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Abstract: Every biological image contains quantitative data that can be used to test
hypotheses about how patterns were formed, what entities are associated with one
another, and whether standard mathematical methods inform our understanding of
biological phenomena. In particular, spatial point distributions and polygonal
tessellations are particularly amendable to analysis with a variety of graph theoretic,
computational geometric, and spatial statistical tools such as: Voronoi Polygons;
Delaunay Triangulations; Perpendicular Bisectors; Circumcenters; Convex Hulls;
Minimal Spanning Trees; Ulam Trees; Pitteway Violations; Circularity; Clark-Evans
spatial statistics; Variance to Mean Ratios; Gabriel Graphs; and, Minimal Spanning Trees.
Furthermore, biologists have developed a number of empirically related correlations for
polygonal tessellations such as: Lewis’s Law (the number of edges of convex polygons
are positively correlated with the areas of these polygons): Desch’s Law (the number of
edges of convex polygons are positively correlated with the perimeters of these
polygons); and Errara’s Law (daughter cell areas should be roughly half that of their
parent cells’ areas). We introduce a new Pitteway Law that the number of sides of the
convex polygons in a Voronoi tessellation of biological epithelia is proportional to the
minimal interior angle of the convex polygons as angles less than 90 degrees result in
Pitteway violations of the Delaunay dual of the Voronoi tessellation.
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1. Introduction

Visual representations can be used to test hypotheses, help us reason about biological
causation, and help us communicate our inferences. While calculus and differential
equations currently dominate applications of mathematics to biology, biologists are deeply
interested in a wide variety of patterns in multiple forms of visualization and the causal
mechanisms that generate such patterns. Unfortunately, visual areas of mathematics like
geometry and topology are rarely learned by biologists. Therefore, while we cannot make
the case as in Star Trek that Space is the Final Frontier, mathematical and computational
analysis of space should allow us to re-vision biological image analysis by seriously
applying graph theory, computational geometry, and spatial statistics. Recent articles in X
mathematics have described the importance of graph theory in biology: RNA structural
motifs in viruses [1]; 3D icosahedra [2]; and non-Mendelian genetics [3]. While these
articles address important mathematical concepts, they do not discuss the general utility
of graph theory to biological problems. Graph theory relates especially well to this special
issue on “Mathematical Biology” because biologists already use graphs such as
phylogenetic trees, fate maps, pedigrees, chromosomal maps, food webs, connectomes,
neural nets, and secondary structures of RNA (planar graphs such as Nussinov circles,
domes, mountains, and airports) and proteins (HP (hydrophobic-polar) protein lattices;
Wenxiang diagrams). These visualizations are mathematical abstractions of many
biological phenomena. Nonetheless most biologists do not appreciate that these
visualizations are amenable to analysis with formal mathematical tools. Particularly,
visualizations such as photographs of tree canopies, fish territories on sandy or muddy
bottom lakes, polygonal animal coat patterns, histological preparations of epithelial cell
layers, radiolarians tests, viral capsids, or x-ray crystallographic images of protein
structures lend themselves to analysis by tessellations of Voronoi polygons and their
topological duals: Delaunay triangulations. Herein the mathematical power of these
geometric and topological tools as well as a series of related concepts from graph theory,
computational geometry, and spatial statistics will be explored in the context of image
analysis of biological patterns.

2. Valuing Voronoi Visualization: Spatial Analysis of Biological Patterns of Points,
Polygons, and Polytopes



https://doi.org/10.20944/preprints202108.0579.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2021 d0i:10.20944/preprints202108.0579.v1

3 of 31

Figure 1. Consider the nine images above: (a) tropical rain forest canopy; (b) reticulated
giraffe; (c) Talapia fish territories; (d) Chameleon head; (e) Galapagos tortoise forefoot; (f)
Petoskey stone (a fossilized stony coral); (g) pollen grain; (h) Thai breadfruit; and, (i)

radiolarian.

What do these biological tessellations share in common? Do these organic forms look
quasi-crystalline? Do you see a preponderance of five- and six-sided convex polygons
that primarily adjoin one another to form trigonal junctions? Why should such similar
patterns occur across such vast scales of size, time, phylogeny, and causal mechanism?
How can our appreciation of a very different use of standard geometry and algebra tools
as well a little help from graph theory and spatial statistics help us to better understand

the evolution, development, and beauty of biological patterns?

Allometry and fractals have captured the imagination of mathematical biologists as
well as amateurs because both apply across at least ten orders of magnitude of biological
phenomena and structures from the molecular to the ecological level. ~All of the biological
specimens illustrated in Figure 1 contain tessellations of convex polygons known as
Voronoi polygons. Voronoi polygons and polyhedra are less well known to both
audiences, but scale equally well across phylogenetic, spatial, and temporal dimensions.
Furthermore, Voronoi polygons and polyhedra are associated with additional
mathematical methods that allow deeper insight into a variety of biological causal
mechanisms such as growth, diffusion, division, packing, docking of ligands, strength of
materials, molecular folding, foraging behavior, predator avoidance, and crowding as well
as to their utility in making measurements, modeling interactions, relationship of two- and
three-dimensional topographic structures, making succinct abstractions, and visualization
per se. These four criteria of diversity: (1) phylogenetic, (2) spatial, (3) temporal, and (4)
causal mechanisms are posited as useful gauges of the applicability of mathematics and
computer science to biology.

Lest we forget, mathematicians are deeply interested in biological pattern formation
and morphogenesis in general. With the strong visual legacy of mathematical research in
geometry, topology, and symmetry, McCormick, DeFanti, and Brown [4] state:
“Visualization is a method of computing. It transforms the symbolic into the geometric,
enabling researchers to observe their simulations and computations. Visualization offers a
method for seeing the unseen. It enriches the process of scientific discovery and fosters
profound and unexpected insights. In many fields it is already revolutionizing the way
scientists do science.” It is precisely this desire to use mathematics to “see the unseen” that
as a mathematical biologist I want to share with biologists. Gilbert [5] argues that
mathematical visualization is a metacognitive skill that if students are able to acquire
translates to many different problem-solving applications. Therefore, this is not simply a
matter of interpreting pretty pictures, but a tool in helping both students and researchers
to make deeper inferences about what they see.

Aurenhammer [6] has raised two questions and his answers are well worth noting;:

"Why do Voronoi diagrams receive so much attention?
What is special about this easily defined and visualized construct?
It seems three main reasons are responsible.

