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Abstract: Glyphosate (N-(phosphonomethyl)glycine) is a herbicide used to kill broadleaf weeds and 
grass, developed in the early 1970s. The widely occurring degradation product 
aminomethylphosphonic acid (AMPA) is a result of glyphosate and amino-polyphosphonate 
degradation. The massive use of the parent compounds leads to the ubiquity of AMPA in the 
environment, and particularly in water. Considering this, it can be assumed that glyphosate and its 
major metabolites could pose a potential risk to aquatic organisms. This review summarises current 
knowledge about residual glyphosate and their major metabolite AMPA in the aquatic 
environment, including status and toxic effects in aquatic organisms, mainly fish, are reviewed. 
Based on the above, we identify major gaps in the current knowledge and some directions for future 
research knowledge about the effects of worldwide use of herbicide glyphosate and its major 
metabolite AMPA. The toxic effect of glyphosate and their major metabolite AMPA has mainly 
influenced growth, early development, oxidative stress biomarkers, antioxidant enzymes, 
haematological, biochemical plasma indices, caused histopathological changes in the aquatic 
organism. 
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Abbreviations: ABC transporter activity: adenosine triphosphate-binding cassette transporters 
constitute; AChE: acetylcholinesterase; ACP: acid phosphatase; AKP: alkaline phosphatase; ALP: 
alkaline phosphatase; ALT: alanine aminotransferase; AMPA: aminomethylphosphonic acid; AST: 
aspartate aminotransferase; ATMP: amino tris(methylenephospohonate); β-GD: β- glucuronidase; 
BChE: butyrylcholinesterase; BCF: bioaccumulation factor; BUN: blood urea nitrogen; C-N bond: 
carbon-nitrogen bond; Ca2+: calcium ion; Cacanal1C: L-type calcium chanel; CAT: catalase; CbE: 
carboxylesterase, CES: carboxylesterases; ChOL: cholesterol; CK: creatinine; CPM: cardiac pumping 
capacity; CRE: creatine; DNA: deoxyribonucleic acid; DTPMP: diethylenetriamine 
penta(methylenephosphonate); EC10: equivalent to the No observed effect concentration; EC20: 
equivalent to the Lo observed effect concentration; EC50: effective concentration that affects 50% of 
the population; EDTMA: ethylenediamine tetra(methylenephosphonate); ENA: erytrocytic nuclear 
abnormalities; EndoIII: endonuclease III; FAC: free amino acid levels; FPG: formamidopyrimidine 
DNA glycosylase; G6PDH: glucose-6-phosphate dehydrogenase; GDI: total DNA damage; GL: 
glycogen; GLU: glucose;  GLY: glyphosate; GOT: glutamic-oxaloacetic transaminases; GPx: 
glutathione peroxidase; GPT: glutamic-pyruvic transaminases; GR: glutathione reductase; GSH: 
glutathione; GSH-Px: glutathione peroxidase; GST: glutation-S-transferase; Hb: hemoglobin; HCT: 
hematocrit; HDTMP: hexamethylenediamine tetra(methylenephosphonate); HL: haemocyte lysate; 
hspb11: heat shock protein; IC: inhibition concentration; IPA: isopropylamine salt; LACT: lactate; 
LC: lethal concentration; LDH: lactate dehydrogenase; LPO: lipid peroxidation; Na+/K+-ATPase: 
sodium-potassium adenosine triphosphatase; NOEC: no observed effect concentration; MCH: mean 
cell hemoglobin; MCV: mean cell volume; MDA: methanedicarboxylic aldehyde; Mg2+: magnesium 
ion; mg ae/L: miligrams active ingredient per liter; Mn2+: manganese ion; NAA: N-Acetyl aspartate; 
NH3: ammonia; NO: nitric oxide; P: protein; PC: protein carbonyl; PCV: hematocrit; POD: 
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peroxidase; RBC: erythrocytes; ROS: reactive oxygen species; ryr2a: Ryanodine receptor; SOD: 
superoxide dismutase; T-AOC: total antioxidant activity; TAG: triacylglycerides; TBARS: 
thiobarbituric acid reactive substances; THC: total hemocyte count; THR: thrombocytes; TL: Total 
lipids; TP: total protein; TRβ mRNA: TRβ mRNA: Thyroid hormone receptor beta of messenger 
ribonucleic acid; TtHR: time to half relaxation; UN: urine nitrogen; U.S. EPA: United States 
Environmental Protection Agency; WBC: leukocytes; Zn+: zinc ion. 

