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Abstract: Demand response flexible loads can provide fast regulation and ancillary services as reserve
capacity in power systems. This paper proposes a joint optimization dispatch control strategy for
source-load system with stochastic renewable power injection and flexible thermostatically controlled
loads (TCLs) and plug-in electric vehicles (PEVs). Specifically, the optimization model is characterized
by a chance constraint look-ahead programming to maximal the social welfare of both units and load
agents. By solving the chance constraint optimization with sample average approximation (SAA)
method, the optimal power scheduling for units and TCL/PEV agents can be obtained. Secondly,
two demand response control algorithms for TCLs and PEVs are proposed respectively based on the
aggregate control models of the load agents. The TCLs are controlled by its temperature setpoints
and PEVs are controlled by its charging power such that the DR control objective can be fulfilled.
The effectiveness of the proposed dispatch and control algorithm has been demonstrated by the
simulation studies on a modified IEEE 39 bus system with a wind farm, a photovoltaic power station,
two TCL agents and two PEV agents.

Keywords: Chance constraint programming; Source-load systems; Demand response control; Ther-
mostatically controlled loads (TCLs); Plug-in electric vehicles (PEVs).

1. Introduction

With the rapid increase in energy consumption and environmental pollution, renew-
able energy power generation is becoming more and more popular and various kinds of
distributed generations are connecting into the power grid. While the incorporation of
renewable energy units give rise to the increasing need for the resource capacity or ancillary
services if there exists major forecast uncertainty. Meanwhile, flexible loads in the demand
side can provide different kinds of ancillary services, such as frequency regulation, load
following, and some other services. A widely adopted flexible loads for these services
include thermostatically controlled loads (TCLs) and plug-in electric vehicles (PEVs), which
can respond the power dispatch or electricity price timely. To address these concerns, there
has been lots of valuable research on the coordination and interaction of traditional units,
renewable units, and flexible loads of source-load systems [1-4].

Renewable power generation has gained much attention and been in an increasing
trend, which is beneficial to environment and economics. Especially, wind and photovoltaic
generation are thought to be the most developed renewable sources worldwide. However,
the power produced by these renewable energies largely depends on natural environmental
conditions, such as wind speed or illumination intensity, which are stochastic and cannot
be precisely predicted.

The uncertainty of the renewable power may pose new challenges for power system
operation and control, especially during times of high penetration [5]. To provide a flexible
and comprehensive consideration of the forecast error of renewable power [6], a common
solution is to restrict wind power and abandon light power so as to protect the power
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systems. Another solution is utilizing the various optimization methods. The look-ahead
dispatch method was considered in [7,8], which has been proved to be an effective strategy
to reduce the power imbalance caused by the injection of renewable power [9]. By taking
into account of the uncertainty of renewable power, robust optimization [10,11], stochastic
optimization [12,13] and chance-constrained stochastic optimization [14,15] have been the
most popular methods to account for uncertainties in power generation.

On the other hand, demand response of power grids has already switched from
traditional mode of load curtailment to the mode of dynamical response without interfer-
ence with users’ comfort levels [16]. The DR optimization has received much attention.
The authors in [17] proposed a hierarchical demand response architecture to control and
coordinate the performance of various DR category resources. Demand response controlla-
bility was investigated in [18] for the unit commitment model with limited predictability
and residential DR resources. By considering the site selection and the incentive price,
an optimal strategy for responsive loads was proposed in [19] for source-network-load
system. Online demand response for non-deferrable loads was investigated in [20] with
rechargeable battery and renewable energy. By the method of the alternating direction
method of multipliers, a hierarchical robust distributed optimization was proposed for
demand response services [21].

As for the TCL agents, it has been shown that TCLs can provide power balancing
reserves when aggregated due to their thermal energy storage capacity [22,23]. By using
switching-rate actuation, the authors in [24] studied the demand response of TCLs and
household refrigerators. Distributed load following was investigated in [16] for aggregate
TCL loads. The authors in [25] presents a mean-field model for analysis and control for
aggregate demand of heterogeneously TCLs. By using a stochastic Markov decision process
and distributed robust optimization, [26] internalize the exogenous uncertain dynamics of
TCLs.

