hyperphagia by releasing the
break in both directions [48].

Since POMC targets the melanocortin system (Fig. 1), it is clear why mutations that
impair this system (e.g. MC4R) determine hyperphagic obesity in both humans and ani-
mal models [48]. POMC neurons are viewed as the counterpoint of AgRP neurons. How-
ever, unlike AgRP neurons which affect appetite very fast, POMC neurons are extremely
slow in affecting hunger (many hours). To close this loop recently a subset of oxytocin
receptor-expressing excitatory neurons that powerfully and rapidly inhibit feeding and
are modulated by a-MSH have been described [49]. Future studies are still needed to in-
tegrate all these circuits in the big picture of energy balance.

Molecules leading to short-term positive energy balance — orexigenic stimuli

Neuropeptide Y

A major role in energy homeostasis is attributed to NPY/AgRP neurons. These are a
subset of neurons found in the arcuate nucleus that can synthesize both NPY and AgRP
[50].

NPY is a neuropeptide composed of 36 amino acids that is involved in numerous
physiological processes both in the central and peripheral nervous systems. It is one of the
most powerful controllers of feeding and energy homeostasis regulation and is highly ex-
pressed in the central nervous system. In the brain it is produced in the arcuate nucleus,
and is the most potent short-term stimulus for appetite [40]. NPY is also produced by
neurons of the sympathetic nervous system and induces vasoconstriction and fat tissue
expansion. Negative energy balance leads to an elevation of hypothalamic NPY levels
triggering an increase in food intake (Fig. 1) and a simultaneous decrease in energy ex-
penditure mostly by inhibiting sympathetic output. However, NPY signaling also influ-
ences a variety of other physiological processes that are linked to altering mood and anx-
iety thereby limiting its potential use as a clinically feasible target for appetite inhibition
and energy expenditure intervention [50,51].

Agouti-related peptide

AgRP is also an appetite stimulating neuropeptide, which acts on the same neurons
as NPY (Fig. 1). AgRP neurons are activated in conditions of negative energy balance (e.g.,
fasting), characterized by decreased plasma concentrations of leptin and insulin, that ton-
ically inhibit these neurons [52]. Selective AgRP neuron activation elicits hyperphagia to
counteract the state of metabolic need [53]. Activation of these neurons shifts the energy
balance towards intake either by stimulating rewarding mechanisms associated with food
or by reducing the discomfort associated with not eating. Whether the mechanism favors
reward promotion or discomfort alleviation is still controversial. Hence, the study by
Chen et al. suggests that as long as food is available, AgRP neuron activation is highly
rewarding [54], while Betley et al. propose that AgRP neuron activation is aversive when
food is not available [55]. Thus, the psychological effect of AgRP neuron activation may
be related to food availability.

Ghrelin

Another hormone that reaches highest plasma levels during fasting and immediately
before meals, similar to AgRP, is ghrelin [56]. Ghrelin is synthesized by cells located
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throughout the gastrointestinal tract, at highest density in the fundus of the stomach
[44,57] (Fig. 1). In the arcuate nucleus of the hypothalamus, ghrelin activates the same
neurons as NPY and AgRP [58] (Fig. 1) and stimulates appetite. Additionally, ghrelin also
stimulates growth hormone release [59].

Several human genetic studies identified rare mutations and single nucleotide poly-
morphisms (SNPs) in the gene encoding ghrelin receptor, which might be associated with
human obesity and short stature [60]. Moreover, two SNPs in the receptor (Ala204Glu and
Phe279Leu) have been associated with obesity and very short height [61]. Yet, the role of
ghrelin in obesity is still not clarified, since knockout mice of both the ghrelin gene [62]
and of the ghrelin receptor [63] do not display a distinguishable phenotype. Also, obese
individuals usually display low ghrelin plasma levels and show an increased secretion
only after weight loss [64]. However, ghrelin administration in cancer patients with ano-
rexia increased the energy intake, suggesting it may be a good option for anorexia treat-
ment [65]. Thus, the effect of ghrelin stimulation may be dependent on the overall endo-
crine milieu, making it hard to establish a direct role in obesity.

Endocannabinoids

One of the effects of cannabis (Cannabis sativa) consumption is increased appetite [66].
However, the discovery of the endocannabinoid system (ECS) [67], the receptors and its
endogenous ligands, has substantiated the central role ECS plays in governing appetite,
ingestive behavior, energy metabolism, and body weight [66]. There are two receptors
CB1 and CB2, with CB1 being distributed throughout the brain, primarily in the hypo-
thalamus and limbic system, which are involved in the regulation of food intake and its
rewarding capacities [67]. CB2 is on the other hand mainly present in immune cells and it
is believed to play a role in immunogenicity [68]. Research suggests still there may be
additional receptors to the ones already known [66]. CB1 knockout mice do not develop
diet-induced obesity or insulin resistance on high-fat diet, although they are only slightly
hypophagic [69]. This suggested that CB1 is implicated in peripheral metabolic regula-
tions. Indeed, peripheral treatment with the CB1 antagonist (Rimonabant) in rats activated
lipid mobilization pathways in white adipose tissue and cellular glucose uptake and in-
terestingly, also reduced food intake and body weight [70]. Understanding the exact
mechanisms of the CB1 peripheral stimulation appears to be of clinical relevance and fu-
ture research is warranted.