1. Introduction 
In recent years, knowledge about pesticide’s persistence, mobility and ecotoxicity is 

valuable. Using pesticides and other agrochemicals is the most cost-effective way to 
maintain economic viability in an increasing human population [1-2]. On the other hand, 
the intensive application and repeated use of pesticides in the field for increasing the crop 
yield lead to long-term risk for humans, fauna, flora, and the whole ecosystem (soil, air, 
water) [1-3]. Extensive use of pesticides is not a problem only in agricultural areas, but 
also in urban settings are pesticides applied for horticultural purposes. Therefore, it is 
challenging to control the source of diffuse chemical pollution and its consequences [4]. 
Especially presence of pesticides and their metabolites occurring in the residual 
concentration in drinking, ground- and surface waters comprises a global problem [1,3]. 

Before World War II, natural and organic pesticides were used. However, after this 
was necessary to increase the production of crops as a defence against starvation and 
malnutrition, this was an opportunity for an industrial company to produce new synthetic 
agrochemicals and worldwide use of them [5]. A considerable amount of pesticide-based 
chemicals with different uses and modes of action have been brought to market. Despite 
chemical structures, way or period of action, and target organisms (according to United 
States Environmental Protection Agency 40% herbicides, following insecticides and 
fungicides) [6]. Later after World War II, in 1970, John Franz discovered the glyphosate-
based herbicide effect working in Monsanto company (United States). Under the trade 
name, “Roundup” was registered in 1974 [7-8]. Thanks to initial toxicity tests, which posed 
relatively low risks to non-target organisms, including mammals, relatively high exposure 
limits of glyphosate have been set worldwide. In a short time, use of this popular herbicide 
dramatically increased due to genetically modified crops (soybean, canola, alfalfa, maize, 
cotton, corn) to be tolerant to glyphosate, its utility in agronomy and urban settings, and 
the perception that it has low toxicity and little mobility in the environment [9-11]. 
However, ecotoxicology and epidemiology studies published in the last decade point to 
the need for intensive testing toxicity of glyphosate [11]. Furthermore, the World Health 
Organization’s International Agency for Research on Cancer recently concluded that 
glyphosate is “probably carcinogenic to humans” [12-14]. 

The most prevalent glyphosate degradation pathway in bacterial strains is the 
cleavage of C-N bond and conversion to aminomethylphosphonic acid (AMPA), which is 
either further decomposed or excreted to the environment [15-16]. AMPA is a primary 
product of the degradation process of glyphosate, and the following non-toxic products 
are sarcosine and glycine. Unlike AMPA, which is 3-6-fold times more toxic and persistent 
than glyphosate [17], sarcosine is barely detected in the natural environment [18], except 
under the experimental condition in a laboratory [16].  

Natural processes in motion in the environment, pesticides can be removed to a 
certain extent. But also, potential risk of residues from the biodegradation process [4,19]. 
By implication of widespread use of pesticides, residual concentrations of pesticides and 
their metabolites are commonly found ubiquitously through different environment 
constituents ranging from 1 ng/L to 1 mg/L or higher concentration [3-4]. There is also a 
potential risk of banned pesticides. They were excluded because of their long persistence 
and toxicity in the ecosystem for many years. For example, organochlorine insecticides 
were still detectable in waters after 20 years [20] or Acetochlor ESA, the major metabolite 
of banned Acetochlor in the European Union in 2012 no 1372/2011 [21], was found in 
waters of the Czech Republic in recent years [22-23]. Although these are usually in low 
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concentrations in the environment, they may be present as complex mixtures. The 
metabolites may be as toxic as their parental compound or even higher. Therefore, the 
presence of these substances raises significant ecotoxicological concerns [e.g., 24-26]. 

Due to repeated application of pesticides arise to physical and chemical changes in 
water properties that are reflected in the modification of the cellular and biochemical 
biology of aquatic communities, leading to significant changes in tissues, physiology, and 
behaviour [27-28]. Therefore, it may affect the daily or seasonal rhythm and reproduction 
ability of aquatic organisms. Environmental stress from xenobiotics may cause losing of 
habitats and consequently losing freshwater biodiversity [29-30], which imply that the use 
of pesticides, despite their advantage in controlling pests, diseases, fungi, etc. has 
adversely impacted their ubiquity in the environment [e.g., 16-17,31-32]. 