First, (Science) Voronoi diagrams arise in nature in various situations.
Indeed, several natural processes can be used to define particular classes of
Voronoi diagrams. Human intuition is often guided by visual perception. If one
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sees an underlying structure, the whole situation may be understood at a higher
level.

Second, (Mathematics) Voronoi diagrams have interesting and surprising
mathematical properties; for instance, they are related to many well-known
geometric structures. This has led several authors to believe that the Voronoi
diagram is one of the most fundamental constructs defined by a discrete set of
points.

Finally, (Computer Science) Voronoi diagrams have proved to be a powerful tool
in solving seemingly unrelated computational problems and therefore have
increasingly attracted the attention of computer scientists in the last few years.
Efficient and reasonably simple techniques have been developed for the
construction and representation of Voronoi diagrams."

These considerations were fundamental driving forces in the development of our
software: Ka-me: A Voronoi Visualizer [7]. However, the original motivation to develop
such a tool began in 1977 with the use of Voronoi tessellations in cell biology by Hsiao
Honda [8] and has been used by one of the authors in cellular and developmental biology
courses ever since as well as in BloQUEST Curriculum Consortium workshops [fff]. Honda
fundamentally addressed the question of whether Voronoi tessellations fit the number,
size, and shape of single cell sheets of biological cells such as exist in epithelia and
monolayers of cells grown on 2D surfaces in tissue culture. In an additional paper [ggg],
he extended his analyses to dynamic rather than just static patterns. Thus, the breadth of
spatial problems in biological image analysis will be explored throughout this paper and
the power of Ka-me: A Voronoi Image Analyzer will elaborated for multiple kinds of
biological images and to make inferences about the causal reasons for such patterns to
exist.

2. a. Spatial Distributions:

Voronoi tessellations abound in biological, medical, and environmental images across
broad phylogenetic (Figure 1), spatial and temporal scales (Table I; [8]) and are caused by
a large variety of different mechanisms (Table I). These tessellations have current interest
for biologists because they are self-organizing, can cover an area in an efficiently
constructed fashion with minimal lightweight material and extraordinarily strong
structural properties, are natural instruments for evaluating measurement of nearest
neighbor interactions, etc. They were formally characterized by the Ukrainian
mathematician Georgii Feodosevich Voronoi in 1908 [9]. While many disciplines have
rediscovered them and given them different names such as Wigner-Steitz cells in physics,
Theissen polygons in geology, archaeology, and meteorology, Dirichlet domains in
crystallography, and S-mosiacs in ecology. Recently, Gibson et al. [10] referred to Voronoi
tessellations as “polygonal lattices.” Priority is usually given to Voronoi and will be
adopted throughout this paper.


https://doi.org/10.20944/preprints202108.0579.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2021 d0i:10.20944/preprints202108.0579.v1

5 of 31

Table I: Spatial Diversity in Biological Formation of Voronoi Patterns

Size Biological Pattern

1 kilometer Acerial photograph of old human settlements

100 meters “Canopy Puzzle”: Mature tropical rainforest

10 meters Reticulated Giraffe, Tilapia Fish Territories

1 meter Galapagos tortoise, Reticulated eel, leopard coat

1 decimeter Petoskey stone (fossilized “stony coral), Thai breadfruit

1 centimeter Slime mold, Fish eggs packed

1 millimeter Pollen grain, Elytron of a beetle, Leaf cross-section
100 microns Radiolarian, Cells in tissue culture

10 microns Bacterial biofilm

In order to test whether a particular biological pattern was actually a Voronoi
tessellation, we tried to fit a Voronoi tessellation to the test of a radiolarian that we
examined by 3D nanotomography [12] (see Figure 2). We converted the test of the
radiolarian with a medial axial transformation with the software Amira [13] in order to get
a flattened screen projection. Note that all 40 convex polygons on the surface fit quite well.
On only a few cells out of the 40 fit inside of a convex hull (because polygons outside of
this region extend to infinity) can you see the white lines of the underlying Amira image
different from the edge of the fit Voronoi face and all 40 convex polygons have the same
number of edges as their counterparts and cover nearly identical areas. Thus, to a good
approximation, we can make the mathematical inference that whatever mechanism
produced the pattern on the radiolarian test that there was a spatial point distribution of
generator sources and the edges are the perpendicular bisectors between these generators.
In other words, the properties of Voronoi diagrams, namely that they produce tessellations
with trigonal junctions equidistant from three neighboring generator points (that is, these
trigonal junctions are the circumcenter of a circle that goes through all three neighboring
generator points and the radius of the circle is the distance from each neighboring
generator point and the circumcenter). Furthermore, anytime we see a polygonal
tessellation which has a predominance of five and six sided convex polygons, it is likely to
be the product of nearest neighbor (i.e., local interactions). Conversely, if we see a
polygonal tessellation which has a predominance of three- and four-sided convex
polygons with degree four junctions, it is likely to be the product of line-line intersections
(i.e., long rage interactions) (see Figure 3).
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Equations for the circumcenter of a circle defined by three generator points xi1, yi; X2,
y2; and X3, ys.
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Then, by substitution of the coordinates of these two equations back into the original
three equations, the length of the radius of the circumcircle can be determined. These
circumcenters define a circle with all three generator points lying on it. Such circles are
often referred to in the computational geometry field as the “greatest open circles.” For
their construction see: https://www.youtube.com/watch?v=YBiAabFcPCI. Circumcircles
are shown in a Ka-me analysis in Figure 4. The utility of these constructions is important
to identify where you might locate a cell tower to improve phone coverage, add a rain-
gauge, place a fire station or neighborhood school, or identify an area of least competition
between animals of the same species. Each of these objects: the generator points, the
Voronoi boundaries (perpendicular bisectors between the generator points), the vertices
of the Voronoi polygons (circumcenters), the Delaunay triangulations, and the greatest
open circles have different applications for different biological problems to which we will
refer later.

fim  Vew  Tech  hem

Diagram Display Blagrem Opieas. Diagrars Fratare

o Comnime s Wherertiaiti S04 e TRE
[LES T — | Gabiel gragh

o e eagram Rrlisvr seightiotoad ik
Comas il taminee 4
Crumrrs

O I M W 4 S0 R M W W 0

Paint Fatiem Analyiis

Clath-fank Naaneid Mol hood LAz
| Warikncn 10 e Rase oAz
N Avsiours ot A
Gismiman I Proparties
o " Tal Culy 5K
gu Maan LT
LRy * yvaranis o
Tl em e
! i ' sweens 0,016
| | Add Kanam Foist
' Ade ‘
e < = .l_|l | i - | Canlrsi 3
| 1 '-_I .l-" \ .'" LmarDagiam Clearaa

