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Abstract: The standard edge crush test (ECT) allows to determine the crushing strength of the cor-
rugated cardboard. Unfortunately, this test cannot be used to estimate the compressive stiffness, 
which is an equally important parameter. It is because, any attempt to determine this parameter 
using current lab equipment quickly ends in a fiasco. The biggest obstacle is obtaining a reliable 
measurement of displacements and strains in the corrugated cardboard sample. In this paper, we 
present a method that not only allows to reliably identify the stiffness in the loaded direction of 
orthotropy in the corrugated board sample, but also the full orthotropic material stiffness matrix. 
The proposed method uses two samples: (a) traditional, cut crosswise to the wave direction of the 
corrugated core, and (b) cut at an angle of 45 degrees. Additionally, in both cases, an optical system 
with digital image correlation (DIC) is used to measure the displacements and strains on the outer 
surface of samples. The use of a non-contact measuring system allows to avoid using the measure-
ment of displacements from the crosshead, which is burdened with a large error. Apart from the 
new experimental configuration, the article also proposes a simple algorithm to quickly characterize 
all sought stiffness parameters. The obtained results are finally compared with the results obtained 
in the homogenization procedure of the cross-section of the corrugated board. The results were con-
sistent in both cases. 

Keywords: corrugated cardboard; edge crush test; orthotropic elasticity; digital image correlation, 
tensile stiffness, compressive stiffness, sandwich panel 
 

1. Introduction 
The increasing consumer demands and absorptive power of the merchant market in 

today's world, resulting in the need of packing, storage and secure shipping of more and 
more various goods, as well as the growing ecological awareness have led to the increas-
ing interest of manufacturers in cardboard packaging. This fact, in turn, has triggered an 
inevitable, continuous and intensive development of numerous corrugated cardboard 
testing techniques over the last decades. 

Assessing the load-bearing capacity of the corrugated cardboard products is crucial 
for their proper designing, production and final usage or even re-use processes. It is im-
portant to emphasize here that corrugated cardboard comprises a few layers thus can be 
called a sandwich structure. Its mechanical properties are directly related to two charac-
teristic in-plane directions of orthotropy, i.e., machine direction (MD) that is perpendicu-
lar to the main axis of the fluting and parallel to the paperboard fiber alignment and cross 
direction (CD) which is parallel to the fluting. 

Numerous approaches for sandwich elements strength determination, including the 
corrugated cardboard, can be found in the literature. Analytical methods, starting already 
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in the fifties of the twentieth century, were presented, i.a., in [1–5], whereas numerical 
methods can be found in [6–11] and analytical-numerical techniques in [12–16]. Analytical 
calculation of the edge crush resistance of cellular paperboard, both in MD and CD while 
basing on the paperboard’s geometric parameters and the mechanical properties of mate-
rials used for its production, was discussed by Kmita-Fudalej et al. [17]. Park et al. [18] 
investigated the edgewise compression behavior of corrugated paperboard while apply-
ing finite element method (FEM) as well as experimental analysis, i.e., load vs. displace-
ment plot, edge crush test (ECT) and failure mechanism. In recent years, methods of arti-
ficial intelligence, including artificial neural networks, have become widespread to predict 
the strength of composite materials, e.g., sandwich structures as presented by Wong et al. 
[19].  

While executing numerical simulations in examining the corrugated cardboard, the 
comprehensive knowledge of all layers’ material properties is necessary. Due to the ani-
sotropy of the paper-based materials this is a demanding task. In such a case a good solu-
tion is to implement a method called homogenization. This approach efficiently allows to 
simplify the multi-layer models into single-layered, described by the effective properties 
of the composite [9,10,20]. Application of this technique benefits in significant savings in 
computation time while maintaining the accuracy of the results. Hohe [21] presented the 
strain energy approach applicable to sandwich panels for homogenization and proposed 
an equivalence of a representative element of the heterogeneous and homogenized ele-
ments for this purpose. 