Molecules leading to short-term negative energy balance — anorexigenic stimuli

Secretin

SCT is a 27-amino acid peptide produced by S-cells in duodenum as a response to
acid. SCT is mostly known for bicarbonate secretion in the pancreas. Both the peripheral
(via vagal activation) and central SCT can induce an anorectic effect without causing con-
ditioned taste aversion [71]. Feeding induced increase in circulating secretin activates
brown adipose tissue thermogenesis by stimulating lipolysis through binding to secretin
receptors in brown adipocytes, which is sensed in the brain and promotes satiation. The
anorectic effect of peripheral and central SCT was confirmed experimentally in mice. In-
tracerebroventricular and intraperitoneal injections of SCT reduced food intake in wild-
type mice, but not in SCT-Receptor knockout mice [71,72]. Research on food intake mod-
ulations by SCT has been initiated for the past few years, but still requires further efforts
to test its potential in therapeutic interventions.
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Cholecystokinin

CCK is the prototype of a satiety hormone produced by mucosal enteroendocrine
cells of the duodenum and jejunum, neurons from the enteric nervous system, and the
brain [73]. The secretion of CCK is stimulated by the presence of food in the gut lumen
and leads to meal termination [74].

CCK activates vagal afferent neurons that convey the gastrointestinal signal to hind-
brain areas, including the nucleus of the solitary tract [75] (Fig. 1). Some of these hindbrain
neurons project to the parabrachial nucleus, a central hub involved in appetite regulation.
A variety of stimuli linked to food intake, like gastric distention, secretion of CCK or glu-
cagon-like peptide 1 (GLP-1) activate calcium gene-related peptide expressing neurons in
the parabrachial nucleus (CGRP™N) which leads to the physiological meal termination
[76]. Activation of these neurons has also been implicated in rapid-onset severe, life-
threatening anorexia [77]. Because hypothalamic AgRP neurons inhibit CGRPPEN neurons,
AgRP stimulation appears to promote feeding, in part, by inhibiting CGRP"®N neurons
[76]. Yet, unlike what is observed in mice with defective melanocortin signaling, CGRPPEN
neuron inactivation does not result in diet-induced obesity [77]. Whereas POMC neurons
play a physiological role to limit food intake over long time intervals, CCK-stimulated
CGRP?BN neurons appear to constitute an acute break to food consumption during indi-
vidual meals [43].

Incretin hormones

Incretin hormones are peptides secreted by specialized entero-endocrine cells at dif-
ferent gut levels in response to food intake leading to stimulation of insulin secretion. The
known incretin hormones are GIP (glucose-dependent insulinotropic polypeptide) and
GLP-1 (glucagon-like peptide-1). They are responsible for a two- to three-fold higher in-
sulin secretory response to oral as compared to intravenous glucose administration, a phe-
nomenon called the incretin effect [78]. In addition to their insulinotropic activity, incretin
hormones also affect glucagon release. GIP stimulates glucagon secretion [78] especially
at lower glucose concentrations, while GLP-1 suppresses glucagon secretion [78,79], in
particular at hyperglycemia. GIP can also lead to increased insulin-stimulated glucose
transport, fatty acid synthesis, and incorporation into triglycerides [40].

GLP-1, in addition, has significant effects on multiple organ systems. Most relevant
are a reduction in appetite and food intake, leading to weight loss in the long term.

Both GIP and GLP-1 are rapidly degraded by the enzyme dipeptidyl peptidase IV
(DPP-1V), leading to a circulating half-life of only 2 min for GLP-1 [80]. Long-acting DPP-
IV-resistant GLP-1 agonists reduce food intake [81], while the GLP-1 antagonists leads to
increased food intake [82]. However, the mouse knockout of the GLP-1 receptor does not
develop obesity [83]. Conversely, knockout of GIP receptor protects against diet induced
obesity by increasing energy expenditure [84].

The two hormones also have multiple additional effects in adipose cells, bone, and
the cardiovascular system. Recently, multiple clinical outcome trials have shown that
GLP-1 receptor agonists reduce cardiovascular adverse events and prolong life in patients
with type 2 diabetes [3,13,17,18,85,86]. The incretin system currently provides an im-
portant anti-obesity therapeutic target.

Oxyntomodulin

Preproglucagon gene product yields two important satiety peptides, GLP-1 and ox-
yntomodulin (OXM). Like GLP-1, OXM is released from entero-endocrine cells in re-
sponse to nutrients in the form of free fatty acids and carbohydrates. OXM activates both
glucagon-like peptide-1 receptor (GLP1R) and the glucagon receptor (GCGR) resulting in
reduced food intake [87,88] and increased energy expenditure [89]. Interestingly, although
both GLP-1 and OXM activate GLP1R, GLP1 stimulates mainly areas in the brainstem [90],
while OXM acts on the arcuate nucleus [91]. Moreover, studies on Glp1r knockout mice
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suggested that the ligand-specific activation of the receptor results in differentially potent
inhibition of appetite and increase of energy expenditure [92]. However, the differential
effect of OXM wvs. GLP1 may be explained by the additional activation of the GCGR
through OXM [89].

Nevertheless, preclinical studies demonstrated the anti-obesity effect of OXM since a
chronic administration leads to superior weight loss and comparable glucose lowering to
a GLP1R-selective peptide [93,94]. OXM acutely improves glucose metabolism in both ro-
dents [95] and humans by significantly increasing insulin secretion and lowering glucose
levels even in type 2 diabetes patients [96]. Thus, targeting OXM in therapy could prove
beneficial not only for addressing obesity, but also its comorbidities.