Literature of demand response and EV charging scheduling has proved that EVs
will become the main demand response resources in the near future. Lots of research are
concentrated on the charging optimization and control problems. By designing a smart
charging scheme for PEV, it has been shown in [27] that the aggregate EVs are able to
reduce the peak demand or peak shaving. A fair demand response strategy for EVs was
proposed in [28] for a cloud based energy management service with a given time period.
The authors in [29] proposed a charging load model for an electric vehicle charging station
which could be integrated to distribution systems so as to obtain the optimal charging
decisions for demand response provision.

Both aggregate TCLs and aggregate PEVs are large scale flexible loads in power grids,
which can be involved in the DR programme together to share the power imbalance. By
considering the uncertainty in renewable energy generation, load consumption, and load
reserve capacities, a chance constrained optimal power flow model was proposed in [30,31]
to procure minimum cost energy. The authors in [32] proposed a chance constrained opti-
mal power flow model to schedule power production of both generators and controllable
electric loads. By the method of stochastic model predictive control, the authors in [33] in-
vestigated the optimal power dispatch and control for power grids with renewable energy
resources and EVs. Based on the mixed integer linear programming method, intelligent
DR for industrial energy management was designed in [34] by considering TCLs and EVs.

Motivated by the above observations, this paper intends to investigate the optimiza-
tion dispatch and demand response control of source-load systems with uncertain renew-
able power injection and flexible TCL and PEV load agents. To the best knowledge of
authors, most of the demand response problems are solved by various kinds of optimiza-
tion models and methods, few published literature are concerned this problem by control
algorithms. This paper will solve the demand response optimal power allocation and
achievement problems of source-load systems via control models and control strategies
for flexible loads. The main contributions are summarized as follows: 1) A probabilistic
controllable interval is introduced to the chance-constraint look-ahead optimization, which
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can cope with the uncertainty of both the renewable power generation and the flexible
load response; 2) Compared with discrete-time on/off control of TCLs, a continuous-time
setpoint temperature regulating control algorithm based on aggregated model is proposed
to guidance the power change of the TCL agent; 3) A time-varying charging power control
algorithm based on the saturation function is proposed for the PEV agent such that the
aggregate PEVs can follow the reference power trajectory.

An outline of the rest paper is organized as follows. Section ?? states the problem
formulation and the optimization and control framework. Section 3 provides the chance-
constraint look-ahead programming model for the source-load system with the injection of
renewable power and flexible TCL/PEV agents. Section 4 describes the aggregate model
for TCL/PEV agents and designs the corresponding control algorithms for the optimal
power profile tracking. Section 5 shows the effectiveness of the proposed optimization and
control algorithm on a modified IEEE 39 bus system. Section 6 discusses the optimization
and control framework and draws the conclusions.

2. Problem Formulation

Consider the coordination optimization problem of a source-load system, where the
source of the system includes the traditional generating units and renewable power (mainly
wind power and photovoltaic power) and the load of the system includes rigid load and
flexible load. The rigid loads, such as lighting and computers, are always uncontrollable
but can be predicted. The flexible loads, such as thermostatically controlled loads and
plug-in electric vehicles, can be controlled by the corresponding control signals. On the
other hand, the renewable power injection is always a random variable because of the wind
speed and the ambient temperature and illumination are always random ones. Therefore,
how to balance the power production and consumption with the maximal social welfare is
a crucial problem among units and flexible loads.

This paper intends to solve this problem by setting up a chance constrained look-
ahead programming model for the source-load system and designing two kinds of demand
response control algorithms for TCLs and EVs. Specifically, flexible loads are aggregated as
load agent which can be involved in the electricity market to participate in the load bidding.
The terminal DR loads is controlled by the load agent by issuing the corresponding control
signals. The schematic diagram of the optimization dispatch is shown in Fig. 1.
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Figure 1. The structure of the optimization dispatch framework of source-load systems.