Another option, in addition to analytical or numerical analysis, for estimation of cor-
rugated board strength is to carry out measurements from the experiment. Physical test-
ing is very common in the paper industry, and a number of typical tests have been devel-
oped to unify the process of characterization of corrugated cardboard mechanical proper-
ties. The aforementioned ECT is used to evaluate the compressive strength, the load dur-
ing this examination is applied perpendicularly to the axis of the flutes. In the bending 
test (BNT), four-point bending is executed, two supports are at the bottom of the card-
board whereas two equal forces acts on the sample from the opposite side. The shear stiff-
ness test (SST) involves twisting of the cardboard cross-section by applying a pair of forces 
to opposite corners while the other two remain supported. In torsional stiffness test (TST) 
the cardboard sample is twisted in both directions. The box compressive test (BCT) is con-
ducted to examine the load bearing capacity of the whole cardboard box [12–14,22]. The 
bursting and humidity tests should also be mentioned here.  

Since ECT is standardized, four different methods have been described, i.e., edge-
clamping method [23], neck-down method [24], rectangular test specimen method [24–26] 
and edge-reinforced method [27,28]. One of the major characteristics which differs these 
tests is the shape of the specimens. To assemble the measurements from the outer surfaces 
of the sample during the examination a video extensometry can be employed. Such a pro-
cedure is based on the measurement of the relative distances between pairs of points 
traced across images captured at different load values [15]. This is a comparable yet sim-
pler method than digital image correlation (DIC) which, as full-field non-contact optical 
measurement method, is gaining more popularity in the field of experimental mechanics 
since it ensures very high accuracy of data acquisition. Hägglund et al. applied DIC while 
examining thickness changes during the ECT in the damaged and undamaged panels 
made of corrugated paperboard [29]. Implementation of DIC for investigation of strain 
and stress fields of paperboard panels subjected to BCT and analysis of their post buckling 
behavior was discussed by Viguié et al. in [30–32]. A distortional hardening plasticity 
model for paperboard was presented by Borgqvist et al. [33] who introduced a yield sur-
face characterized by multiple hardening variables attained from simple uniaxial tests. 
The comparison between the results acquired from the model and experimental, received 
while using DIC, was demonstrated as well. Combined compression and bending tests of 
paperboards and laminates for liquid containers while applying DIC were executed by 
Cocchetti et al. [34,35] who identified material parameters of anisotropic elastic-plastic 
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material models of foils. For this purpose inverse analysis was employed while processing 
the results received from both the experiment and numerical FEM simulations. DIC and 
the virtual fields method (VFM) for recognition of general anisotropy parameters of a filter 
paper and a paperboard have been discussed by Considine [36]. Åslund et al. applied the 
detailed FEM for investigation of the corrugated sandwich panels failure mechanism 
while performing the ECT and compared the results with the measurements obtained 
with the use of DIC [37]. Zappa et al. studied the inflation of the paperboard composites 
which are used in the packaging of beverages while applying DIC [38]. Paperboard boxes 
with ventilation holes subjected to a compression load were investigated involving DIC 
by Fadiji et al [39]. 

It should be pointed out that in a large part of the above-mentioned studies 3-ply 
corrugated cardboards specimens were tested. In this research a double-wall corrugated 
cardboard, i.e., 5-ply samples are examined. While performing ECT an optical system with 
digital image correlation (DIC) is used to measure the displacements on the outer surface 
of the specimen. The proposed method uses two types of samples, i.e., traditional, cut 
crosswise to the direction of the wave direction of the corrugated core, and, what is a novel 
procedure, cut at an angle of 45 degrees. Such an approach not only allows to reliably 
identify the stiffness in one direction of orthotropy, but the full material stiffness matrix, 
i.e., 4 independent parameters. Obtained results were verified by the results acquired in 
the homogenization procedure of the cross-section of the corrugated board. As proven, in 
both cases, the results were very consistent. 