Polypeptide fold (PP-fold) family

The PP-fold family consists of neuropeptide Y (NPY), peptide tyrosine tyrosine
(PYY), and pancreatic polypeptide (PP), which are all 36 amino acids hormones. These
hormones are important mediators along the gut-brain axis and act via four subtypes of
G-protein-coupled receptors (Y1, Y2, Y4, Y5) [97]. NPY is, as detailed above, the most po-
tent orexigenic stimulus, mainly expressed in the arcuate nucleus in hypothalamus.

PP and PYY, on the other hand, are gut-derived peptides released after food ingestion
with an anorexigenic effect [98]. PYY is mainly produced by intestinal enteroendocrine L
cells, while PP is synthesized by endocrine F cells of the pancreatic islets [99]. The release
of both PP and PYY occurs proportionally to the caloric intake [100] and results in the
inhibition of the hypothalamic orexigenic pathways [101]. PYY acts via Y2 receptors and
inhibits the release of NPY in the arcuate nucleus [102] and PP activates vagal cholinergic
pathways in the brainstem via Y4 receptors [103]. In obese patients intravenous infusion
of physiological levels of PYY reduces the caloric intake [104]. Similarly, PP reduces ap-
petite and food intake in healthy human volunteers [105]. However, chronic peripheral
administration of PP in lean and obese mice reduces caloric intake, but central administra-
tion leads to increases caloric intake [106]. Such disparities, also seen with OXM and GLP-
1 effects, may be caused when stimulating different receptors. E.g. for PP stimulation of
Y4 receptors in the area postrema can reduce food intake, while activation of Y5 receptors
expressed elsewhere in the brain leads to increase food intake [40].

Nonetheless, obese patients usually display reduced circulating PYY [104] and PP
[107] as well as elevated NPY [108] levels which suggests a role of the PP-fold family in
the pathophysiology of obesity.

Amylin

Amylin is secreted by pancreatic 3 cells and co-released with insulin [109]. It is also
expressed in the lateral hypothalamus where it acts synergistically with leptin to reduce
energy intake [110]. In addition to leptin function, amylin increases energy expenditure
and it influences hedonic aspects of eating that may lead to food type selection [111,112].
While amylin acts together with leptin in the arcuate nucleus, the hindbrain area postrema
is the one critically involved in mediating the satiating effect [113]. Here, amylin increases
c¢GMP [114] and phosphorylates ERK [115], signals that trigger the anorexic effect.

Recent studies suggest that amylin can influence the rewarding properties of food
[116]. Direct activation of amylin receptors in rats reduces not only the intake of low pal-
atable chow, but also the intake of a palatable sucrose solution [117]. Additionally, central
administration of amylin reduces reward-driven behaviors like lever pressing for sucrose
solution in rats, suggesting that both the consummatory phase and the appetitive phase
of eating are affected [118]. Thus, these results have prompted the amylin-based pharma-
cotherapy as detailed below.
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Cocaine- and amphetamine- regulated transcript

Cocaine- and amphetamine- regulated transcript (CART) is a biologically active pep-
tide that has emerged as a potent regulator of food intake and energy balance in mammals.
It is widely distributed in the brain of mammals and plays a role in neuroendocrine and
autonomic regulation, controls physiological and behavioral functions, including feeding
inhibition and anxiety stimulation [119,120]. Intracerebroventricular administration of
CART potently suppresses food intake in fed and fasting animals and CART expression
in the brain is reduced during fasting. In the vertebrate hierarchy, CART and NPY appear
as a classic example of two signaling agents which have coevolved to exert antagonistic
effects in energy homeostasis [119].

Adipose tissue secreted molecules

The adipose tissue is no longer considered to be only an inert storage tissue, but ra-
ther a metabolically dynamic organ capable of producing biologically active molecules
involved in metabolic homeostasis.

Adiponectin

Adiponectin was one of the earliest adipokines described [121]. This peptide is se-
creted by adipocytes in large quantities and, counterintuitively, circulating levels are
lower in obese compared to lean subjects [122]. A reduced adiponectin secretion has been
suggested to play a central role in obesity-related diseases, including insulin re-
sistance/type 2 diabetes, and cardiovascular disease [123]. Based on animal models adi-
ponectin was suggested to be an essential regulator for health- and lifespan [124].

Adiponectin acts over adiponectin receptor (AdipoR)1 and AdipoR2. It mediates
fatty acid metabolism and energy expenditure by inducing AMP-activated protein kinase
(AMPK) phosphorylation and increasing peroxisome proliferative-activated receptor
(PPAR)-at expression, which activate PPAR gamma coactivator 1 alpha (PGC-1a), increase
the phosphorylation of acyl CoA oxidase, and upregulate the uncoupling proteins in-
volved in energy consumption [125]. The enhanced insulin sensitivity primarily mediated
by adiponectin is a result of increased fatty acid oxidation and suppressed hepatic glucose
production [126]. Although, the main function of adiponectin is peripheric, adiponectin
and leptin have a synergistic action on the brain and both promote weight loss [127]. How-
ever, while leptin inhibits the appetite, adiponectin increases energy expenditure.