Based on the prediction of the rigid load and the actual renewable power injection and
the day-ahead power generation plan, the look-ahead optimization dispatch with chance
constraints can be solved by the sample average approximation (SAA) method [37,38].
Furthermore, the generating units respond optimal generating instructions and the flexible
load agents achieve the optimal power profile by demand response control of massive
terminal small controlled loads. The detailed control models and the control algorithms of
TCL agents and PEV agents will be discussed in the following.
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3. Chance Constrained Look-ahead Optimization

This paper considers the joint real-time economic dispatch problem for generating
units and flexible load agents by considering the uncertainty of renewable energy power
generation. The objective of the power scheduling is to maximize the social welfare, i.e.,
maximizing both generating units and load agents:

T
max LF(P() = 1 [ T 06:(Boi,p(0) + TOw(PL(p0)].
t= t

=1 "ieG jeL

where F is the total social welfare with respect to the real-time power variable P(t) =
[Pr(t), Pa(t), ..., PG4 (H)]T = Po(t) + AP(t) (day-ahead scheduling plus intra-day cor-
rective scheduling); p(t) is the time-of-use (TOU) power price; Qg (-) and Q) ;(-) are the
welfare functions of the ith generating unit and the jth load agent, which are given as
follows,
Og,i(Pg,i(t), p(t)) = p(t)Pe,i(t) — Ci(Pg,i(t)), ?
Qj(Pri(t), p(t)) = U (Pr;(t)) — p(t)PL;(t).

For the units, the cost function C;(-) usually can be approximated by a quadratic
convex function C;(P;) = aiPiz + b;P; + c;, where a;, b; and c; are predetermined constants
and P; is the generated power. For the load agents, the utility function U]-(-) , often assumes
to be the convex utility function with the zero initial value, is a quadratic utility function
which can be described by [35,36].

2 @j
(U]‘PL,]' — OCjPL’]-, 0< PL,]' < oG
Ui(PLy) = w0 ®)
wj /4uj, P> 27‘/
where w; and «; are predetermined constant coefficients.
Considering the randomness of the actual renewable power, the following chance
constraint with a controllable interval is involved:

Pr (Plo < ) Poi(t) + Prew(t) = ) Prj(t) = Pp(t) < th’) > Pa, 4)
icG jel

where [Py, Pj,;] is the controllable confidence interval of the source-load system which is
often set to be smaller than the actual operation interval because of the response uncertainty
of the flexible DR loads; Prey (t) = Pyi(t) 4 Ppy(t) is the renewable power injection with
the random wind power variable P,; and the random photovoltaic power Pyy; Pp is the
prediction value of the rigid load in the system; the probability p, is required at least 95%.

Other considered inequality constraint conditions for such an optimization problem
are given as follows:

PEI" < Po,i(t) < PG,
1
—RE < — (Pgi(t+1) — Pg,(t)) < RY,

AT G,i’

: ®)
PPUn (1) < Ppi(t) < PRSX(1),

1
d up
=R} < 17 (Puj(t+1) = PLi(f) < Rp,

forVieG,jeLlandt=1,...,T; Pg}%“ and Pg}?x are the lower and upper bounds for ith
enerating unit; PMnN () and PMaX(#) are the time-varying lower and upper bounds for jth
& ) L,j L,j ying pp J
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load agent; R‘é‘}  and Rlép/ ; are the down and upper ramping rates of the units and load
agents.

By the sample average approximation method [37,38], the optimal power scheduling
for units and flexible load agents can be obtained by solving the look-ahead optimization
(1)-(5) with chance constraint. In the following, the design of the demand response control
algorithms for the aggregate TCL agents and the PEV agents will be provided.

The power variability and uncertainty of the renewable power are handled by the
probabilistic chance-constrained optimization, where the probability distributions of the
wind power and the PV power are assumed to be mutually independent. Then the joint
probability density function can be derived by the probability theory. Then, the sample
of the renewable power can be generated by its probability distribution. The power
balance constraint is transformed to be a probability confidence interval with a predefined
confidence level p,, which is able to cope with the volatility of the renewable power. On
the other hand, the inherent uncertainty of flexible TCLs and PEVs is absorbed by the
reserve capacity of the system, i.e., the controllable confidence interval of the optimization
constraint (4) can be set smaller than the actual operation interval of the source-load
system.

4. Demand Response Control of Load Agents

It is well known that both TCLs and PEVs are small loads in the power grid compared
with the traditional generating units. Therefore, how to control these dispersive loads to
fulfill a global optimization objective is a key problem in the implementation of the demand
response control. That is, one needs to design the corresponding control strategies such that
the aggregate power Pr(f) of all terminal controllable loads can track the reference power
trajectory Pys(t) optimized in the chance constrained optimization. The approximate
models for aggregated TCLs and PEVs are utilized in this paper, based on which the error
feedback control strategies are proposed. The following provides detailed models and
control algorithms.