2. Materials and Methods 
2.1. Corrugated Cardboard 

In this study, a 5-layer corrugated cardboard marked as EB-650 was used. The top 
liner is made of white, coated, recycled cardboard TLWC with a grammage of 140 g/m2. 
The cross-section has two corrugated layers: (a) low flute (E wave) and (b) high flute (B 
wave). Both wavy layers and the flat layer between them, forming the mid liner, are made 
of lightweight WB cardboard, also recycled, with a grammage of 100 g/m2. As a bottom 
liner again the white recycled test liner with a grammage of 120 g/m2 was used. The ge-
ometry of the cross-section of the corrugated board and the arrangement of the individual 
layers are shown in Figure 1, where 5 samples are placed one on top of the other. 

 
Figure 1. Visualization of 5 samples (stacked on top of each other) of the analyzed corrugated 
cardboard. 

Table 1 presents the geometrical parameters of both wavy layers (flutes). Second and 
third column of Table 1 shows the wave period (pitch) and the wave amplitude (height), 
respectively. Take-up ratio, which defines the ratio of the length of the non-fluted corru-
gated medium to the length of the fluted web are given in the last column of Table 1. 
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Table 1. The geometrical features of both corrugated layers of EB-650. 

Wave (Flute) Pitch (mm) Height (mm) Take-up Ratio (–) 
E 3.50 1.18 1.242 
B 6.48 2.5 1.315 

Paperboard, which is a main component of corrugated board is made of cellulose 
fibers. Their orientation is not random, but rather results from the production process, 
which causes that the vast majority of the fibers are arranged along the web, called ma-
chine direction (MD). The second direction, perpendicular to the MD is called cross direc-
tion (CD). Paperboard is both stronger and stiffer along the fibers direction.  

In general, materials whose mechanical properties depend on the fibers orientation 
are called orthotropic materials. As a component of corrugated cardboard, paper also 
makes it an orthotropic material. The orientation of the fibers, shown in Figure 2, makes 
the corrugated board stronger along the direction of the wave. Thus, the corrugated layers 
compensate (through the take-up factor) for the weaker mechanical properties of the 
board in CD. 

 
Figure 2. The material orientation in the corrugated board. 

Table 2 presents the material properties of the individual layers of the corrugated 
board. The compressive strength in CD, 𝑆𝐶𝑇 , is measured using the short-span com-
pression test according to DIN EN ISO 3037 [26]. The compressive strength of the com-
bined corrugated board in CD, 𝐸𝐶𝑇 , specified by the producer–Aquila Września–is 
7.6 kN/m (±10%), while the overall thickness of the EB-650, 𝐻 is 4.3 mm (±0.2 mm). 

Table 2. Mechanical properties of individual layers of 5EB650C3. 

Layer 
Name 

Thickness 
(𝛍𝐦) 

𝑬𝑴𝑫 
(kN/m) 

𝑬𝑪𝑫 
(kN/m) 

𝑺𝑪𝑻𝑪𝑫 
(kN/m) 

TLWC 140 180 725 323 2.32 
W 100 160 886 328 1.76 

TLW 120 170 907 313 1.81 

2.2. The Edge Crush Test 
The Edge Crush Test (ECT) is a typical test to determine the compressive strength of 

corrugated board. The test is performed according to FEFCO DIN EN ISO 3037 [25,26], 
where a 100 mm long and 25 mm high specimen (see Figures 3a and 3b) is loaded between 
two rigid plates along its height (see Figure 4a). In order to maintain the parallelism of the 
cut edges of the sample, it should be cut on a special device, e.g. FEMat CUT device [22]  
(see Figure 4b) where the samples are pneumatically cut with one-sided ground blades. 
All ECT tests were performed under controlled and standard air conditions, i.e. 23 C and 
50% relative humidity. 

As already mentioned above, the typical ECT is only used to determine the compres-
sive strength of the corrugated board in CD. Here, the new ECT test setup was also used 
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to determine all elastic orthotropic properties of the in-plane tension / compression be-
havior of corrugated cardboard. For this purpose, beside traditional, also samples cut at 
an angle of 45 degrees to the wave direction were used (see Figures 3c and 3d). Since the 
measurement in standard testing machines is significantly affected by the clearance and 
susceptibility on the crosshead, non-contact optical techniques are required to reliably 
measure displacements (deformations or strains). 