Resistin

The counterpart of adiponectin is resistin, an adipose-derived hormone expressed in
adipocytes in rodents and, in humans, mainly in peripheral blood mononuclear cells [128].
The molecule was named “resistin” to be suggestive for the induced insulin resistance and
impaired glucose tolerance observed in mice that underwent treatment with a recombi-
nant form [129].

The structure and secretion levels of resistin in humans differ from that of rodents,
such that several functions might also vary between the species. Thus, the role of resistin
in inducing insulin resistance is controversial in humans. Several studies found positive
correlations between resistin and insulin resistance [130,131], while others failed to find
any correlations between resistin and insulin resistance [132,133]. A recent meta-analysis
suggests that type 2 diabetes and obesity do not necessarily need to be associated with
resistin, but when resistin displays high circulating levels insulin resistance occurs [134].
Future research is necessary to decide on the utility of targeting resistin for obesity inter-
ventions.
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Visfatin

Visfatin is another adipokine, which at the time of its description was believed to be
mainly secreted by visceral fat. However, much like for resistin, visfatin was later found
to be released predominantly from macrophages which infiltrate the visceral adipose tis-
sue [135]. While it was initially reported to have insulin-mimetic effects, the binding to
the insulin receptor appeared to be spurious, since recombinant receptors with structural
changes that lead to decreased insulin affinity did not show changed visfatin binding
[136]. This lead to controversy with respect to its function and a retraction of the original
paper describing the molecule [136]. Visfatin is involved in regulation of inflammation
[135]. While obese subjects display increased levels [137], the exact role of the adipokine
and how it may influence energy balance is still under investigation.

Vaspin

Visceral adipose tissue-derived serine protease inhibitor (vaspin) or SERPINA12 was
identified in the visceral fat of the Otsuka Long-Evans Tokushima rat, an animal model,
characterized with central obesity and type 2 diabetes [138]. Vaspin induces activation of
the PI3K/AKT axis, independent of insulin receptor activation, promotes GLUT4 expres-
sion and translocation and hence improves insulin sensitivity [139,140]. A meta-analysis
of studies on obese and type 2 diabetic subjects showed that these individuals display
increased vaspin serum levels [141]. This suggests that unlike visfatin, vaspin upregula-
tion in obesity is a compensatory mechanism to combat insulin resistance. Additional to
GLUT4 mobilization the improved insulin sensitivity is likely mediated also by inhibition
of proteases involved in insulin degradation; hence, vaspin action leads to an increase of
insulin half-life [142].

Vaspin prompted the search for proteases as potential drug targets treatment of obe-
sity and its comorbidities [143].

3. Pharmacotherapy options

Therapeutic interventions based on lifestyle and diet changes have shown only mod-
est results [144]. Thus, there is growing interest in drug therapy that can support and pro-
mote weight loss. Generally, pharmacotherapy either enhances satiety and inhibits hun-
ger or increases catabolism. As detailed above increasing the understanding of the under-
lying pathophysiology of obesity holds promise for developing new more potent medica-
tions to curb the obesity epidemic.

Currently there are six major anti-obesity medications approved by the United States
Food and Drug Administration (FDA) (Table 1, Fig. 2). Of these as of August 2021 the
European Medicines Agency (EMA) has approved only four substances, since the combi-
nation therapy phentermine/topiramate was rejected in 2013 and semaglutide is under
evaluation since January 2021.

Except for orlistat, liraglutide, and the recently FDA-approved semaglutide the other
approved drugs influence only central nervous system pathways that either reduce appe-
tite or enhance satiety (Fig. 2).
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Setmelanotide

MC4R agonist; it acts in the paraventricular
nucleus of the hypothalamus and in the lateral
hypothalamic area to suppress the appetite

[ Liraglutide {Semaglutide]
GLP1 receptor agonist with incretin effects; it
interferes with glucese homeostasis, food intake,
and satiety.

Phentermine is a sympathomimetic that stimulates

noradrenaline and suppresses appetite. Topiramate is an /_ Orlistat
antiepileptic alsc used to treat migraines. The anorexigenic

mechanism of topiramate is not well understood.

It inhibits the activity of pancreatic and gastric
lipases and decreases fat absorption.

Naltrexone/bupropion

Naltrexone is an opiate antagonist, which blocks opiocid
receptor-mediated POMC auta-inhibition and bupropion
selectively inhibits reuptake of dopamine and

nc ine; it reduces food intake and increases energy
expenditure.

Phentermine/topiramate

Fig. 2. Summary of the mechanism of action for FDA/EMA approved anti-obesity
drugs.

Approved anti-obesity drugs for long-term weight management

Orlistat

Available since 1999 in many countries, orlistat is one of the approved anti-obesity
drugs by both FDA and EMA, which acts only in periphery. It is a selective inhibitor of
pancreatic lipase, that decreases fat absorption by 30% [12,145].

Efficacy: Orlistat is indicated in conjunction with a reduced-calorie diet for patients
with a BMI > 30 kg/m? or > 28 kg/m? with comorbidities like hypertension, diabetes, hy-
perlipidemia [38]. A systematic review observed a mean weight loss of 3.1 kg / year asso-
ciated with orlistat therapy [146]. Orlistat was shown to reduce the incidence of type 2
diabetes [147] and of LDL and total cholesterol regardless of the weight-loss impact [148].

Safety: Gastrointestinal side effects, reduced absorption of fat-soluble vitamins and
steatorrhea are very frequent [38]. Orlistat is also over-the-counter at a lower dose of 60
mg compared with the prescription-compulsory 120 mg formulation, suggesting no major
side effects are of concern [149].