As far as is known, in the literature is several studies and reports about an occurrence 
or toxic effects of different type of pesticides and their metabolites; nevertheless, their 
global extents and spatial extent of exposure remain largely unknown [2,33]. Considering 
this information, we decided to write a review to summarise the toxic effects of often using 
herbicide glyphosate and their metabolite AMPA on aquatic organisms.  

2. Glyphosate (N-(phosphonomethyl)glycine) 
Glyphosate (GLY) is belonging to the phosphonoamino acid class of pesticides. 

Glyphosate is an acid that can be associated with different counter cations to form salts 
[15]. This herbicide is a crop desiccant, broad-spectrum, non-selective, post-emergency 
herbicide that affects all annual and multiannual plants and aquatic weed control in 
ponds, lakes, canals, etc. [34-35].  

Unlike GLY, whose small molecule consists of a linear chain with weak bonds, the 
molecules of other herbicides are usually arranged in aromatic circular structures. This 
difference reduces the persistence of glyphosate in the environment [36]. For higher water 
solubility, GLY is formulated as potassium salts or isopropylamine salts, and a surfactant, 
poly-oxyethylene amine (POEA), is added to enhance the efficacy of the herbicide. 
Another formulation, Rodeo, contains the isopropylamine salt (IPA) of GLY without the 
surfactant and is primarily used for controlling aquatic weeds [35,37] or Roundup 
Transorb, which contain a mix of 15% POEA and additional surfactants [38]. The Roundup 
includes 48% of active agent IPA [34] or potassium salts in the range 167-480 g.l-1 depends 
on the type of area where the Roundup is applied [39].   

  
2.1 Environmental fate 

Even though solid bond to the soil amount of GLY which leach or runoff to surface- 
or ground- waters is low [40], spray drift from the ground and aerial applications of 
glyphosate may enter to aquatic ecosystems [41]. Hight application rates, rainfall, and a 
flow route that does not include transportation of GLY through the soil from watersheds 
comprise the most risk for offsite transport of GLY [9]. For example, the United States 
Environmental protection agency [15] reports predicted GLY concentration from direct 
applications into a standard pond in 103.8-221.5 μg/L for daily peak, 101.8-217.5 μg/L for 
21-day average, and 98.4-210 μg/L for 60-day average. In water bodies, the glyphosate-
based herbicide is usually detectable as glyphosate acid equivalent at a range level from 
0.01 mg/L to 0.7 mg/L and reaching the worst case for surface waters of 1.7 mg/L [42-44]. 
Coupe et al. [9] reported concentration of GLY for Mississippi, Iowa, and France ranged 
from 0.03 to 73 μg/L, 0.02-1.6 μg/L, and 1.9-4.7 μg/L, approximately. 

This herbicide is unique for its high efficiency, transformation on major metabolite 
AMPA due to microbial degradation [16,40], and physiochemical properties: water 
solubility 11.6 g/L at 25°C, low lipophilicity LogP <-3.2 at 20°C, dissociation constant of 
2.3 at 25°C [40]. Under aerobic conditions, the half-life of GLY ranges from 1.8 to 109 days 
in soil and 14-518 days in water-sediment systems; however, in anaerobic water-sediment 
systems ranges from 199 to 208 days [15]. Nevertheless, according to published data half-
life of GLY ranges from 7 to 14 days [40]. 
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Owing to their high-water solubility and extensive usage in the environment 
(especially in shallow water systems), GLY contamination has emerged as an urgent issue. 
Therefore the exposure of non-target aquatic organisms to these herbicides is a concern of 
ecotoxicologists [16,37].  

2.2 Acute toxicity 
It has been already mentioned that initial testing of GLY did not fully demonstrate 

its toxic effects, and therefore the amount for use was not over-regulated. U.S. EPA 
divided toxicity of GLY into slightly toxicity with concentration 10 - 100 mg/L and almost 
non-toxicity with higher concentration > 100 mg/L to fish species with acute LC50 values 
from > 10 to > 1000 mg/L [15]. The lethal concentration for fish is in the range 0.295 to 645 
mg/L (Table 1), for amphibians is in the range 6.5 to 115 mg/L (Table 2) and for 
invertebrate species from 35 to 461.54 mg/L (Table 3).  