 

 
(a) (b) 

  
(c) (d) 

Figure 3. The sample for the standard and new edge crush test: (a) standard sample view; (b) standard ECT sample – 
front, back and top view; (c) new ECT sample – front and top view; (d) new ECT sample – back and top view 

Additionally, measurement without direct contact does not affect the measurement 
itself. In contact measurements (e.g. traditional extensometers), noise is introduced into 
the measurement, which may distort the actual measured values. 

  
(a) (b) 

Figure 4. Edge crush test: (a) Universal Testing Machine (Instron 5569); (b) FEMAT lab device. 

2.3. Optical Measurements of Sample Deformation 
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In this study, as was already mentioned, the specimen was tested using optical dis-
placement and strain measurements, i.e., virtual extensometry and Digital Image Corre-
lation (DIC). Two cameras (the stereo DIC setup) were used to track the deformation on 
the front faces to account for the out-of-plane bending produced by the non-symmetrical 
section and single camera on the back faces meant to use only optical extensometry, see 
the test setup on Figure 5a. Each of the two faces of the specimen were printed with the 
speckle pattern for both optical methods, i.e., DIC and video extensometry. Here, three 
models of deformation measurements were used, namely: 
 Crosshead from the machine; 
 Stereo (2.5D) DIC on the front (see Figure 5b) + extensometry on the back; 
 Extensometry on the front and back. 

The specimen was sandwiched between two platens and aligned while using 3D 
printed L-brackets. Two 5 MPix cameras (Manta G504-b, Allied Vision, Stadtroda, Ger-
many) were used to record grey scale images during the test, see Figure 5. The video ex-
tensometry was performed using MatchID DIC platform (v. 2020.2.0, MatchID, Ghent, 
Belgium). Cameras were calibrated while applying MatchID calibration plate (MatchID, 
Ghent, Belgium) to obtain the pixel to mm conversion rate of ~50 µm/pix. The specimen 
was manually preloaded with a very small load (15 N) to ensure that both edges of the 
specimen were touching the loading plates. Then the measured load cell and displacement 
were zeroed and the L-brackets supporting the sample were removed. The load and the 
crosshead displacement were synchronized with the cameras. The accuracy of the meas-
urement was estimated while using a set of 25 static images (without any movement); 
standard deviation of the measured elongation was evaluated to be 4 µm, which can be 
considered the level of uncertainty. Optical displacements were averaged for each face 
and compared against the crosshead displacement. 

 
 

(a) (b) 

Figure 5. Setup of the optical measurements: (a) configuration of cameras on the front and back 
face; (b) cameras recording the front face. 

In total, 5 samples in CD and 5 in 45 deg direction were tested. Unfortunately, one of 
the sample in CD was not recorded properly on the PC and was removed from the statis-
tics. The loading rate was set to 5 mm/min (which is different from the standard rate 12.5 
mm/min) because samples failed to fast for cameras to get enough data. 

The following stereo DIC procedures, with camera ‘Cam1’ as the main one, were uti-
lized in this research: 
 Perform DIC on the sample’s face while using images from Cam1 and Cam0; Region 

Of Interest (ROI) visible on Figure 6b; 
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 Align data coordinate system with specimen material direction, i.e. 11 = 𝑀𝐷, 22 =

𝐶𝐷, 𝑦𝑦 = vertical (see Figure 6a); 
 Calculate strains from displacements; 
 Select subregion and extract the data; all data in the subregion is averaged giving one 

value of desired quantities per image, namely: 𝜀 , 𝜀 , 𝜀 , 𝜀 ; 
 Shear strains are reported as tensor shear strain component 𝜀 , need to be doubled 

for the engineering component. 

  
(a) (b) 

Figure 6. Virtual optical gauges (a) sample in CD and in 45 deg; (b) ROI wisualization. 