Clinical insight: Orlistat 120 mg is administered three times daily. Although not se-
vere the adverse effects which include flatulence or fecal urgency and only a modest av-
erage weight loss make orlistat less popular than the appetite-suppressants described
above [149].

Naltrexone/bupropion

Naltrexone is an opiate antagonist, which blocks opioid receptor-mediated POMC
auto-inhibition, whilst bupropion selectively inhibits reuptake of dopamine and nora-
drenaline. The combination therapy is approved since 2012 by both the FDA and EMA.
The combination promotes satiety via enhancement of hypothalamic POMC-mediated re-
lease of melanocyte-stimulating hormone (MSH) resulting in reduced food intake and in-
creased energy expenditure [150].

Efficacy: Four major 56-week phase III randomized, placebo-controlled trials have
evaluated the efficacy [151-154]. A meta-analysis reported an annual weight loss of 4.8%
total body weight (mean 4.4 kg) [146].
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Safety: Common adverse events include nausea, constipation, headaches, vomiting,
dizziness, and dry mouth [149]. The drug is not recommended for patients with a history
of seizures, drug addiction, and bulimia and/or anorexia nervosa. Patients should not
combine the medication with other opiates [149].

Clinical insight: The current naltrexone SR/bupropion SR combination is available in
8 mg naltrexone SR and 90 mg bupropion dosing, which is upwards titrated over a 4-week
period for a total dosage of two tablets twice daily: one tablet once daily in the morning
during week 1, one tablet twice daily during week 2, two tablets in the morning and one
tablet in the evening during week 3, and finally two tablets twice daily during week 4
[149]. During the initial stage, if significant adverse effects occur, the dose should not be
further escalated until better tolerability is established. If within 12 weeks less than 5% of
initial body weight is lost the drug should be discontinued. Naltrexone SR/bupropion SR
appears to have good effects in patients with food addiction [154] and binge-eating disor-
der concomitant with alcohol abuse [155].

Phentermine/topiramate

Phentermine/topiramate is an extended-release combination which was FDA-ap-
proved in 2012. EMA refused its marketing authorization in Europe in 2013 raising con-
cerns with respect to cardiovascular safety and adverse psychiatric effects [156]. Phenter-
mine is a sympathomimetic that stimulates noradrenaline and suppresses appetite. Topir-
amate is an antiepileptic also used to treat migraine. The exact anorexigenic mechanism
of topiramate is not known,; its effect of appetite suppression is postulated to result from
modulation of various neurotransmitters, like inhibition of voltage-dependent sodium
channels, glutamate receptors, and carbonic anhydrase and the potentiation of y-amino-
butyrate activity [157]. The combination of the two drugs has greater weight-loss- and
lower side-effects than monotherapy with each one [149].

Efficacy: Two large randomized, double-blind, placebo-controlled trials over 52
weeks [158,159] and one 2-year extension trial with an additional 52 weeks of treatment
have been conducted [160]. A recent meta-analysis noted a mean weight loss of 9.8 kg per
year in the randomised-controlled trials [146]. Patients also benefitted from improved li-
pid profile, glycemic control, and waist circumference [158-160].

Safety: While EMA has not approved the usage, FDA expressed concerns in respect
to teratogenicity, cardiovascular side effects (triggered by phentermine), as well as cogni-
tive, psychiatric, and metabolic acidosis (this three being triggered by topiramate) [149].
Abrupt withdrawal of topiramate increases the risk of seizures, thus gradual downward
titration of the combination drug, over 3-5 days is recommended [158-160]. Common side
effects include insomnia, dizziness, and paresthesia [38].

Clinical insight: This combination drug shows one of the highest weight-loss effects,
but the price of $232/kg weight loss can be a limiting factor [161]. The individual active
substances can be prescribed separately in available monotherapy dosages (phentermine
8 mg, 15 mg, 30 mg and 37.5 mg; topiramate 15 mg, 25 mg, 50 mg, 100 mg and 200 mg)
[149]. Topiramate monotherapy is not approved for the treatment of obesity, but it has
shown benefits for treating binge-eating disorder [162] and against weight regain follow-
ing bariatric surgery [163].

Liraglutide

Liraglutide is a GLP1 receptor agonist of the incretin hormone which affects glucose
homeostasis, food intake, and satiety. It is approved since 2012 at 1.8 mg for T2D and at a
higher dose of 3.0 mg for obesity. Due to the incretin properties, the drug was originally
marketed for the treatment of type 2 diabetes [38]. Liraglutide and semaglutide are the
only approved injectable anti-obesity drug, while all others are oral drugs [149].

Efficacy: The efficacy of 3.0 mg liraglutide in combination with a reduced-calorie diet
and increased physical activity was assessed in four 56-week randomized, placebo-



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 September 2021

controlled trials [164-167]. A meta-analysis noted an additional annual weight loss of 5.3—
5.9 kg compared to placebo [146].

Safety: Most common side effects are transient and mild to moderate intensity gas-
trointestinal symptoms like: nausea, diarrhoea, constipation, vomiting, dyspepsia, and ab-
dominal pain [164-167]. Liraglutide is contraindicated in patients with a family or per-
sonal history of medullary thyroid carcinoma or patients with multiple endocrine neo-
plasia type 2 (MEN2) syndrome [149]. The reason for the contraindication is that rats and
mice exposed to liraglutide developed malignant thyroid C-cell carcinomas; however the
implication for humans has not been established yet [168]. There appears to be an in-
creased risk for pancreatitis, although some studies did not find this to be statistically
significant [169]. A recent meta-analyses addressing this issue followed patients up to 3
years and concluded that GLP-1 receptor agonists including liraglutide and semaglutide
can be used with no safety concerns related to malignant neoplasia [170].