Table 1. Acute toxicity values (LC50) of glyphosate and its commercial product on fish. 

Species 
Formu-
lation 

Exposure 
(hours) 

Concentration 
(mg/L)  

Referen
-ces 

Rainbow trout 
(Oncorhynchus mykiss) 

GLY 96 140 [41] 
Roundup1 96 52-55 [45] 

Common carp 
(Cyprinus carpio) 

GLY 
48 645 

[46] 
96 620 

Roundup1 96 22.19 [47] 

GLY 
48 602.61 

[48] 
96 520.77 

Black-head minnow 
(Pimephales promelas) 

GLY 

96 97 

[41] 
Channel catfish 

(Ictalurus punctatus) 
96 130 

Bluegills 
(Lepomis macrochirus) 

24 150 

96 140 

Barbados millions 
(Poecilia reticulata) 

GLY 96 69.83 [49] 

Rhamdia quelen GLY 96 7.30 [50] 
North African catfish 

(Clarias gariepinus) GLY 96 0.295 [51] 

Leopard Danio  
(Danio rerio) 

Atnor 482 96 76.50 [52] 

Ten spotted live-bearer 
(Cnesterodon 

decemmaculatus) 
Glyfoglex3 96 41.40  [53] 

1Roundup (active substance glyphosate, 41%), 2Atnor 48 (active substance glyphosate, 48%), 
3Glyfoglex (active substance glyphosate, 48%). 
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Table 2. Acute toxicity values (LC50) of glyphosate and its commercial product on amphibians. 

Species 
Formu-
lation 

Exposure 
(hours) 

Concentration 
(mg/L) 

Referen
-ces 

Boana pardalis 
GLY 

96 106 
[54] 

Physalaemus cuvieri 96 115 

Green frog 
(Lithobates clamitans) 

Roundup1 

24 6.6 

[55] 

96 6.5 

Northern leopard frog 
(Lithobates pipiens) 

24 11.9 

96 9.2 

Wood frog 
(Lithobates sylvaticus) 

24 18.1 

96 16.5 

Dwarf American toad 
(Anaxyrus americanus) 

24 13.5 

96 < 12.9 

Rhinella arenarum 
Roundup 

Ultra-
Max2 

48 
2.42 

[56] 
77.52 

1Roundup (active substance glyphosate, 41%), 2Roundup Ultra-Max (active substance glyphosate, 
36%). 

 

Table 3. Acute toxicity values (LC50) of glyphosate and its commercial product on invertebrate 
species. 

Species 
Formu-
lation 

Exposure 
(hours) 

Concentration 
(mg/L) 

References 

Midge larvae 
(Chironomus plumosus) GLY 48 55 [41] 

Ceriodaphnia dubia 
Roundup1 

48 147 [37] 
 Acartia tonsa 48 35 

Chinese mitten crab 
(Eriocheir sinensis) 

GLY 
24 461.54 

[57] 
96 97.89 

1Roundup (active substance glyphosate, 41%). 

2.2 Toxic effects 
2.2.1 Fish 
GLY toxicity has been studying in recent years on various kinds of aquatic organisms. 

Exposure to GLY may cause several changes in fish (Table 4), such as haematologic 
changes, biochemical processes in tissues [38], genotoxicity [52,58], histopathological 
damage, immunotoxicity [48,59], or cardiotoxicity [60].  
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Table 4. Toxic effects of glyphosate and its commercial product on fish. 

Species Concentration Exposure Effects 
Referen-

ces 

Common carp 
(Cyprinus carpio) 

2.5, 5, 10  
mg/L 
(GLY) 

96 hours 

↑ ALP in liver, heart, GOT in liver and kidney, GPT in 
kidney; 

Subepithelial edema and epithelial hyperplasia in gills, 
focal fibrosis in liver 

[46] 

3.5, 7, 14 mg/L 
(Roundup1) 

16 days 
↑ MCV, MCH; 

↓ AChE in muscle, brain and liver, Hb, HCT, RBC, 
WBC, AST, ALT, LDH 

[47] 

52.08, 104.15 
mg/L 
(GLY) 

7 days 

Vacuolization of the renal parenchyma and 
intumescence of the renal tubule in kidney, 

immunotoxicity,  
[48] 