On the other hand, the video extensometry main procedures, utilized in this study, were 
as fallow: 
 Used speckle pattern compatible with DIC (also the pen marks would work equally 

well, see [15]); 
 Only perpendicular cameras were used (front = Cam1, back = Cam2); 
 Length of vertical gauges was 350 pix (see Figure 6 and 7), while length of gauges in 

45 deg direction were chosen to be 490 pix, which is × 1.4 of the vertical gauge (see 
Figure 6a and 7b); 

 The three gauges in their respective directions were averaged to produce a single 
value of strain, i.e. 𝜀 , 𝜀  and 𝜀  in the 45 deg direction tests or 𝜀  and 𝜀  in 
CD tests; 

 All ‘membrane’ strain is an average of the front and back strains. Ideally, it should 
be obtained from the trapezoidal distribution of the paperboard cross-section under 
combined compression / bending; here it was simply averaged; 

 The shear strain can be calculated from the ‘strain gauge rosette’ (see Figure 7b):  
𝜀 = 𝜀 − 0.5(𝜀 + 𝜀 ). 

  
(a) (b) 

Figure 7. Virtual optical gauges (a) sample in CD; (b) sample in 45 deg. 

Using the tests in CD, 𝜀  (in CD direction) and 𝜀  (in MD direction) were meas-
ured at each image either by averaging large region from DIC (see Figure 6b) or by using 
virtual extensometers: 3 vertical + 1 horizontal (see Figure 7a). Front and back data were 
averaged to remove bending artificial data. Similar methodology was used in case of ECT 
in 45 deg direction. All stiffnesses, e.g., 𝐹  vs 𝜀  were calculated from the linear portion 
of the graphs. 
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2.4. Proposed method to identify matrix A 
The identification of matrix A is based here on two sets of tests, namely: (a) standard 

ECT in CD and (b) new ECT in 45 deg direction. The well-known relation between cross-
sectional forces and general strains has a form: 

𝜎
𝜎
𝜎

=
𝐴 𝐴 0
𝐴 𝐴 0

0 0 𝐴

𝜀
𝜀
𝜀

, (1)

where 𝜎  are the component of sectional force vector, in [N/mm]; 𝐴  are the stiffness 
components, in [N/mm]; 𝜀  are the membrane (in-plane) strains. 

From the Equation (1) the two set of equation can be extracted, namely in CD test: 

𝐴 𝜀 + 𝐴 𝜀 = 𝜎 , 

𝐴 𝜀 + 𝐴 𝜀 = 0, 
(2)

and in 45 deg direction test: 

𝐴 𝜀 + 𝐴 𝜀 = 𝜎 = 0.5𝜎 , 

𝐴 𝜀 + 𝐴 𝜀 = 𝜎 = 0.5𝜎 . 
(3)

By building up a matrix of those equations from the two experiments and solving it 
in least square sense the component of matrix 𝐴 = [𝐴 , 𝐴 , 𝐴 ] can be easily obtained. 
The component 𝐴  can be obtained independently, from the ECT in 45 deg direction. 

If one uses stresses instead of sectional forces, the following equations can be derived 
from the test in CD: 

⎣
⎢
⎢
⎡

𝐸

1 − 𝜈 𝜈

𝐸 𝜈

1 − 𝜈 𝜈
𝐸 𝜈

1 − 𝜈 𝜈

𝐸

1 − 𝜈 𝜈 ⎦
⎥
⎥
⎤

𝜀
𝜀 =

0
𝜎

, (4)

and from the test in 45 deg direction: 

⎣
⎢
⎢
⎡

𝐸

1 − 𝜈 𝜈

𝐸 𝜈

1 − 𝜈 𝜈
𝐸 𝜈

1 − 𝜈 𝜈

𝐸

1 − 𝜈 𝜈 ⎦
⎥
⎥
⎤

𝜀∗

𝜀∗ =
1

2

𝜎
𝜎 . (5)

From the test in CD only, just two constitutive components can be computed, namely 
Poisson’s ratio: 

𝜈 = −
𝜀

𝜀
, (6)

and elastic modulus in CD: 

𝐸 =
𝜎

𝜀
. (7)

On the other hand from both, tests in CD and tests in 45 deg. direction all orthotropic 
stiffness coefficients can be obtained, namely elastic stiffness in MD: 