Clinical insight: The initial dose is 0.6 mg subcutaneously once daily for the first week
followed by 0.6 mg increments every week, to a maximum of 3.0 mg. In case of persisting
adverse effects the dose is not increased until better tolerability is achieved [149].

Setmelanotide

Setmelanotide is an MC4R agonist, which acts in the paraventricular nucleus of the
hypothalamus and in the lateral hypothalamic area to suppress the appetite [38]. It has
been recently approved by FDA (November 2020) [171] and EMA (July 2021) [172] for the
treatment of monogenic forms of obesity.

Setmelanotide is approved starting age six in patients with obesity in the presence of
genetic variants in POMC, PCSK1, or LEPR genes classified as pathogenic, likely patho-
genic, or of uncertain significance [171] according to the American College for Medical
Genetics Guidelines [173].

Efficacy: The treatment of two patients with POMC deficiency resulted in massive
weight loss of 51.0 kg and 20.5 kg over 42 and 12 weeks, respectively [173]. A clinical trial
including obese participants with heterozygous MC4R deficiency and setmelanotide lead
to a placebo-adjusted weight loss of 2.6 kg, which is far less than in individuals with
POMC defects [174]. There is a recently completed clinical trial (March 8t 2021), which
evaluated the effect of setmelanotide in patients with Bardet-Biedl and Alstrom Syn-
dromes suffering from obesity [175]. Results from this study are not published at the time
of the present manuscript writing (August 2021). A long-term trial including 150 partici-
pants with genetic defects upstream of the MC4 Receptor (Fig. 1) in the leptin-melano-
cortin pathway is expected to finish in March 2023 [176].

Safety: Common side effects include injection site reactions, skin hyperpigmentation,
headache, and gastrointestinal symptoms like nausea, diarrhea, and abdominal pain [171].

Clinical insight: Setmelanotide is administered subcutaneously with a starting dose
of 2 mg / day for two weeks. If the initial dose is not tolerated, the dose should be reduced
to half till the desired tolerability is achieved. If the initial dose is well tolerated it can be
titrated to 3 mg / day. If weight loss is not >5% of baseline body weight after 12-16 weeks
of treatment, the administration should be discontinued.

Semaglutide

Semaglutide, the most recently approved anti-obesity drug, is another GLP1 receptor
agonist with similar mechanism of action as liraglutide. It was initially designed as a po-
tent long-acting drug that could be administered up to 1 mg subcutaneously once weekly,
and was approved for treatment of type 2 diabetes in 2017 [177]. In June 2021 FDA ap-
proved semaglutide at a higher dose (2.4 mg) once weekly [25] for chronic weight man-
agement in obese or overweight adults with at least one weight-related condition. It is also
currently under review by EMA.

Efficacy: The efficacy and safety of semaglutide 2.4 mg/week versus placebo was
evaluated in four 68-week trials [21-24]. In three of the trials including patients without
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diabetes mellitus the treatment group attained an almost incredible 15%-18% weight loss
(corresponding to a placebo-subtracted 10.6-15.8 kg) over 68 weeks. In one trial including
only patients with type 2 diabetes and a BMI of at least 27 kg/m?, the mean weight loss
was a placebo-subtracted of 6.2%. These findings are seen as a major breakthrough for
obesity treatment and the drug is considered a game-changer [26].

Safety: Semaglutide is generally well-tolerated. The most common side effects were
nausea, diarrhea, vomiting, constipation, abdominal pain, headache, fatigue, dyspepsia,
dizziness, abdominal distension, eructation, hypoglycemia for diabetic patients, flatu-
lence, gastroenteritis, and gastroesophageal reflux disease. Serious adverse events (SAE)
were reported in 9.1%and 2.9% of the participants in the semaglutide and placebo groups
respectively, including hepatobiliary disorders and infections[24]. Like liraglutide, there
is a warning for potential risk of thyroid C-cell tumors. It is contraindicated for patients
with a personal or family history of medullary thyroid carcinoma or MEN2 [25].

Clinical insights: Semaglutide is administrated once weekly, initiated at 0.25 mg, with
dose escalation every 4 weeks to 0,5 mg, 1 mg, 1,7 mg until the target dose of 2.4 mg/week
is reached. If participants cannot tolerate the 2.4-mg dose, they can receive 1.7 mg instead.
They should be encouraged to make at least 1 attempt to reescalate to the 2.4-mg dose.

Other drugs in potential use for anti-obesity treatment
Lorcaserin (withdrawn from market in February 2020)

Lorcaserin is a 5-hydroxytryptamine receptor 2C (5-HTz) agonist that acts on ano-
rexigenic POMC neurons in the hypothalamus to suppress the appetite. It was approved
for use by the FDA in 2012 as support for diet and lifestyle changes in adults with a BMI
230 kg/m? or those with a BMI >27 kg/m? and at least one weight-related comorbid condi-
tion such as diabetes, hypertension, hyperlipidemia or sleep apnoea [178]. Three major
randomized, double-blind, placebo-controlled trials of 52-week or 104-week duration
evaluated the efficacy of lorcaserin [179-181]. A systematic review noted a mean annual
weight loss of 3.1 kg [146] additional to improved metabolic parameters like blood pres-
sure, total and LDL cholesterol [182].