[LE LT, IR FTO

Figure 2: A screenshot of a Voronoi diagram tessellation generated by the software
Ka-me which is superimposed on a medial axial transformation of the 3D
nanotomography image of a test of a radiolarian generated with the software Amira. The
blue lines are the edges of the Voronoi cells and the light-yellow lines are the edges of
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Radiolarian test. The forty Voronoi cells lie within the convex hull as the edges of the
polygons external to the convex hull extend beyond the rectangle containing the image.
Only 5-, 6-, and 7-sided convex polygons are observed and notice that all junctions are Y-
shaped (i.e., trigonal, vertices with degree = 3) which is illustrative of patterns generated
by local, nearest neighbor interactions versus X-junctions produced by global intersecting
lines (Figure 3).

Figure 3. Intersecting lines generate X-junctions (i.e., all vertices have degree = 4).
The convex polygons generated are primarily three- and four-sided, although much less
frequently five-sided (here a polygon with vertices ABCDE exists with five edges). Note
that no six-sided convex polygons are generated.
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Figure 4. A Voronoi tessellation was generated in Ka-me with random points and the
circumcircles are overlaid. Note that each circumcircle has three adjacent Voronoi
polygons’ generator points and the center of each circumcircle is the vertex shared by all
three adjacent Voronoi polygons.
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An interesting experimental demonstration (Figure 5) of a biological system capable
of computing a Voronoi tessellation is given by Jones and Adamatzsky [15]:

“Slime mould Physarum polycephalum is a large single cell capable for distributed
sensing, concurrent information processing, parallel computation and
decentralised actuation. The ease of culturing and experimenting with Physarum
makes this slime mould an ideal substrate for real-world implementations of
unconventional sensing and computing devices. In the last decade the Physarum
became a swiss knife of the unconventional computing: give the slime mould a
problem it will solve it. We provide a concise summary of what exact computing
and sensing operations are implemented with live slime mould. The Physarum
devices discussed range from morphological processors for computational
geometry to experimental archeology tools, from self-routing wires to
memristors, from devices approximating a shortest path to analog physical
models of space exploration. ... Plasmodium growing on a nutrient substrate
from a single site of inoculation expands circularly as a typical diffusive or
excitation wave. When two plasmodium waves encounter each other, they stop
propagating. To approximate a Voronoi diagram with Physarum, we physically
map a configuration of planar data points by inoculating plasmodia on a
substrate. Plasmodium waves propagate circularly from each data point and
stop when they collide with each other. Thus, the plasmodium waves
approximate a Voronoi diagram, whose edges are the substrate’s loci not
occupied by plasmodia. Time complexity of the Physarum computation is
proportional to a maximal distance between two geographically neighbouring
data points, which is capped by a diameter of the data planar set, and does not
depend on a number of the data points.”

Shirakawa [16] goes one step further by simultaneously constructing both a Voronoi
Diagram and a Delaunay Triangulation by Physarum Polycephalum. “We experimentally
demonstrate that both Voronoi diagram and its dual graph Delaunay triangulation are
simultaneously constructed — for specific conditions — in cultures of plasmodium, a
vegetative state of Physarum polycephalum. Every point of a given planar data set is
represented by a tiny mass of plasmodium. The plasmodia spread from their initial
locations but, in certain conditions, stop spreading when they encounter plasmodia
originated from different locations. Thus space loci not occupied by the plasmodia
represent edges of Voronoi diagram of the given planar set. At the same time, the
plasmodia originating at neighboring locations form merging protoplasmic tubes, where
the strongest tubes approximate Delaunay triangulation of the given planar set.”
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On Creativity of Slime Mould 821

(c) (d)

Figure 5. “Voronoi diagram and Delaunay triangulation developed during slime mould growth. An
approximation of a Voronoi diagram by slime mould on nutrient agar gel. a. Sites of plasmodium
inoculation represent planar data points to be sub-divided by edges of Voronoi diagram. b and ¢
Experimental snapshots of growing plasmodia. d Bisectors of Voronoi diagram are represented by
loci of substrate not occupied by plasmodium, bisectors computed by classical technique are
shown by straight lines. d. Delaunay triangulation approximated by slime mould growing on non-
nutrient substrate. Edges of Physarum-computed triangulation are represented by protoplasmic

tubes; edges computed by classical algorithm are solid lines.” [17]
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2. b. Phylogenetic Distributions:

In addition to Voronoi tessellations observed at multiple scales as listed in Table I, in
Figure 6, the wide phylogenetic diversity of organisms with these patterns is shown.

Invertebrates

S -

Bacteria

«
Algie
>
e
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Figure 6. A phylogenetic sampling of species that display Voronoi tessellation
patterns on their exterior or in their colonial aggregate. Clockwise from lower left: the
colonial algae Hydrodictyon, a canopy of teak trees from Thailand, a lacey stinkhorn fungus,
a reticulated giraffe, a Galapagos tortoise, a reticulated frog, a trunkfish, a dragonfly (the
wing pattern), a starfish, a radiolarian, and a bacterial biofilm.

2. c. Temporal Distributions:

In addition to various sizes and a broad phylogenetic diversity, the biological patterns
take vastly different times to form. For example, a mature tree canopy can take hundreds
of years to reach maximal height and form the “canopy gaps” between adjacent large trees.
On the other hand, a viral capsid can self-assemble in milliseconds. For a list of so such
temporal variation, see Table II. What almanacs, calendars, and clocks do you use that
you think would be most helpful in measuring temporal patterns?

Biological Spatial Variation: Temporal Variation:
Voronoi Pattern Rough potential | Rough estimate of time of
scale formation
Rain forest canopy 300m to kilometers Hundreds to thousands of years
gaps
Stony coral About Im Years
Talapia fish 30m Days
nesting territories
Embryogenesis 5mm to 10m Hours to 30 months gestation
Slime mold 5cm Hours
aggregation
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Quorum  sensing mm to cm Minutes
biofilm
Protein folding Angstroms to nm Nanoscends to milliseconds

Table II. Spatio-temporal variation in Voronoi tessellation patterns produced by
different mechanisms in phylogenetically diverse contexts.