4.1. Aggregated TCL Model and Feedback Control

Suppose a population of homogeneous TCLs under a common control area is aggre-
gated as a TCL agent, the aggregate power of which based on the temperature control is
approximated by a bilinear system [39] as follows,

Xe(t) = Acxc(t) + Bexe(H)uc(t), ©)
Ye(t) = Cexe(t),

where x.(t) € RY is the internal state denoting the average number of off or on TCLs

in each temperature subinterval of the temperature deadband; Pr(t) = y.(t) € R is the

approximate aggregate power output of the TCL agent; the coefficient matrices A, B, C,

can be founded in [39], which are omitted here for space limit; u.(t) € R is an incorporated

control input satisfied the constraint

() = &(Aea(t) MOt (1)) — Mt (1), @)

where C[kWh/°C] is the thermal capacitance and R[°C/kW] is the thermal resistance;
A0y (t) = 0,(t) — Opgse is the deviation value between the ambient temperature 6, (t) and the
base value 04,5 Abset (1) = Oset () — Ggfts is a bounded deviation value between the actual
temperature setpoint fs¢ () and preferred setpoint temperature 69 for the comfort levels
of customers. Abs is the changing rate of the setpoint temperature s (t), which needs
to be designed within an interval [&oy, &,] S0 as to make the aggregate bilinear model (6)

make senses, see the detialed illustration in [40].
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Parameters &o,, & are functions with the independent variables 6,5, and 0%, given
as
_ 1
Ron (Opases ngts) = ﬁ(ebase - Ogeets —RP), ®)
8
_ 1
“oﬁ‘(ebuser Glsjeets) ~CR (Opase — Ggeets)/

where P; [kW] is the energy transfer rate to or from the thermal mass, which is positive for
cooling TCLs.

Next, the setpoint temperature 6s.(t) is determined indirectly by viewing the incorpo-
rated control u.(t) as an entire variable. By the optimization calculation from the dispatch
center, the optimal power profile Prtg}(t) for the TCL agent can be derived. The updating of

control input u. () is proposed based on the error feedback control:

ue(t) = i (PEHE) — () + 12 / (PEL(E) — ye(1)dt, ©)

where 11 and y; are the control gains.

While the actual temperature setpoint deviation values of TCLs can be updated by
substituting (9) into (7). Furthermore, the real-time setpoint temperature 6, (t) for the
TCLs in the load agent can be obtained by

Oset (1) = 09 + ABges (1). (10)

According to the generated setpoint temperature control signal, the temperature of
each TCL changes by the following temperature regulation differential equation:

do(t) 1

5 = g (0at) —6() = s()RP;), ()

where 6(t) is the internal temperature of the conditioned mass. The operation state s(t) is
governed by the following thermostatic switching law:

0, ifs(t—71)=1&06(t) <0 (t)
s(t) = { 1, ifs(t—71)=0&0(t) > 0" (¢t) (12)
s(

t—1), otherwise

where T is the sampling period of temperature, and the lower and upper boundaries of the
temperature deadband are given as:

0 (1) = B (1) — 8, 07 (1) = (1) + 2. (13)

The deadband of each controlled TCL is a time-varying interval [0 (), 67 ()], since
the setpoint temperature is regulated according to the global optimization objective.

In the above aggregate model (6), the parameters of TCLs are assumed to be homoge-
nous for model simplification. As for the heterogeneous TCLs, there are two methods to
approximate the aggregate power. The first one is to utilize the averaged equivalent model
with the averaged equipment parameters. The second one is to divide the heterogeneous
TCLs to multiple homogeneous groups and the homogeneous TCLs are modelled by an
aggregate model.
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4.2. Aggregated PEV Model and Feedback Control

As for the PEV in the power grid, the SoC equation of a single PEV is always utilized
to characterize the process of the power consumption:

SoC(k+1) = SoC(k) + %ue(k)Pg“axAt, (14)
e

where B, denotes the battery capacity; #. is the charging efficiency; P,"® is the maximal
charging power of the PEV; At is the sampling period of the SoC value; u,(k) is the
charging ratio needed to be designed. The value of SoC is distribute in the interval [0, 1],
often characterized by a actual interval [SoCpin, S0OCmax|, Where S0Cpin is the minimal
value for the charging battery, and SoCmax is the objective charging state.