However, despite good weight-loss results EMA did not approve the use of lorca-
serin and FDA requested withdrawal from market in February 2020 because of possible
increased risk of colorectal, pancreatic, and lung cancer.

Sodium-Glucose Co-Transporter-2 Inhibitors (not indicated for obesity alone)

Inhibitors of Sodium-Glucose Co-Transporter-2 (SGLT2) were initially introduced as
orally available treatment option for type 2 diabetes mellitus. In healthy individuals the
glucose filtered at the renal glomerulus is almost completely reabsorbed up to a threshold
of 10 mmol/L (180 mg/dL) of plasma glucose concentration [183,184]. The SGLT2 is re-
sponsible for the glucose reabsorption in the proximal convoluted renal tubule of >90% of
the glucose filtered at the glomerulus [185]. SGLT2 inhibitors lead to ca. 50% of filtered
glucose to be excreted, thus improving glycemic control and reducing body mass typically
by 2 kg compared with placebo [186].

While in the large outcome trials of SGLT2 inhibitors their effects on atherosclerotic
cardiovascular disease endpoints were moderate, an unexpected and consistent effect on
the risk of heart failure was observed. These findings led to the initiation of dedicated
heart failure trials [15,183,187-189]. Both dapagliflozin and empagliflozin were shown to
reduce heart failure risk independently of the presence of type 2 diabetes in patients with
reduced ejection fraction (HFrEF) [3]. Moreover, in July 2021 Boehringer Ingelheim and
Eli Lilly announced that empagliflozin in a landmark trial proved to be the first and only
drug successful for the treatment of heart failure with preserved ejection fraction (HFpEF)
[28]. Also, in April 2021 FDA has approved dapagliflozin for treatment of patients with
chronic kidney disease (CKD), irrespective of whether they have diabetes. The complete
spectrum of mechanisms that lead to clinical benefits are being extensively investigated
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because they are unlikely to be related to the improved glycemic control alone. The reduc-
tion in heart failure risk is likely to be due to different mechanisms, including diuresis,
changes in myocardial metabolism, and effects on the myocardium and the vasculature
[190,191]. In a genetic analysis, SNPs in the SGLT2-encoding gene were associated with
reduced risk of heart failure, while the main mediators of this association were changes in
HbA1, HDL cholesterol, and uric acid [192]. Further research is required to provide a
deeper understanding of the mechanisms of action.

Treatment with SGLT2 inhibitors is not indicated for the treatment of obesity. How-
ever, there is an indication and approval for common co-morbidities of obesity such as
type 2 diabetes and heart- and renal failure. Since SGLT?2 inhibitors beneficially influence
many factors that contribute to the development of complications of obesity and a poor
prognosis in general — such as blood pressure, body weight, blood glucose, uric acid, and
kidney function — it appears justified to assume that patients with obesity and an indica-
tion for SGLT2 inhibitors will especially benefit from treatment with a member of this
drug class.

Cardiovascular comorbidities outcomes for anti-obesity medication

While cardiovascular outcomes trials are ongoing with anti-obesity agents, none of
the drugs at the dose and indication to treat obesity has shown to reduce major cardiovas-
cular adverse events (MACE) [6]. However, following weight loss, many anti-obesity
drugs improve the cardiovascular risk factors. Also, in patients with T2DM SGLT?2 inhib-
itors and GLP1-RA (in the dose indicated for diabetes treatment) can reduce MACE, and
in some cases, reduce overall mortality [3,5,6,193]. Ongoing cardiovascular outcome stud-
ies are evaluating subcutaneous semaglutide 2.4 mg per week in patients with obesity
(SELECT-Trial).
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Table 1. Overview of the FDA/EMA approved pharmacotherapy options
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lems
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nausea, constipation, headaches, seizures, drug addiction, bulimia,

1 i 44Kk
Naltrexone/bupropion & vomiting, dizziness, dry mouth anorexia nervosa. Or in combination
with opiates
contraindicated in patients with a
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nausea, diarrhoea, constipation, . . .
Liraglutide 5.3-59k vomiting, dyspepsia, abdominal lary thyroid carcinoma or with
& oTEE & Cyspepsia, MEN?2 syndrome (rats and mice de-
pain . .
veloped thyroid C-cell carcinomas;
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nausea, diarrhea, vomiting, consti- potential risk of thyroid C-cell tu-
pation, abdominal pain, headache, mors. It is contraindicated for pa-
Semaglutide 6.6-15.8 kg fatigue, dyspepsia, dizziness, hy- tients with a personal or family his-
poglycemia for diabetic patients,  tory of medullary thyroid carci-
flatulence, gastroenteritis noma or MEN2
o . daily multivitamin intake is recom-
. vitamin deficiency, steatorrhea, fe- .
Orlistat 3.1kg . . mended because of malabsorption
cal urgency, fecal incontinence o
of fat-soluble vitamins
2.6 kgin MC4R defi-, ., = | . .
. injection site reactions, skin hyper- .
. ciency, 51 and 20,5 . . approved for monogenic forms of
Setmelanotide . . ... pigmentation, headache, nausea, .
kg in 2 patients with diarrhea. abdominal pain obesity
POMC deficiency ’ P