2. d. Space and Time Simultaneously

Not only do Voronoi patterns emerge over different scales, they also persist for very
different time periods. How are these correlated (see Table II)? How should we think of
biological patterns: as static or dynamic, persistent or evanescent, internal or external? In
physics, much is made of the interaction of space and time. When we use a telescope, the
light that impinges on our retina may have left a remote star millions of light years ago;
thus, seeing far means that we are seeing into remote time; we are not seeing what is
simultaneously occurring at that location. What about when we look in through a
microscope? Frequently, we have to use a strobe light to pause the rapid motion of
structures like cilia or flagella. Similarly, if we make a movie at somewhat standard frames
of reference like 22 frames a second and if our shutter speed is a thousandth of a second,
then we have missed 978/1000 (or roughly 98%) of what was going on. We
psychophysically interpret our perception of the animation as continuous even when we
rationally know that we have discretized time. Do we trust that our sampling is statistically
reliable? There is a famous physics film developed by the former editor of Scientific
American Phillip Morrison along with the famous husband-wife team of designers, Charles
and Ray Eames, entitled Powers of Ten [18]. The movie starts with a couple having a picnic
in Grant Park in Chicago near the shore of Lake Michigan. The camera zooms out in steps
of ten until we can look back on our Milky Way galaxy as only one of many and inwardly
until we reach the subatomic level. Correspondingly, we developed Figure 7 to illustrate
that biologists have to deal with similar complexity in terms of orders of magnitude.

24 Orders Magnitude of Spatial and Temporal Range

Size Scale
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Figure 7: Voronoi-like biological patterns exist across twenty-four orders of space and
time.
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2. e. Topological analyses

To analyze the topological question of “who is the closest neighbor to whom?” rather
than the geometry addressed above, another Ukrainian mathematician Boris Nikolaevich
Delaunay (later published under the transliteration Delone) published a triangulation in
1934 [19] that is the dual of the Voronoi tessellation. Again, many synonyms abound; Patel
et al. [10] referred to Delaunay triangulations as the “underlying topology of cell-cell
connections.” This qualitative question of “who is the closest neighbor to whom?” is useful
for testing whether associations between neighbors are next to one another or not. In
order to so, let us examine two classic data sets used in spatial statistics: cancerous and
noncancerous amacrine cells (see Figure 8) and hamster tumor cells (see Figure 9). The
Delaunay triangulation is tricolored separately: for example, bivariate data such as on-off
generates three kinds of edges: on-on, off-off, and on-off. If p = the frequency of on points
and q = the frequency of off points, then the a priori expected distribution of the three edges
will be the familiar binomial distribution: p2 + 2pq + q2 =1 which can be tested via a Chi-
squared goodness of fit test with 1 degree of freedom (loss of a second degree because of
the additional constraint that p + q=1).

Figure 8. (a) Observed distribution of amacrine cells. (b) Ka-me screenshot of the
distribution of Voronoi polygons generated by using each amacrine cell as a generator
point. (c) A colored Delaunay triangulation of neighboring amacrine cells. There are three
kinds of edges depending upon the corresponding states of neighboring amacrine cells:
on-on, off-off, and on-off.

In this case, we can test the distribution of the three kinds of edges with a Chi-squared
test for bivariate data if we presume a binomial distribution. There were 294 observed
amacrine cells, of these 152 were in the on state and 142 were in the off state. When we
examine the Delaunay edges in Figure 5 (c) we found a total of 840 edges,

Thus, the binomial distribution we would expect is:

Expected On-On edges = (152/294)2 T = (0.267) 840 = 224.5 On-On edges
Expected On-Off edges = 2 (152/294) (142/294) T = (0.499) 840 = 419.5 On-Off edges

Expected Off-Off edges = (142/294)2 T = (0.233) 840 = 196 Off-Off edges

Results:
Observed Expected
On-On: 161 On-On: 224.5
On-Off: 527 On-Off: 419.5
Off-Off: 152 Of£-Off: 196

The result of the Chi-Squared analysis {X2 = Z (observed — expected)?/expected} was
55.06, which using a standard statistical table with a one degree of freedom indicates that
the probability is less than 0.001 that this deviation from randomness could occur by
chance; therefore, we conclude that there is significant clustering in the data.
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On the other hand, let us look at the nuclei of two types of cells, ® are the Pyknotic
nuceli, and * are the Metaphase nuclei from hamster tumor cells (Figure 9).

Figure 9. (a) Hamster tumor cells data provided by Dr. W. A. Aherne (Department of
Pathology, University of Newcastle upon Tyne). The 313 nuclei of two types of cells, ® are
the 77 Pyknotic nuceli, and * are the 236 Metaphase nuclei. (b) Using the Ka-me_0_84
program, the points to create both a Voronoi Diagram and Delaunay Triangulation. edges
shared by Metaphase-Pyknotic, and Dotted Lines show the edges Pyknotic-Pyknotic cells
share.

Using the information of the colored Delaunay Triangulation, we observed 485
Metaphase-Metaphase Delaunay edges, 333 Metaphase-Pyknotic Delaunay edges, and 53
Pyknotic-Pyknotic Delaunay edges. This gives a total of 871 Delaunay edges, which is then
used in finding the expected amount of edges in each group. The equations below were
then used to find the expected numbers.

Expected Pyknotic-Pyknotic edges = (77/313)2 T = (0.061) 871 = 53 Pyknotic-
Pyknotic edges

Expected Metaphase-Pyknotic Delaunay edges =2 (77/313) (236/313) T =2 (0.246)
(0.754) 871 = (0.371) 871 = 323 Metaphase-Pyknotic edges

Expected Metaphase-Metaphase Delaunay edges = (236/313)? T = (0.569) 871 = 496
Metaphase-Metaphase edges

Results:
Observed Expected
Pyknotic-Pyknotic edges: 53 Pyknotic-Pyknotic edges: 53
Metaphase-Pyknotic edges: 333 Metaphase-Pyknotic edges: 323

Metaphase-Metaphase: 485 Metaphase-Metaphase edges: 496

Obviously, even without calculations, these expected values look close to observed.
The result of the Chi-Squared analysis was 0.225, which using a standard statistical table
with a one degree of freedom indicates that the probability falls between 0.9 and 0.8 that
this deviation from randomness could occur by chance; therefore, we cannot reject the null
hypothesis conclude that there is no evidence of clustering in the data.