↑ AST, ALT, MDA, PC; 
↓ GSH, inhibition of NA+/K+ -ATPase, SOD, CAT, 
GPx, GR, T-AOC, induce inflammatory response in 

gills 

[59] 

European eel 
(Anguilla Anguilla) 

58, 116 μg/L 
(Roundup1) 

1, 3 days 
↑ TBARS, LPO, GDI, ENA  

 
[42] 

↑ GDI, damage nucleoids, EndoIII  [58] 

Curimbata 
(Prochilodus lineatus) 

10 mg/L 
(Roundup1) 

24 hours ↑ GSH, GST, LPO;  
↓ SOD, GPx, inhibition AChE in muscle [38] 

96 hours ↑ GST, LPO; 
inhibition AChE in muscle in brain and muscle 

Spotted snakehead 
(Channa punctatus) 

32.54 mg/L 
(Roundup1) 

1, 7, 14, 21, 
28, 35 days 

↑ TBARS, DNA damage, LPO, ROS; 
↓ CAT, SOD, GR in gill and blood   

[61] 

Ten spotted live-bearer 
(Cnesterodon 

decemmaculatus) 

1, 1.75, 35  
mg/L 
(GLY) 

96 hours ↓ AChE [62] 

Megaleporinus obtusidens 

3, 6, 10, 20 
mg/L 

(Roundup1) 
96 hours 

↑ hepatic GL, GLU, NH3 in liver and muscle, PCV, 
Hb, RBC, WBC, P; 

↓ AChE in brain, LACT, P in liver, muscle GL, 
GLU 

[63] 

5 mg/L 
(Roundup1) 90 days 

↑ LACT in liver and muscle, P in liver;  
↓ AChE, GL in liver, P in muscle, PCV, Hb, RBC, 

WBC 
[64] 

Rhamdia quelen 

0.2, 0.4  
mg/L 

(Roundup1) 
96 hours 

↑ hepatic GL, LACT in liver and muscle, P in liver 
and muscle, NH3 in liver and muscle, TBARS in 

muscle; 
↓ muscle GL, GLU in liver and muscle, AChE in 

brain 

[65] 

0.730  
mg/L 
(GLY) 

24, 96 hours, 
10 days 

↑ immature circulating cells;  
↓ RBC, THR, WBC, phagocytic activity, 

agglutination activity, lysozyme activity  
[66] 

18, 36, 72 μg/L 
(Roundup1) 

7 days ↑ TP in liver, ↑ GL in muscle; 
↓ TP, GL, TL in gills, liver and kidney 

[67] 

Goldfish  
(Carassius auratus) 

2.5 - 20  
mg/L 

(Roundup1) 
2 months 

↑ CAT in liver and kidney;  
↓ GR in kidney, liver and brain, G6PDH in kidney, liver 

and brain, SOD in kidney, liver and brain 
[68] 

0.22, 0.44, 0.88 
mmol/L 

96 hours 
Behaviour abnormalities (observed depression, 

erratic swimming, partial loss of equilibrium), liver 
[69] 
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(GLY) tissue damage (cellular swelling, inflammatory cell 
infiltration, hydropic degeneration, loose 

cytoplasm, ↑ brown particles), kidney tissue 
damage (edema in the epithelial cells of renal 
tubules, ↑ cell volume, loose cytoplasm, slight 

staining), changes in plasma (↑ CK, UN, ↓ LDH) 

0.2  
mmol/L 

(Nongteshi2) 
90 days 

Hyaline cast in kidney,  
↑ CRE, BUN, ALT, AST, LDH, MDA, ↑ 3-

hydroxybutyrate, LACT, alanine, acetamide, 
glutamate, glycine, histidine, inosine, GLU; 

↓ SOD, GSH-Px, GR, lysine, NAA, citrate, choline, 
phosphocholine, myo-inosine, nicotinamide, 

[70] 

North African catfish 
(Clarias gariepinus) 

0, 19, 42, 94, 
207, 455  

mg/L 
(GLY) 

96 hours 

Cellular infiltration in gills; fatty degeneration, fat 
vacuolation, diffuse hepatic necrosis, infiltration of 

leukocytes in liver; hematopoietic necrosis, 
pyknotic nuclei in kidney; mononuclear 

infiltration, neuronal degeneration, spongiosis in 
brain; respiratory stress, erratic swimming 