𝐸 = −
𝜎 𝜎

𝜀 𝜎 − 2𝜀∗ 𝜎
, (8)

elastic stiffness in CD: 

𝐸 =
𝜎

𝜀
, (9)

Poisson’s ratio 𝜈 : 
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𝜈 =
𝜖 𝜎

𝜀 𝜎 − 2𝜀∗ 𝜎
, (10)

Poisson’s ratio 𝜈 : 

𝜈 = 1 −
2𝜀∗ 𝜎

𝜀 𝜎
, (11)

or using the symmetry principals: 

𝜈 = 𝜈
𝐸

𝐸
. (12)

The stiffness in 45 deg direction can be computed directly from the test in 45 deg 
direction: 

𝐸 =
𝜎

𝜀
, (13)

and is used to compute the last missing coefficient, namely in-plane shear stiffness: 

𝐺 =
2𝜈

𝐸
−

1

𝐸
−

1

𝐸
+

4

𝐸
. (14)

3. Results 

3.1. The ECT enhanced with optical measurement techniques 
First, the four tests in the CD are presented. Figure 8 shows the differences in the 

displacements measured by optical techniques (solid line) and taken from the machine 
crosshead (dashed line). 

 
Figure 8. Force-displacement curves. Optical extensometry–solid lines; from machine crosshead–
dashed lines. 

Table 3. Elastic stiffness index in CD computed from the displacement measurement by the opti-
cal extensometry and from machine crosshead, as well as the edgewise compression strength in 
CD. 

Test 
ID 

E - optical 
(N/mm) 

E - crosshead 
(N/mm) 

ECT 
(N/mm) 

1 1,447.45 441.82 -7.548 
2 1,380.25 536.82 -7.151 
4 1,531.96 450.66 -7.609 
5 1,615.12 611.39 -7.640 

Mean (N/mm) 1,493.70 510.17 -7.487 
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Std (N/mm) 102.01 79.93 0.227 
Cov (%) 6.829 15.668 -3.038 

Table 3 shows the elastic stiffness index, which is computed from the linear part of 
the curves shown in Figure 8. It is worth noting that the cross-sectional force is normalized 
by the sample length (𝐿 = 100 mm) but not by the sample thickness. This approach com-
plies with the specifications of the corrugated board manufacturers and allows the presen-
tation of results regardless of the thickness of the sample. 

3.2. DIC vs Extensometry 
Then the stereo DIC and the extensometry approach were compared. For this, the 

selected test in the direction 45 deg. has been carefully analyzed. The DIC data in the zones 
occupied by extensometers were averaged and compared (see Figure 9 and 10). 

 
Figure 9. Location of each strain gauge on the sample in the test in a 45-degree direction. 

Results presented in Figure 10 are comparable but not identical (in terms of elastic-
ity), mainly due to a certain inhomogeneity in the deformation caused by the crushing of 
the edges, which obviously affects the extensometers. However, this can be reduced, e.g., 
by shortening the gauge length, which appears to be a key a priori choice. The question 
how long should the extensometers be is discussed in the next subsection.  

It is known that the error on strain measurements comes from error on measured 
displacements (here it is constant ~0.01 pixel) and the length of the gauge. Although it 
seems that the longer the gauge, the better, but the longer the gauge, the greater the risk 
of taking into account the edge effects of the sample, where (especially in the case of un-
waxed samples) the largest local deformations (i.e., crushing and wrinkling) are usually 
concentrated. 

3.3. Length of virtual extensometry 
A study on the length of the optical extensometry was run on test no 3 data in CD–

full-field data was extracted (i.e., strains and displacements). Virtual extensometers were 
generated with varied lengths at different horizontal positions and compared against av-
eraged vertical strains from DIC. For example, two points were selected in the center of 
the sample: one at 𝑌 = +10 mm with respect to the center of the sample height, the other 
at 𝑌 = −10 mm and extensometer strain was calculated from 𝜀 = (𝑣 − 𝑣 )/20. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 10. The DIC vs virtual extensometry comparison: (a) region 1; (b) region 2; (c) region 3; (d) mean from 3 regions; 
(e) back to front average; (f) strains resulting from forces. 