Thus, Ka-me makes analyses of the spatial point distributions of both single kinds of
generator points such as tests of a radiolarian as well as bivariate data (on-off, metaphase-
pycnotic) easy and rapid for even quite large data sets. The implementation of multiple
indices is helpful because there is a wide literature on how each behaves in a variety of
circumstances.
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2. f. Spatial Statistics

How are the Voronoi generator points themselves distributed? Generally, we classify
spatial point distributions into four categories: (a) uniformly; (b) randomly; (c) clustered,
(d) disperse (see Figure 10); even though this is obviously a discretization and there must
be continuous patterns in between these recognizable patterns.

Dispersion Dispersion

Figure 10. Patterns of point distributions in space: (a) three biological communities:
fish swarm, penguins on ice, and corals. (b) Biological assumptions about each of these
three patterns: Random patterns are presumed to be the result of “neutral interactions
between individuals and the local environment;” Regular [uniform] patterns are
presumed to be the result of antagonistic interactions between individuals or local
depletion of resource; Clumped patterns are presumed to be the result of “attraction
between individuals or attraction of individuals to a common resource. Source:
https://www.slideshare.net/thelawofscience/population-growth-22514883.

In Ka-me, we distinguish these patterns by the use of two different spatial statistics:
the Clark-Evans nearest neighborhood test and the Variance to Mean ratio test. We
initially implemented two other four tools most commonly used by ecologists, the Index
of Quantitative Variation and Index of Relative Uncertainty but did not find that they
added anything new to the other two. The Clark-Evans Nearest Neighborhood (Figure
11a) behaves quite well in biological image analysis; however, since the Variance to Mean
Ratio test (Figure 11b) is not dimensionless, it is heavily dependent upon the pixel size of
any particular analysis. We included the Variance to Mean Ratio test in Ka-me only
because it is the most widely used metric even though it is less informative in this

implementation.
I L I Ai—h ————ae I
fin value @ 0 s 10 15 0 1%
tendancy towards chattering iy owiandt fegulanity "
tnucleated) — funifoerni
(@)
D=0 0<D<1 _ D=1 ! D>1

Mot dispersed Under-dispersed Random QOver-dispersed

(b)
Figure 11. (a) Range of the Clark-Evans Nearest Neighborhood; (b) Range of the
Variance to Mean Ratio test.
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We have used Ka-me to analyze five generations in a dividing epithelium (a
Drosophila embryo) from a beautiful film by Thomas Gregor [21] at Princeton produced
with laser confocal microscopy (see Figure 12). Even though we know that incredible
differentiation and distribution of morphogenetic signals are producing patterns that
lead to fate maps to adult tissues of these cells, there is no apparent clustering of nuclei
over the whole embryo during these divisions.

Figure 12 (a-e). Five generations of successive divisions of Drosophila embryogenesis
from film by Thomas Gregor [16]: (a) 3 seconds (b) 8 seconds ... (c) 14 seconds ... (d) 34
seconds ... (e) 42 seconds ...; (fj) Corresponding indices of dispersion and histographic
frequencies of edges per polygon in the respective Voronoi tessellation for each of the five
images using nuclei as Voronoi generator points in Ka-me. (From Reinfleisch and Jungck
[22].

The Clark-Evans dispersion index uses the measurements from the Delaunay
triangulation to calculate the dispersion index of the sample by comparing the expected
mean summation of distances from each individual to its nearest neighbor by the observed
mean distance (Clark and Evans [23]; Simberloff modification of the Clark-Evans measure:
Cox [24). The Clark-Evans index of dispersion ranges from 0, maximally clustered, to 1.0
indicating a randomly dispersed population, to 2.1491 indicating a uniform pattern. At
2.1491, all polygons are hexagonal, because perfectly regular spacing occurs when
polygons are hexagonal in shape [23, 24]. The general rule of thumb when using the Clark-
Evans dispersion index is if the value of R is equal to 1, then we infer that the points are
randomly dispersed. If R is significantly greater than 1, then the population is more
uniformly dispersed. Finally, if R is significantly less than 1, then we infer that the points
are clustered. In Figure 12, the Clark-Evans dispersion index values were very close to 1
(1.03 in one case); therefore, we have no evidence of clustering or repulsion of nuclei in
these embryos.

Similarly, the Variance to Mean Ratio test is interpreted in a very similar way: If the
variance/mean ratio is equal to 1, the points are randomly distributed. If the variance/mean
ratio is significantly greater than 1, the points are considered to be clustered. Finally, if the
ratio is significantly less than 1, the points are more uniformly distributed. In general,
values above 2 in either direction are often used as cut off points for rejecting random
assumptions. The Ka-me value of the Variance to Mean Ratio test did not exceed 1.44 for
any of the images; therefore, again, we did not infer anything other than a random
distribution of nuclei in these embryos.

We were able to find a case where the Voronoi tessellation of a biological epithelium
produced values of both measures that were not random (see Figure 13).
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(b)

Figure 13. (a) We superimposed a Voronoi tessellation onto an image of “the
inflorescence shoot apex of Anagallis arvensis” (Kwiatkowska and Routier-Kierzkowska
[25]). (b)Ka-me analysis of the Clark-Evans Nearest Neighborhood and Variance to mean
ratio for the Voronoi tessellation. Both of these measures fall outside the usual random
range.

Recently, we saw a beautiful illustration of this spatial analysis in a medical
examination of fast and slow twitch muscles (Figure 14).

slatw )~

Figure 14. “Slow fibres are labelled in red and fast fibres in black. (A) In the
BA a high tendency for slow cells to be isolated govern the organization of the
tissue. This induces a homogenous distribution of both types of fibres. (B) in QA,
there is no clear tendency in the organization. Slow fibres can appear isolated or
grouped. The distribution is random.” Bag et al. [26].

2. g. Geometric Analyses: Area, Centroidality, Circularity, and Perimeter
Biologists have studied epithelial tissues from many species for hundreds of years.

For the tessellations that they observed, they made inferences about empirical
geometric measurements on their images (Table III).
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Phanomena Observed
Euler's Law Vaertices plus Faces Minus Edges = 2
Distribution of Polygans Are the number of sides of Voronol polygons
normally distributed around =7
Lewiis's Laws Are the Areas of Voronol polygons positively

carrelated with their HEdges?