Suppose a population of PEVs under a common charging control area is aggregated
as a PEV agent, and the aggregate charging control model of the agent is given by a
transport-based load model [41]:

{ %o() = Aexe()ue(t) + w(t),
Ye(t) = Cexe(t)ue(t).

where x,(t) € R" is the concentration of PEVs; u,(t) € [0,1] is a bounded control input
denoting the charging ratio relative to the maximal charging power of the PEV (the same
with u,(t) in (14)); w(t) € R" is the disturbance of the entering/exiting PEV flow; y.(t) is
the aggregate power output of the PEV agent.

In the above aggregate model, the SoC interval [S0Cpin, S0OCmax] is discretized into n
equal segments of length /, and x,;(#) denotes the concentration of PEVs in the jth segment
of the PEV agent at time ¢. The coefficient matrixes A., C, are given with

(15)

— pmax 0 e 0
pmax  _ pmax ., . 0
e 1 e e
e - h : '_ '_ ... : 7
0 pmax _pmax
0 . pmx o]
N S50Cmax — S0Cmin

CE:[PgrnaX/"'/P;naX/O}n/ h n

Furthermore, the transport-based flow w(t) of PEVs is defined as:

(i .

19" t/ —1,2,..., ,

wl(t) = { A m "o
19ifin (t)_fout(t)r i=n+1,...,n,

where 9; is the transport flow coefficient satisfying Y ! ; ¢; = 1; fig) (t) is the input flow;
félll)t(t) is the output flow at ith discretization segments (n; < i < n governed by the
transport dynamics of PEVs, given by

Pmax

Foak(B) = Flpa(B) = flidy (8) = “5— i (Due(t) = flidy (1), a7)

where fs(tlgy(t) means the EVs charged that can leave (the concentration of this kind of PEV
load is denoted by f. O(lgp .(t)) while choosing not to leave at this time, such as fs(tia)y(t) =

0.8 fc(lie)pa (t) denotes 80% EVs stopped charging while waiting to leave.

The dynamic characteristic of flexible terminal EV loads is described by the variable of
the transport-based flow w(t) of PEVs, where EVs can leave the power grid with a satisfied
charging objective, i.e. they do not wait to leave until the fully charged.
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By the optimization calculation from the dispatch center, the optimal power profile

Pri;v (t) for the PEV agent can be derived. The updating of control input u,(t) is proposed

based on the error feedback control:
te(t) = Ksat(Prijfv(t) —ve(t)), (18)

where « is positive control gain; the function sat(-) is a saturation function defined by

1, v>e€
sat(v) =< v/e, —e<v<e (19)
-1, v<e

where 1/€ is the slope of the saturation function predefined. The initial value for the
reference control input is set to satisfy the constraint 0 < 1,(0) < 1.

Finally, the practice charging power of PEV is P;(t) = PJ1™u,(t), then the charging
state is measured by the SoC equation (14). Instead, the power capacity available for the
aggregator can be calculated approximatively by the concentration of PEVs in each SoC
subinterval:

n
AP(E) = Y () x P, 20)
j=1
and the minimal charging time t;“i“ for EVs in the jth segment (i.e.,, minimal available

control period) can be calculated by

min _ Be(50Copj — j(S0Cimax — S0Crmin) /1)
VT P ’ .

and the maximal available control period £*** = t?ep — £3, where " and t?ep are the
arrive time and the temperature time.
Meanwhile, if the dwell time of the EV is smaller than the minimal charging time, i.e.,

Be (SOCObj — SOCim)

dep arr
t - t < 7
j e pénax

j (22)

where S0Cop; and SOC}ni are the objective and the initial SoC values, then the EV is not
available for scheduling, which can be viewed as disturbance for the aggregate model and
its practice charging power can be set P;(t) = P directly.

As for the PEV agents, the maximal and minimal regulation capacities are time-varying
according to the changing of the transport flow of EVs and the states of the SoC equation.
Therefore, the constraints for PEV agents is time-varying as well.