Further potential pharmacotherapeutic targets

Polyagonists of the incretin system

A drug that affects multiple receptors may have a greater weight loss effect compared
with single mechanism molecules. This has led to the development of several incretin-
related therapies such as GLP-1/glucagon receptor dual agonists, GLP-1/GIP dual ago-
nists, and GLP-1/GIP/glucagon receptor triple agonists [194,195]. As detailed above GLP1
controls glycemic regulation and induces satiety. Glucagon receptor stimulation via ox-
yntomodulin enhances energy expenditure by increasing oxygen consumption, lipid ca-
tabolism, and thermogenesis [196]. GIP increases pancreatic insulin release, and in low
glucose state it also stimulates glucagon secretion [38]. GIP analogues can thus potentiate
the diabetogenic glucagon effect but given the opposing effect of GLP1 on glucagon se-
cretion, the combined therapy showed better outcomes. While these drugs are not yet ap-
proved for use preclinical and recent clinical trials show promising results [194,195,197].
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Amylin mimetics

Amylin induces satiety and inhibits glucagon secretion. The amylin analogue pram-
lintide was licensed by the FDA in 2005 for patients with insulin-treated diabetes [38]. In
diabetic patients the amylin analogue can induce weight loss by curbing the appetite [198].
However, results with different analogues appeared to be quite variable, which lead to
discontinuation of most mono- and combination therapies [38].

Leptin analogues

Metreleptin is a recombinant analog of human leptin with an additional methionine
compared to the leptin amino acid sequence. While based on the energy balance physiol-
ogy, detailed above, there is a strong rationale for leptin analogues in obesity treatment,
metreleptin failed to achieve clinically meaningful weight loss with a mean of just 1.5 kg
lost over 24 weeks [199]. To enhance the effect of leptin analogues, a combination therapy
with amylin mimetics such as pramlintide was tested with good results showing 11.5 kg
weight loss over 20 weeks compared with 7.4 kg and 7.9 kg for metreleptin or pramlintide
monotherapy, respectively [200]. However, following commercial reassessment the fur-
ther development of the combination therapy was discontinued in 2011 [38]. Still, in 2014
FDA approved the use of metreleptin in patients with leptin deficiency or lipodystrophy
as subcutaneous injection in a once or twice daily administration [38].

Ghrelin vaccine and antagonists of ghrelin and NPY

Ghrelin is the only known hormone secreted by the digestive system with an orexi-
genic effect. As detailed above, ghrelin stimulates NPY- and inhibits POMC-neurons lead-
ing to increased appetite. An interesting therapy approach was vaccination against
ghrelin, which slowed weight gain in rats by decreasing feeding efficiency [201]. Also
ghrelin antagonists promoted weight loss and improved insulin tolerance in rats [202],
but both strategies showed no success in human studies and clinical studies are currently
not undertaken [38,203]. Similarly, NPY inhibition did not achieve clinically meaningful
results to justify obesity treatment [204]. It appears thus that inhibiting the appetite stim-
ulants reaches less effective results compared to the stimulation of anorexic stimuli medi-
ators.

Cannabinoid type-1 receptor antagonists

Rimonabant, a CB1 antagonist showed excellent weight loss outcomes with an addi-
tional mean weight loss of 4.7 kg in clinical trials [205]. Similar to the animal models [70],
rimonabant use improved metabolic markers including glycemic and lipid control [206].
Yet, in 2009 three years after EMA approval, the drug had to be withdrawn because of the
increased risk of severe mood disorders and suicide [207]. Based on the peripheral effects
of CB1 antagonists in rats [70] it appears of clinical relevance to design less hydrophobic
CB1 antagonists to reduce the blood-brain barrier penetration and therefore the centrally
mediated psychiatric side effects [38].
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4. Conclusion

The Obesity Medicine Association defines obesity as a chronic, progressive, relaps-
ing, and treatable multi-factorial, neurobehavioral disease, wherein an increase in body
fat promotes adipose tissue dysfunction and abnormal fat mass physical forces, resulting
in adverse metabolic, biomechanical, and psychosocial health consequences [6]. The com-
plicated definition testifies for the complexity of the problem. The more simple and prag-
matic definition of overweight and obesity, as a body mass index (BMI) over 25 and 30
respectively is nearly universally accepted. Obesity represents a rapidly escalating public
health issue, taking over many parts of the world [208,209] that contrary to conventional
belief is not limited to industrialized countries [209], with the majority of affected children
living now in developing countries [208]. Considering the worldwide number of individ-
uals affected, there are good arguments to see obesity as the biggest pandemic of all time.
Thus, it is high time to develop preventive and therapeutic strategies. An improved un-
derstanding of the pathophysiology, including fat redistribution and accumulation is a
prerequisite for developing more potent therapies. Insights gained from animal [210] and
cellular [211-213] models for obesity may eventually help identify additional relevant
pathways and molecules, which can ultimately lead to better treatments. In this article we
have highlighted known players in the physiology of energy balance and the correspond-
ing potential or already approved therapies. The rapidly evolving diabetes pharmacother-
apy will surely contribute to the introduction of new drugs to tackle this pandemic. Con-
sidering the history of other metabolic diseases (i.e. hypertension, dyslipidemia and dia-
betes mellitus) if the ongoing trials provide evidence that anti-obesity agents can improve
MACE, their acceptance and use in clinical practice can increase dramatically.
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