Dresch™s Lo
are the Perimeters of Voronol polygons
positively correlated with their HEdges?

Aboav-Waoairs Law Iz Topological Charge consarved?

Pitteway Violatdons Does a Delaunay Dual edge cross more than
ons Voronol edge?

Centroldality Does the Voronol Polygon’s generator point
fall on its gravitational center?

Errera’s Rule Are the Areas of Voronoi l.'IDrVROr}S Positively
correlated with that of one their immediate
neighbors? Cell division rule of eaual area.

Table III, Eight analyses of the distribution of the sides per polygon of Voronoi
tessellations that widely appear in the biological literature.

2.g.i. Errera’s Rule

In the 19™ century, Errera [27] postulated that the area of daughter cells would be
half that of the parent cell (the assumption of equal division of the cytoplasm of
the parent cell to form the daughter cells). Six recent papers [28, 29, 30, 31, 32, 33]
have extended Errera’s rule to examine some other potential models (Sachs,
Hofmesiter, Heinowicz, Besson and Dumais, Gibson, minimum degree, minimum
random wall, shortest) of the cleavage plane of epithelial cells. Since on a static
diagram, we do not know from one tissue with the cells going through
simultaneous cell division to the next, which particular parent cells gave rise to
particular daughter cells in the subsequent image, we test whether the mean areas
of generations are halved in each subsequent division. We tested this on three
different species: fruit flies (Drosophilia melanogaster) [data from xx; Figure 15a] and
flour beetles (Tribolium castenenum) [data from 34; (Figure 15b)], and mustard plant
(Arabipdopsis thaliana). In all three cases, the observed areas of sequent divisions
were very close to the halves predicted by Errera [27].

Bivariate Fit of Ln(A) By # of Division
Distribution of Cell Area in Divisions 10, 11, & 12

s ! — — —

Linear Fit
Ln{(A) = 8.5937181 - 0.6710361*# of Division (b) SRS

(a)

Figure 15. Tests of Errera’s rule that successive cell divisions have one-half the
mean areas of the previous generation for tissues with simultaneous divisions of
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all cells. The linear regression of the In(A) is plotted for five successive divisions.
(a) fruit flies (Drosophilia melanogaster) [data from 22]; Test of Errera’s 2 rule:
R-squared = 0.87, P<0.0001. (b) flour beetles (7ribolium castenenum) [data from
33],; violin plots of the areas of Voronoi cells in each of three successive divisions;
the blue line connects the mean areas of each of the three generations; the red line
is what would be expected if Errera’s rule was used to predict the means of
successive generations.

2. g. ii. Voronoi Entropy

While most investigators of Voronoi Entropy simply employ the Shannon formula
for computation, our spreadsheet model [35] (Figure 16) calculates both the
Shannon and Simpson diversity index. Bormashenko, Frenkel, and Legchenkova
[36] state that the Voronoi Entropy “represents the averaged Shannon measure of
ordering for 2D patterns.” It is an intensive rather than an extensive measure. For
our three divisions of 7riboleum casteneum the values of the Shannon measure of
Voronoi Entropy were 1.23 for division 10, 1.95 for division 11, and 1.17 for division
12. Therefore, we saw no monotonically increasing or decreasing trend.  This is
not surprising because, even though the number cells nearly doubles with each
synchronic division (see Errera’s Rule [27]), as Bormashenko, Frenkel, and
Legchenkova [] furthermore point out “that the Voronoi entropy of the pattern
characterized with the given and constant 2D order does not depend either on the
area of the pattern nor on the number of seed points (of course, this is true, when
the boundary effects are neglected). In contrast, the entropy is an extensive
thermodynamic value, in other words it grows with an increase in the number of
particles constituting the system.”
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Figure 16. The distribution of sides per convex polygon type have used to calculate
both Shannon and Simpson equations for diversity (Voronoi entropy in this case).
The results are illustrated above from using our spreadsheet in the BioQUEST
ESTEEM Collection [35].

2.g.iii. Pitteway violations
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When the Delaunay triangulation and Voronoi diagram are placed on top of
one another, and the edges of the Delaunay triangulation and the Voronoi diagram
of the same pair of points (“dual edges”) cross through each other forming the
Pitteway triangulation [37; 38; 39; 40]. A Pitteway violation occurs if the edges
created by the Delaunay triangulation and Voronoi diagram from the same pair of
points do not cross each other, this is usually observed by the Delaunay edge
crossing over two Voronoi edges that are not generated from the respective points.
Figure 17A shows a Voroni tessellation whose Delaunay dual has no Pitteway
violations. Figure 17B shows the violations of the Pitteway triangulation, marked
in red, from the overlay of the Delaunay triangulation onto the Voronoi diagram.
The mean number of edges that a sample has is calculated by summing the
number of edges per each point divided by the number of points in the sample
(Cox 1996). The mean number of edges, proportion of hexagons, and the Clark-
Evans dispersion index are all calculated using the number of edges that a point
has. The proportion of Pitteway violations is a test of topological data, which in
this case is the mathematical structures that are used for the relationships between
objects, to determine the irregularities in the sample. These tests have close relation
to each other, so I hypothesized that the mean number of edges, proportion of
hexagons, proportion of Pitteway violations, and the Clark-Evans dispersion
index are highly correlated in biological samples.

(a) ' (b)

Figure 17. (a). A Delaunay dual superimposed upon a Voronoi tessellation
where the Pitteway Triangulation condition is satisfied; i.e., each edge of the
Delaunay dual crosses one and only one edge of the Voronoi tessellation. In this
picture the polygonal cells have a more general shape in that most of the interior
angles are not too different from a mean of the interior angles. In such cases,
biological investigators infer stability of the epithelia. (b). Pitteway Violations are
shown in red on this Delaunay dual superimposed upon a Voronoi tessellation;
i.e., each of the red edges of the Delaunay dual crosses more than one edge of the
Voronoi tessellation. In this picture the polygonal cells have a less general shape
in that several of the interior angles are very different from a mean of the interior
angles. In such cases, investigators infer that the irregularity of the above cells in
the epithelia cause the Pitteway violation in which cases biological and geographic
investigators [41] have used the presence of such violations to infer that such cell
packings are less stable.
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Can we generalize this empirical relationship to have a more solid footing?
Gold [41] had pointed out that “any triangulation of a regular pentagon includes
a central isosceles triangle such that a point p near the midpoint of one of the
triangle sides has its nearest neighbor outside the triangle” does not support a
Pitteway triangulation. Herein we prove that if any Voronoi polygon has an
interior angle less than 90 degrees, then a Pitteway violation will occur. In exercise
4.29 (page 110), in Satyan L. Devadoss and Joseph O'Rourke’s (2011) book: Discrete
and Computational Geometry (Princeton University Press) [42], they challenge
readers to show why not every Delaunay dual of a Voronoi tessellation satisfies
the Pitteway condition, but they do not provide a general proof. Furthermore,
we will assert that using the interior minimal angles of the convex polygons in a
Voronoi tessellation can be used in a multivariate prediction of the topological
properties (number of edges per polygon) from geometric properties (area,
perimeter) than univariate rules described above (Lewis Law and Desch’s Law).