The battery of the PEV can be charged at rated power or maximal charging power
by time-controlled charge scheduling to get full charged. Meanwhile, the charging power
P of PEV can be varied in [P™", PM3X] by turning the charging modes with the constant
voltage or current. Therefore, the voltage controller or current controller can be utilized to
realize the optimal charging power by P, = U; x I.. Such as in the voltage stabilization
mode, the charging current can be controlled in the interval [[™", [™3X] by feedback control
to regulate the actual charging power. Fast charging technology for batteries have already
been applied in practice to reduce charging time by increasing the charging current. On
the other hand, the time-varying charging power utilized in practice is sampled with a
fixed sampling period instead of the fast-changing continuous power and in each charging
period, the charging power is a constant charging power as well. In order to illustrate the
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accuracy of the demand response control, the relative errors are utilized to measure the
control performance:

|Prt§]lr(t) —ye(t)] |Pfgjrv(t) — ve(t)]
Ei(t) = W/ Ex(t) = W‘ (23)

If the optimal power tracking errors are acceptable, then the proposed demand re-
sponse control algorithms can be utilized for the demand response applications.

The aggregate models of TCLs and PEVs are utilized in this paper mainly due to the
fact that the actual TCL and PEV are often integrated into the power grid without extra
electricity supervision. Therefore the actual aggregate power is difficult to be measured,
and the aggregate models provide an approximate estimation for the aggregate power. The
error feedback control algorithms are based on the tracking error of the optimal power
profiles, which could ensure the tracking performance. The power response of the TCL
agent is based on the temperature setpoint control signals and the power response of the
PEV agent is based on the changing of charging power.

5. Case Study

This section validates the performance of the proposed chance constrained optimiza-
tion and demand response control architecture through numerical simulation on a modified
IEEE 39-bus test system, the unifilar diagram system structure is given in Fig. 2. Suppose
that the loads under bus nodes B11, B23, B28, B32 are flexible controllable loads which are
managed by the corresponding load agents TCL/PEV Al/2 and loads under the bus nodes
B27 and B29 are fixed loads. On the other hand, the generators G1 ~ G6 are slow units and
generators G7 ~ G10 are AGC units.

B23 I

TCLA2

® AGC unit ® Slow unit @ Transformer g Load agent
Figure 2. The modified IEEE39 bus system for testing and verification.

The flexible controllable loads serve as demand side resources, which can provide
active power regulation service together with generation units. Six slow units and the four
flexible load agents are dispatched by the dispatch center based on the chance constraint
look-ahead dispatch, the cost coefficients and capacities for all the participants are given
in Tabs. 1. We consider the optimization dispatch and demand response control of a
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summer working day, where the TCLs (mainly air conditioners) and PEVs are controlled
in real-time.

Table 1: Parameters of generation units and demand agents.

Generation unit parameters (MW)
o .

G a; b; R RY, PR pE
Gl 0.0451 2.8213 15 20 25 200
G2 0.0365 2.2421 22 24 20 180
G3 0.0274 3.1518 20 25 30 200
G4 0.0518 2.8523 18 12 30 150
G5 0.0818 4.1533 20 16 20 200
G6 0.0353 2.3472 15 15 20 160
Demand agent parameters (MW)

L w wj RS RE P PP
TCL A1 | 0.2116 21.1621 4 6 10 50
TCL A2 | 0.2452 19.6168 5 9 15 40
PEV A1 | 0.2021 18.1892 8 6 10 45
PEV A2 | 0.2456 24.2234 5 7 12 50

Furthermore, the optimization period is 15 min and the look-ahead period T = 4;
the DR control sampling period for real-time control is 20 sec. The coupling time-scale
relationship is given in Fig. 3.

Day-ahead scheduling for units and load agents

Optimization

Correction scheduling

--------- G—r—CD

Look-ahead chance-constrained programming dispatch

Control

[7:00:20] [7:00:40 ] --eeeeees [7:15:00 | [ 18:45:20 | [ 18:45:40 |---- [ 19:00:00
Real-time control for the units and load agents

Intra-day satge

Figure 3. The time scale for the chance-constrained look-ahead programming and the real-time DR
control.