Three horizontal positions of the virtual strain gauges were considered: (1) left at 25% 
of the width; (2) mid at 50% and (3) right at 75% of the sample width. They were also 
averaged. Figure 11 shows the location of the optical strain gauges. The length of each 
gauge varies from 4 to 20 mm. 
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Figure 11. Location of the virtual strain gauges. 

Figure 12 shows a comparison of strain calculated while using different lengths of 
virtual gauges with DIC measurements. 

  
(a) (b) 

  
(c) (d) 

Figure 12. The comparison of strain measured by different length of virtual gauges with DIC measurements. (a) left set; 
(b) mid set; (c) right set; (d) averaged. 

The main observation is that for test in 45 deg direction extensometers should be ar-
ranged in a rectangular configuration (15 × 15 mm box, with longer gauges on the diag-
onal) or circular (so as to keep the gauge length of 15 mm). 

3.4. Consistency of tests in 45 deg direction. 
The last issue was to check data consistency in the new test in 45 deg direction. For 

all CD tests, the force-strain data was very consistent, but unfortunately not the 45-degree 
tests. For each recorded level of the force the measured strain components averaged back-
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to-front are plotted (see Figure 13). It is visible that the tests can be split into two, more 
consistent groups (see Figure 14). Group 2 has stiffer response in 11 (MD) direction. 

 
Figure 13. The consistency of data in test 6–10. 

The reason for the difference is not fully clear. One of the observation is that group 1 
(i.e., test 6 and 8) had high flute oriented towards the stereo DIC setup (front face as de-
picted in Figure 3c). Local buckling on that face is more pronounced and that could affect 
measured strains, however, even when using extensometers instead of full DIC, the trend 
stays the same. Group 1 had (accidently) different orientation of fluting w.r.t. the plate 
than group 2 (see Figure 3c and 3d). 

  
(a) (b) 

Figure 14. The consistency of data in test 6–10: (a) group 1 (test 6 and 8); (b) group 2 (test 7, 9 and 10). 

3.5. Full matrix A identification 
First, by combining tests 2 and 6 and using Equations (2,3) within the least square 

approximation one can identify the full A matrix (see Table 4). 
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Table 4. The components of A matrix. 

Parameter: Test 2 and 6 Group 1 Group 2 
𝐴  (N/mm) 2581 2583.0 3554.0 
𝐴  (N/mm) 158 103.5 158.1 
𝐴  (N/mm) 1674 (1500 1) 1765.0 1792.0 
𝐴  (N/mm) 1078 1061.0 946.0 

1 Results obtained directly from test 2 in CD using Equation (7) or (9). 

Poisson’s ratio computed directly from CD test (see Equation (6)) turned out to be 
~0.07 which is much close to the value cited here: 𝐴 /𝐴 = 0.09. In all cases force was 
normalized by the specimen width (100 mm). In the investigation the test no 1 was re-
moved from the data pool due to an artefact point. 

 
Figure 15. Curves reconstructed from identified A matrix vs measured force. 

Finally, the same procedure as above was used, but with the two separate groups 
discussed in previous subsection and shown in Figure 14. In total 178 (grp 1) and 204 (grp 
2) points were used here to calculate in-plane stiffnesses (𝐴 , 𝐴 , 𝐴 ). This separation 
made it possible to study the effect of positioning unsymmetric samples on the ECT ap-
paratus. 

  
(a) (b) 

Figure 16. Curves reconstructed from identified A matrix vs measured force: (a) using tests in group 1; (b) using test in 
group 2. 
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Reconstructed elastic forces are shown in Figure 15 and 16, from the identified pa-
rameters–multiple lines represent multiple tests. Data show good model fitting. 