First, from a biological image analysis perspective let us examine actual
biological images for Pitteway violations. In Figure 18, Patel ef al. [20] reported on
Voronoi tessellations that matched the configurations of convex cells in epithelia
of Drosophila melanogaster embryonic epithelia. We analyzed it for the presence of
Pitteway violations.
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Figure 18. We illustrate the distribution of Pitteway violations (yellow edges)
in a Voronoi tessellation of the epithelium of embryonic cells of Drosophila
melanogaster. Data provided by [20]. The image was entered in Ka-me to illustrate
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the edges of the Delaunay triangulation of the Voronoi tessellation that cross more
than one Voronoi edge (i.e., Pitteway violations).

Note that 68 out of 707 edges violated the Pitteway condition; in other words,
9.62% of the Patel et al. [20] data had Pitteway violations. Please note that most
violations occurred on the outer edges. We wondered whether this way due to
photographic abberations because the embryo is ovoid in structure and so the
planar photograph is primarily distorted on the margins. This led us to our work
on 3D nanotomography of radiolarian tests because we had a crystalline biological
polyhedron with polygonal tessellations over its surface where we could avoid
photographic abberations [14].

Above in Figure 12 (a-e), we showed five generations of successive divisions
of Drosophila embryogenesis from film by Thomas Gregor [16]: (a) 3 seconds (b) 8
seconds ... (c) 14 seconds ... (d) 34 seconds ... (e) 42 seconds ...; (f-j) along with the
corresponding indices of dispersion and histographic frequencies of edges per
polygon in the respective Voronoi tessellation for each of the five images using
nuclei as Voronoi generator points in Ka-me. (From [22]). We them analyzed each
successive division for Pitteway violations (Figure 19):

14.00%
12.00%
10.00%
8.00%
6.00%
4.00%
2.00%
0.00%

Stage 1 Stage 2 tage 3 Stage 4 Stage 5

Figure 19: Plot of the per cent of Pitteway violations on the Delaunay dual of
the Voronoi tessallations of successive divisions of an embryo of Drosophila
melanogaster. Stage 1: 10.78%; Stage 2: 12.265%; Stage 3: 8.807%,; Stage 4:7.31%,; and,
Stage 5: 5.25% [22]. Raw images were stills extracted from Thomas Gregor’s,
Princeton University, Youtube video: “Early mitotic divisions in a Drosophila embryo”
URL: http://www.youtube.com/watch?v=XSKh-GLOn4E.

After Stage 2, Pitteway Violations decrease with the increase in the number
of cells in an area of the image. =~ While more cells exist within in the same area,
they are becoming more stable and most cell-cell junctions determine which
nuclear signals would affect neighboring cells. The result is statistically significant
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(Figure 20) as we noticed that in the polygonal distributions (Figure 12) that over
successive generations that more hexagonal cells were prevalent in the Voronoi

tessellations.
9 -
= | :
sossHF, .
m T L]
8 0.4
o O
L'a -1 w
o 0.35-
.a g
E 0.3 :
8 ] & -
= . ~._r=-0.9484
P D25 T T T T T
5 10 15 20 25 30
Proportion of Pitteway
Violations

Figure 20. Parametric linear regression of the proportion of Pitteway
violations with successive divisions of cells in the embryo of Drosophila
melanogaster [22].

To better understand what was going on, we sought a general insight into
which kinds of individual convex polygons in a Voronoi tessellation are correlated
with Pitteway violations in the Delaunay dual. We found the following
characterization.

Theorem For a finite set P of points in general position in the plane, Pitteway
Violations occur precisely where there is an acute angle in the Voronoi Diagram.

“General position” means that the points avoid a few configurations that are
inconvenient but also extremely unlikely (probability measure zero): (i) no three
points of P are colinear, (ii) no circle contains more than three points of P, and (iii)
a circle with two points of P at antipodes contains no third point of P (Figure 21).
A finite set P of points in general position defines a unique Delaunay Triangulation
and dual Voronoi Diagram.
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Figure 21.  In the proof below, Cis a Voronoi cell, vis one of its vertices,
and A, A, and P, are “seeds” of the Voronoi Diagram. A A, AP, and P P are
edges in the Delaunay Triangulation, although for clarity 22 has been
omitted from the figure.

Proof: Let Cbe a polygonal cell in the Voronoi Diagram where the “seeds” are the
finite set P and let A €P be the seed for C Let v be a vertex on its boundary of C
where two consecutive sides meet and let a and 8 be the angles that those sides
make with the line segment vA. Each side of Cis equidistant from A and another
seed vertex P; so if that side is extended to a line then it is perpendicular to and
bisects the line segment A P; Figure 16 shows the seeds P, A, that are opposite to
P across the sides incident to v. By duality, AP and AP are edges in the Delaunay
Triangulation of P. A and A are the closest seeds to one side incident to vand A
and P are the closest seeds to the other side incident to v, so vis equidistant from
all three and no other seeds are closer to v Since the seeds P are in general
position, there are is no fourth seed at that distance from v, and so it follows that
vis incident to a total of three edges of the Voronoi Diagram. Then, by duality, A
is an edge of the Delaunay Triangulation. There is a Pitteway violation here if and
only if 2a + 28 < n. (Since the points P are in general position, the angle A vP,
cannot equal i) The internal angle of Cat vis clearly a + 8, so we have a Pitteway
violation here if and only if that angle is less than /2. QE.D.