[51] 

Hybrid fish jundiara 
(Leiarius marmoratus x 

Psedoplatystoma 
reticulatum) 

1.357  
mg/L 

(Roundup1) 

6, 24, 48,  
96 h 

↑ LACT in liver, P level in liver, ALT, AST, CHOL, 
TAG in plasma; 

↓ GL in liver and muscle, plasma GLU, Hb, PCV, 
RBC, WBC 

[28] 

Leopard danio 
(Danio rerio) 

50 μg/mL 
(GLY) 24 h ↓ gene expression in eye, fore and midbrain 

 delineated brain ventricles and cephalic regions 
[71] 

32.5, 65, 130 
μg/L  

(Transorb3)  
48 h 

↓ integrity of plasma membrane of hepatocytes, viability 
of cells, mitochondrial activity in the cell, lysosomal 

integrity, inhibition in ABC transporter activity 
[72] 

10, 50, 100, 200, 
400 μg/L 

(GLY) 
48 h ↓ heartbeat, NO generation, downregulation of 

Cacana1C and ryr2a genes, upregulation of hspb11 
[60] 

Climbing bass 
(Anabas testudineus) 

17.20 mg/L 
(Excel Mera 

714) 
30 days ↑ AChE, LPO, CAT; 

↓ TP, GST  
[73] 

Heteropneustes fossilis 
1Roundup (active substance glyphosate, 41%), 2Nongteshi (active substance glyphosate, 30%), 
3Transorb (active substance glyphosate, 48%), 4Excel Mera 71 (active substance glyphosate, 71%). 

There are just several data about the chronic effects of glyphosate on non-target 
organisms. For example, [74] studied chronic exposure to glyphosate with a concentration 
of 1 μg/L on rainbow trout for 10 months. No significant changes in reproduction, 
metabolism, nor even oxidative response were observed. However, occasional impacts on 
immune response have occurred. Other chronic effects were studied with different 
concentrations of glyphosate (0.2, 0.8, 4 and 16 mg/L) in Oreochromis niloticus for 80 days 
[75]. It was evaluated that glyphosate exposure reduced antioxidative ability, disturbed 
liver metabolism, promoted inflammation and suppressed immunity. 

 
2.2.2 Mussels 
Glyphosate caused changes in hemolymph [76], changes in the reproduction system 

and 50% inhibition of cholinesterase activity [77] in mussels (Table 5).  

 

Table 5. Toxic effects of glyphosate and its commercial product on mussels. 
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Species Concentration Exposure  Effects  Reference
s 

Mediterranean mussel  
(Mytilus galloprovincialis) 

100 μg/L 
(GLY) 

7 days ↑ THC, haemocyte proliferation; 
↓ Haemocyte diameter, AChE in gills 

[76] 14 days ↑ AChE in gills, CAT in digestive gland; 
↓ CAT in gills  

21 days 
↑ CAT in gills; 

↓ THC, haemocyte diameter, haemocyte volume, 
HL, AChE in gills 

10, 100, 1000  
μg/L 

(GLY) 
7, 14, 21 days 

↑ cell volume of haemocyte, haemolymph pH; 
↓ HL, haemolymph acid phosphatase activity; 
AChE in gills; SOD in digestive gland, THC, 

[78] 

Limnoperna  
fortunei 

1, 3, 6 mg/L 
(GLY) 

26 days ↑ TBARS, GST, ALP; 
↓ CES, SOD [79] 

10, 20, 40 mg/L 
(GLY) 

3 weeks ↓ presence of large mussel by 40%, presence 
empty shell by 25 % 

[80] 

Pacific oyster  
(Crassostrea gigas) 

0.1, 1, 100 μg/L 
(Roundup 
Expres1) 

35 days ↑ GST;  
↓ growth; LPO, MDA [81] 

1Roundup Expres (active substance glyphosate, 15%). 
 
2.2.3 Invertebrate species 
Exposure to GLY may cause several changes in invertebrate species (Table 6), such 

as biochemical processes in tissues, development, or behaviour. 

Table 6. Toxic effects of glyphosate and its commercial product on invertebrate species. 