In the test system, we assume all TCLs in a same agent are homogeneous, that is with
the same thermal capacitance C, thermal resistance R, output cooling energy P, energy’s
transmission efficiency 77, and preferred setpoint #9%°. The number of TCLs in each agent,
and the initial proportion of the off TCLs pr,g and other parameters are given in Tab.
2. Suppose the ambient temperature is 24 ~ 38°C given in Fig. 4 and 6,5, = 34°C. The

predicted rigid load and the TOU price are provided in Fig. 4 as well.

Table 2: TCL agents’ private parameters.

Ag. | N prog R C P, N6 by

Al | 11780 052 512 882 19.63 292 2315 1
A2 | 9730 049 544 989 1656 271 2245 1

On the other hand, the renewable power includes wind power and photovoltaic
power, where the wind power is a random variable bounded by its rated output power.
Suppose there are 50 wind generators in the wind farm with a rated power 1.5MW for
each generator and 60 photovoltaic panels in the system. The photovoltaic power is closed
related to the ambient temperature and illumination, the value is provided in Fig. 4 as
well. In the simulation, the wind power and photovoltaic power are mixed together and
the renewable power interval is shown in Fig. 5, and a sampled wind power curve is
distributed in the power interval.
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The controllable interval of the source-load system is set to be 60% of the maximal
regulation capacity 100 MW, [P,,, Py,;] = [—60,60] MW and the chance constraint probability
Pa = 95%. By solving the chance constraint look-ahead optimization, the optimal power
trajectories for units and load agents are given in Figs. 6-7 respectively.

200 T T T T T
—6— P () —O— P, Paol) —O— Pl —B— P () —O— P

150 [

100

P4 (MW)

07:00 09:00 11:00 13:00 15:00 17:00 19:00
Time (hr)

Figure 6. The optimal power output of generating units.
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07:00 09:00 11:00 13:00 15:00 17:00 19:00
Time (hr)

Figure 7. The optimal power consumption of load agents.
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Figure 8. The power tracking of the first TCL agent.

As can be seen from Figs. 6 and 7, the power generation follows the load fluctuation
and load agents gain the corresponding regulation capacity as well. If all the TCLs and
PEVs are not involved in the demand response programme, then the extra power generation
will be compensated by the generating units. Next, the simulation of the demand response
control is illustrated.

As for the TCL agents, the state space dimension Q = 30, the sampling period 7 is set
to be 20 second and the initial temperature of the TCLs follows an uniform distribution
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U[22, 25]"C ; and the comfort temperature intervals for the two agents are given with
[21.15,26.15] and [22.45,27.25] separately. By setting #; = 0.7 and pp = 0.1, and running
the system (6) with control input (9), the reference power and the actual aggregate power
are given in Figs. 8 and 9. The relative error curves are provided in Fig. 10, which are
smaller than 0.07%.

W
(&)

Reference power
Aggregate power
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N
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Power tracking for TCL A2 (MW)
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15 Il Il Il Il Il
07:00 09:00 11:00 13:00 15:00 17:00 19:00
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Figure 9. The power tracking of the second TCL agent.
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Figure 10. The relative power tracking errors of TCL agents.

As for the PEV agents, the SoC interval is set to be [S0Cpin, S0Cmax] = [0.1,1], and
the interval was divided into n = 9 subintervals. Furthermore, n; = 3 means the EVs
with the SoC value lower than 40% can only enter but not exit and EVs with the SoC value
upper than 40% can enter or exit freely. The sampling period Jt = 20 second as well. The
initial centralization of PEV x.1(0) = [23520,30225] and x ;(0) = [0,0] for 2 < j < n. The
hourly transport flows for the incoming EVs of two PEV agents in time period from 7 : 00
to 19 : 00 are given in Fig. 11. According to the survey of the daily trip lengths, over 40% of
the PEVs return to the first SoC discretization segment and the transport flow coefficient 6;
is set to be 0.1 = [0.42,0.45] and 6.; € U[0.03,0.09] for2 < j < n.

The output transport flow of PEVs can be calculated by Eq.(17), where fs(fgy(t) is set to
be 0.8f, C(li)p . (t), that is 80% PEVs charged that can leave while choosing not to leave at this

time. Here, fégpa(t) denotes the concentration of PEV whose SoC has reached the target
charging area.

By setting € = 2 in the saturation function and x = 0.6, and the initial value u,,¢(0) =
[0.372,0.348] in the controller. Then by system (15) with the control input (18), the optimal

power profile and aggregate power of PEV agent are given in Fig. 12 and 13 for agent PEV
Al and A2.