It is well-known that the Gabriel Graph for a given set of points is a subgraph
of its Delaunay Triangulation, with the difference being precisely those edges which
are Pitteway Violations ([43]; also see Lemma 2 in [44]). Using this connection, we
can give an alternative proof of the previous theorem (Figure 22).
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Figure 22.  On the left, three blue edges from the Voronoi diagram meet at
vertex v, with “seeds” A, P, and A, such that AP, PP, and P.P; are edges in
the Delaunay Triangulation.  In the proof below, A; slides along the green
line until it reaches the boundary of the disk D; which also moves vto v’and
moves Dto D; the result is pictured on the right.

Proof (sketch): It is well-known that the Gabriel Graph for a given set of points is a
subgraph of its Delaunay Let A, €P such that A A be an edge in the Delaunay
Triangulation. Then there is a disk Dwith A, A, and a third seed A; on its boundary.
The center of D is a vertex v of the Voronoi Diagram which is incident to three
edges that lie between each pair of the seeds from A, 2, P;. Let D’be the disk such
that A A is the diameter of D’and let v’be its center (the midpoint of 2 /2). Then
PP is in the Gabriel Graph of P if and only if D’ contains no seeds for P in its
interior, and there is a Pitteway Violation here otherwise. Let / be the line that
bisects 2 A and is perpendicular to it; then £ contains vand v’

Slide A; along the line through v'A until it lies on the boundary of D; this
causes vto slide over to v’and Dto change until it equals D’ Then two of the edges
of the Voronoi Diagram will meet at vat an angle a + 8 with 2a + 28 = as shown
in Figure 17, which is a right angle. Sliding A back to its actual position will increase
or decrease the angle that was a + 8, depending on whether 2 moves out or in to
D; causing the angle to be obtuse and A A to be in the Gabriel graph, or making
the angle acute and creating a Pitteway violation.

After learning of the 90-degree requirement for Pitteway violations, we began to
measure all of the interior angles of every convex polygon in Voronoi tessellations of
epithelial cells of Drosophila melanogaster and Tribolium casteneum. Instead of assuming
that the Pitteway violations were due to problems with the curvature of the embryo
deforming cells on the perimeter of two-dimensional microphotographs, we found that
Pitteway violations occurred even central to some images. In Table IV we show that the
smallest angle of the convex polygons in Voronoi tessellations of Tribolium casteneum is a
much better predictor of the number of sides of the convex polygons in the Voronoi
tessellation. In a multivariate regression, we could improve the R-square value of the
regression slightly by employing circularity (recall that has information on areas and
perimeters within its measurement) as well as the smallest angle information.

Table IV:  Regression analysis of flour beetle cell divisions 10, 11, & 12.
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R? Values in Linear Regression Relationships
Division 10 Division 11 Division 12
Desch’s Law (Perimeter) 0.001476 0.049725 0.083999
Lewis’ Law (Area) 0.095179 0.152985 0.157807
Circularity 0.414149 0.221650 0.126053
Smallest Angle 0.754890 0.621191 0.511822
Smallest Angle + Circularity 0.758294 0.621297 0.512033

While the linear regressions for all five models were significantly significant, note that
the smallest angle plus circularity produced a much better prediction of the number of
sides of the convex polygons in these Voronoi tessellation than either Desch’s Law or
Lewis’s Law which have been historically used throughout a wide swath of biological
literature. Therefore, we suggest that the use of smallest angle alone or the smallest angle
plus circularity relationship to the number of sides of the convex polygons in these Voronoi
tessellation be called a “Pitteway Law” and urge colleagues to measure the interior angles
of their convex polygons.

In Figure 23 we show that the three multiple linear regression graphs of expected
versus predicted the number of sides of the convex polygons in these Voronoi tessellation
based upon using both the smallest angle plus circularity variables.

; RI=0.76 o« M * R'=062 . + R’=051
3 3 3
g ) 4 g O § ——
%‘ ” 3 - —:-.—.-- 3 - -—,.—--
3 > ; Z... B,
2 p < 0.0001 3 p <0.0001 3 p < 0.0001
‘ " ° n=29 “ n=29 ‘ n=29
4 5 . 7 4 5 . 7 ] 4 5 . 7 ]
Number of Sades Precicted RMSE =0 3996 Number of Sudes Predicted RMSE =0 5339 Number of Sdes Predicted RMSE =0 5539

RSq=076 PVakue= < 0001 RSq«0 62 PValue s < 0001 RSq=051 PVakue= < 0001

Figure 23. Plots of observed versus expected number of sides of the convex
polygons in these Voronoi tessellations of Troboleum casteneum embryos described above.

The three multiple linear regression graphs of expected versus predicted are all significant
and as shown in Table IV are much better than angle of the other four models that were
tested.

Conclusion

Phenomenological models of biological patterns have provided a major path for
biologists to see the impact of point-point nearest neighbor effects in using of
Voronoi tessellations to analyze features of the distribution of convex polygons in
such tessellations. Simply by observing tessellations that have convex polygons
with degree=3 vertices, it can be inferred that these patterns primarily arose by
some causal force that was operating in a nearest-neighbor interaction. A
powerful series of topological and geometric measurements can be deployed to
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determine significant relationships between vertices, edges, and faces on the one
hand and angles, areas, and perimeters on the other hand. Herein we have
demonstrated this versatility by using examples of Voronoi tessellations to
examine the distribution of successful and unsuccessful bird nests, species of
trees in a diverse forest, different cells in the eye, fast and slow-twitch vertebrate
muscle fibers, radiolarian tests, and extensively of embryos of fruit flies
(Drosophila melanogaster), flour beetles (7Triboleum casteneum), and plants
(Anagallis arvensis, scarlet pimpernel). While Lewis's Law relating the areas of
convex polygons in a Voronoi tessellation and Desch’s Law relating the
perimeters of convex polygons in a Voronoi tessellation have been the most
widely used relationships in the biological literature, we have shown herein that
"Pitteway’s Law" relating the smallest angles of convex polygons in a Voronoi
tessellation possess a significantly better regression model than either of these
two “laws.” The causal basis of these relationships is being examined and both
mechanical (surface energy [45]) and topological (number of sides [46]) are
reported to have major impact on the formation of epithelial Voronoi
tessellations. The need for determining these relationships have potential medical
importance in developing quantitative models for differentiating between
normal, benign, and metastatic tissues in cellular pathology assessments for
diagnosis, treatment, and prognosis.
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