4. Discussion 
The previous section presents the results of the research, showing, among others, 

typical ECT results enriched with Digital Image Correlation and / or optical, virtual ex-
tensometry techniques. The results summarized in Table 3 clearly show that the use of the 
displacements obtained from the machine crosshead introduces an error in the estimation 
of the stiffness index, underestimating this value almost 3 times. The same observation 
can also be found in the recent work of Garbowski et al. [15]. The compressive strength 
given in Table 3 (shown in column 4) is consistent with the value provided by the manu-
facturer of the corrugated board, namely 7.6 N/mm ±10%. 

The comparison of strains obtained from DIC and using virtual extensometers is pre-
sented in Figure 10. The results are comparable but not identical. Best fit can be observed 
for the vertical strain 𝜀 . Based on the observations regarding the length of the optical 
extensometer and its influence on the accuracy of the results, 15 mm segments were used 
for further analyzes. This can be observed in Figure 12, where the calculated strains were 
compared while using DIC and extensometers of different lengths. The main conclusion 
is that when applying longer gauges, the results are more stable. However, if the optical 
extensometer is too long (i.e., longer than 15 mm) or to short (i.e., shorter than 8 mm), the 
differences can be as high as 15%. 

The use of extensometers with a length of ~20 mm causes false results due to the 
proximity of the measuring tip to the crushed edge of the sample (which is 25 mm high). 
On the other hand, the use of short gauges of ~5mm is affected by larger noise and causes 
the measurements to have an error due to buckling from the plane of the sample (see 
Figure 17b). The moment when the sample buckles is shown in Figure 12d–image number 
38 (for a strain gauge 4 mm long). The influence of buckling (which manifests in the form 
of out-of-plane deformation) on the measurement of in-plane deformations can be easily 
eliminated by using the stereo DIC procedure. However, if the optical extensometry is to 
be used, a fairly large area where the results obtained with the extensometer match those 
obtained with the DIC should be in the range of 8-16 mm. 

  

(a) (b) 

Figure 17. The ECT sample during the test in CD: (a) sample during the test in CD–no buckling; (b) sample during the 
test in CD–buckling. 

Table 4 shows the identified components of matrix A. The second column shows the 
results obtained during tests 2 and 6, while columns 3 and 4 show the results obtained 
while using two different test groups. The groups included samples with a higher flute 
from the front (on the side of the DIC stereo set) and samples with a lower flute from the 
front. It is evident that the results for group 2, especially in the case of 𝐴  and 𝐴 , differ 
significantly from the results obtained in the first procedure and while using group 1. This 
is due to the asymmetric cross-section of the sample and the different level of buckling on 
the sample side with higher flute. Out-of-plane deformation related to buckling distorts 
the measurement and therefore introduces noise that distorts the results. Other compo-
nents of A matrix do not differ more than 10% when using different measurement tech-
niques, which is very promising. 
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Figure 18. Visualization of the finite element model of corrugated board BE-650. 

In order to validate the results presented in Table 4 the numerical homogenization 
procedure (for details see recent works by Garbowski & Gajewski [9] or Garbowski et al. 
[10]) of the cross-section of the corrugated board BE-650 (see Figure 18) was used. The 
numerical homogenization techniques used the geometrical and constitutive parameters 
presented in Table 1 and 2. The following results were obtained using the homogenization 
technique: 𝐴 = 2620 N/mm, 𝐴 = 185 N/mm, 𝐴 = 1812 N/mm, 𝐴 = 906 N/mm. 
The results are in good agreement, which proves that the use of optical techniques in con-
junction with the new setup of the ECT (samples cut at an angle of 45 degrees wrt direction 
of corrugation) can be effective in determining the stiffness of corrugated cardboard. 

5. Conclusions 
The main conclusion is that stereo DIC and / or optical extensometry techniques can 

be used to evaluate stiffness in a standard edge crush test. In order to determine all the 
stiffness coefficients, it is necessary to use an additional, new test specimen cut at an angle 
of 45 degrees to the direction of the corrugation. By applying results from two samples 
simultaneously and using a least squares minimization approach, all stiffness components 
can be easily identified. The only concern is the proper surface selection in unsymmetrical 
corrugated cardboard samples for stereo DIC measurement, especially in 45-degree tests. 
However, this is easily remedied by using a larger sample set and averaging the results. 
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