As can be seen from Figs. 12 and 13, the PEV agents follow the optimal charging
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Figure 11. The input flow of each PEV cluster for hourly data.

power profile pretty well since the maximal charging power of the transport flow of PEVs
in the simulation much larger than its actual charging power. The relative error curves are
provided in Fig. 14, which are smaller than 0.03%.

Finally, the total response deviation curve AP = ¥ Pg,i(t) + Prew(t) — Ljer PLj(t) —
Pp(t) is shown in Fig. 15. As can be seen from the figure, the deviation is distributed in
the regulation interval and the statistical probability is 97.5%, which satisfies the chance
constraint probability.

As can be seen from the simulation results and the relative tracking errors, the demand
response control performance of the TCL and PEV agents is acceptable as long as the
optimal power curves are solvable, which shows that the proposed demand response
control algorithm can realize the demand response power tracking of flexible load agents.
By participating in the demand response program, the owner of the TCL or PEV can get
some compensation with a lower electricity costs. The proposed dispatch and control
framework can be applied not only in bulk power systems but also in microgrids since the
designing structure is similar.

In the upper layer of optimization calculation, the renewable power curve for 15 min’s
data is derived by the cubic spline interpolation method. In the lower layer of control
procedure, the control interval (20s) for the flexible TCL and PEV loads is much smaller
than the renewable power injection sampling period (1h), which enable the DR loads have
sufficient time to track the uncertainty of the power injection.

6. Discussions and Conclusions

Compared with the traditional mode of power generation following load, the re-
newable power injection and the flexible loads in the demand side could participate the
interactive operation of power grids. The chance constraint look-ahead optimization and
demand response control algorithm proposed in this paper is effective for the coordinating
operation of the source-load system, which can be applied in practice.

1) Implementation: In the proposed dispatch optimization and control framework,
units and load agents report their basic information to the dispatch center and then the
optimization can be solved in the dispatch center. The optimal dispatch planning is
returned to the units and agents, and the units achieve the scheduled power by their own
control algorithms. As for load agents, the control system of agents are equipped with
the aggregate models for TCLs and PEVs, based on the error feedback algorithms, the
corresponding control signals for the terminal TCLs and PEVs are generated and then
broadcast to them in a centralized way. The controllable power interval can be fulfilled by
AGC units and flexible loads with price compensation. In order to protect the power grid,
the power interval for the optimization calculation can be set conservatively, such as 60%
of the actual regulation capacity.
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Figure 12. The power tracking of the first PEV agent.
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Figure 13. The power tracking of the second PEV agent.
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Figure 14. The relative power tracking errors of PEV agents.
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Figure 15. The stochastic response curve within the controllable confidence interval [—60, 60] MW.

2) Drawbacks: As for the chance constraint optimization, there may be no optimal
solution for the optimization. The confidence interval can be set larger and the confidence
probability can be set smaller in the actual optimization even when there is no solution for
the optimization. On the other hand, since the aggregate models are approximate models,
the actual control response errors are unavoidable. It has been shown in literature that the
accuracy of the model is related to the dimension of the state space model, i.e., the higher
the dimensionality of the model, the higher the accuracy of the model. Conversely, the
higher the dimensionality of the model, the higher the computation complexity. Therefore,
a moderate choice for the dimension is feasible for the actual application. Meanwhile, since
the proposed demand response control algorithm for PEVs is based on the time-varying
charging power instead of on/off charging control, the EVs are assumed to be always
available. Therefore, the chargeability of the EVs and user comfort levels have not be
considered sufficiently in the manuscript. If the EV needs to be charged to the desired SoC
with the desired minimal time instant, then the EV can be charged at the maximal charging
power directly.

3) Conclusions: This paper proposed a chance constraint look-ahead optimization and
demand response control framework for the source-load system. The structure ensures
the load agents in the demand response program can coordinate with generating units
such that the power balance could be shared together. By the aggregate models for TCL
and PEV agents, the corresponding error feedback demand response control algorithms
are proposed so as to generate the control signals for the terminal small loads. It has been
demonstrated that the TCLs and PEVs respond well according to the proposed algorithm
and the tracking errors are acceptable.
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