Species Concentration Exposure  Effects  Referen-
ces 

California blackworm 
(Lumbriculus variegatus) 

0.05 - 5 mg/L 
(GLY) 4 days 

↑ SOD; 
↓ GST, membrane bound GST [82] 

Chinese mitten crab 
(Eriocheir sinensis) 

4.4, 9.8, 44, 98 mg/L 
(GLY) 

96 h 
↑ % DNA in tail, SOD, POD, β-GD; 

↓ THC, granulocytes, phagocytic 
activity, ACP, AKP 

[57] 

American bullfrog 
(Lithobates catesbeianus) 

1 mg/L 
(Roundup1) 

48 h 
↑ swimming activity, CPM; SOD, CAT 

and LPO in liver; LPO in muscle; 
↓ SOD, CAT in muscle, TtHR 

[83] 

Rhinella arenarum 

1.85, 3.75, 7.5, 15, 30, 
60, 120, 240 mg/L  
(Roundup Ultra-

Max2) 

48 h ↓ AChE, BChE, CbE, GST [56] 

Northen leopard frog 
(Rana pipiens) 

0.6, 1.8 mg/L 
(Roundup1) 

166 days 

↑ TRβ mRNA; 
Late metamorphic climax, 

developmental delay, abnormal 
gonads, necrosis of the tail tip, fin 

damage, abnormal growth on the tail 
tip, blistering on the tail fin 

[55] 

Snail 
(Biomphalaria alexandrina) 

3.15 mg/L 
(Roundup1) 6 weeks 

↑ mortality, stopped egg lying, 
abnormal laid eggs, ↑ GLU, LACT, 

FAC;  
↓ egg hatchability, GL, TP, pyruvate, 

nucleic acids levels 

[84] 
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10 mg/L 
(Roundup1) 

7 days ↑ in vitro phagocytic activity, DNA 
damage in hemocytes 

[85] 

1Roundup (active substance glyphosate, 41%), 2Roundup Ultra-Max (active substance glyphosate, 
36%). 

3. AMPA (aminomethylphosphonic acid) 
AMPA belongs to the aminomethylenephosphonates chemical group. It is the 

primary metabolite of GLY degradation process with a significant measured 
concentration in the environment. Additional sources of AMPA originate from organic 
phosphonates using in water treatment [86], from the degradation of phosphonic acids 
used in Europe in detergent and industrial boilers and cooling (EDTMA, DTMP, ATMP. 
HDTMP) [15,86]. Because of phosphonate and amine functional groups, AMPA will form 
metal complexes with Ca2+, Mg2+, Mn2+, and Zn2+. AMPA is sorb firmly to soil [87]. 

3.1 Environmental fate 
AMPA has a lower water solubility and longer soil half-life than glyphosate. Presence 

of AMPA in freshwater, sediment, and suspended particulate is commonly measured in 
significant quantities [10,88], and even more frequently (67.5%) than glyphosate (17.5%) 
[15,89-90]. The Water Framework Directive [91] provides a procedure to set 
Environmental Quality Standards for AMPA at level 450 mg/L. Coupe et al. [9] reported 
concentration of AMPA in freshwater environments for Mississippi and Iowa ranged 2.6 
μg/L, 0.02-5.7 μg/L. In France, AMPA was detectable with the highest concentration at 
level 44 μg/L.  

AMPA, like glyphosate, also degrade in water and soil but significantly slower. 
Because its adsorption to particulates is possibly stronger is lower penetrability to cell 
membranes. The concentration of AMPA in the sediment can fluctuate depending on its 
degradation rate relative to GLY [92]. 

3.2 Acute toxicity 
AMPA toxicity has been already studied in recent years on various kinds of 

organisms. Although [52] observed no acute toxic effect of AMPA on fish species, other 
studies showed acute toxicity values from 27 to 452 mg/L (Table 7).  
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Table 7. Toxicity values of AMPA for aquatic organisms. 

Species Value Concentration (mg/L) References 

Barbados millions 
(Poecilia reticulata) 96hLC50 

180 for male 
[49] 

164.32 for female 

Pacific oyster 
(Crassostrea gigas) 

36hEC10 38.55 

[93] 

36hEC20 42.68 

36hEC50 50.78 

24hEC10 27.08 

24hEC20 39.80 

24hEC50 76.90 

 48hEC10 

> 1005 Daphnia magna 48hEC20 

 48hEC50 

Pseudokirchneriella 
subcapitata 

72hEC10 85.05 

72hEC20 
> 100 

72hEC50 

Desmodesmus 
subspicatus 

72hIC50 117.8 [94] 

72hEC50 
89.81  

[95] 
4522 

1biomass test, 2algal growth inhibition tests. 

3.3 Toxic effects 
Although AMPA has been studied less than glyphosate, Reddy et al. [96] pointed on 

affecting chlorophyll biosynthesis, which leads to plant growth reduction. That means 
that AMPA can also be translocated to diverse plant tissue. AMPA is also known as a 
phytotoxin, which can amplify the indirect effects of glyphosate on physiological 
processes. On the other hand, due to its chemical similarity, AMPA can compete with 
glycine in biological sites and pathways, affecting chlorophyll biosynthesis and thus the 
photosynthetic process [97]. Plants treated with AMPA showed a decreased glycine, 
serine, and glutamate [98].  

Table 8. Toxic effects of AMPA on aquatic organisms. 

Species Concentration Exposure  Effects  
Reference

s 
Europaen eel 

(Anguilla Anguilla) 
11.8, 23.6 μg/L 1, 3 days ↑ GDI, FPG, EndoIII [99] 

Leopard danio 
(Danio rerio) 

1.7, 5, 10, 23, 50, 
100 mg/L 

24, 48, 72, 96 
hours 

Genotoxicity with LOEC 1.7 mg/L, induce primary 
DNA lesions,  

[52] 

Barbados millions 
(Poecilia reticulata) 82 mg/L 96 hours 

Proliferation of the interlamellar epithelium, fusion of 
secondary lamellae in gill, steatosis, pyknotic nuclei in 

liver, degenerate of hepatocytes 
[49] 

Mediterranean mussel 
(Mytilus galloprovincialis) 

100 μg/L 7 days 
↑ haemocyte diameter, haemocyte volume, haemocyte 

proliferation, LDH in haemolymp, HL; 
↓ THC, AChE in gills 

[76] 
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14 days 

↑ THC, haemocyte diameter, haemocyte volume, 
haemocyte proliferation, AChE in gills, CAT in 

digestive gland; 
↓ HL 

21 days ↑ haemocyte volume, LDH in haemolymph; 
↓ THC, haemocyte proliferation, HL, AChE in gills 

1, 10, 100 μg/L 

7 days ↓ THC 

[100] 
14 days  

↑ THC, haemocyte diameter and volume, lysosome 
activity, acid phosphatase; 

↓ haemocyte proliferation, SOD in gill and digestive 
gland 

21 days 
↑ haemocyte proliferation, lysosome activity, acid 

phosphatase, LDH; 
↓ THC, haemocyte diameter and volume 

Bufo spinosus 
0.07, 0.32, 3.57 

μg/L 
16 days ↓ embryonic survival, development delay, short tail 

length [101] 

 
There is almost no data for chronic effects and exposure to AMPA for aquatic 

organisms. The chronic toxicity of AMPA to Pimephales promelas and Daphnia magna was 
studied by Levine et al. [86]. Evaluating NOEC for P. promelas was determined 12 mg/L, 
and no-observed-effect concentration for D. magna was 15 mg/L. 

4. Conclusion 
GLY and AMPA et environmental relevant concentrations usually do not cause 

direct lethality. However, glyphosate as a separate compound or as a component of 
commercial products used in agriculture and its primary metabolite AMPA may have 
adverse effects on non-target aquatic organisms.  GLY mainly affected oxidative stress, 
antioxidant enzymes, blood parameters and cause several histopathologic changes in 
gills, liver and kidneys, and not least genotoxicity, immunotoxicity and cardiotoxicity in 
fish; oxidative stress, antioxidant enzymes, and haemocyte parameters in mussels. In 
comparison to AMPA, in literature is gaps in knowledge about its toxicity on aquatic 
organisms. AMPA may cause genotoxicity, immunotoxicity in fish, adverse changes in 
haemolymph parameters, affected mussels' antioxidant enzymes, and developmental 
delay and survival of tadpoles.  

There are also concerns about potential bioconcentration effects and breeding in 
organisms of these compounds. Considering the increasing consumption of herbicides 
and their repeated application worldwide, we assume that the presence of GLY and 
AMPA in the aquatic environment requires stricter control and further studies of the 
potentially toxic effects of these substances on the non-target organism. Further needs to 
be found bioindicators for polluted aquatic environments of GLY and AMPA. 
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