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Abstract: Traditional refractory materials such as nickel-based superalloys have been gradually unable to meet
the performance requirements of advanced materials. The Mo-Si-based alloy, as a new type of high temperature
structural material, has entered the vision of researchers due to its charming high temperature performance
characteristics. However, its easy oxidation and even "pesting oxidation" at medium temperatures limit its
further applications. In order to solve this problem, researchers have conducted large numbers of experiments
and made breakthrough achievements. Based on these research results, the effects of rare earth elements like
La, Hf, Ce and Y on the microstructure and oxidation behavior of Mo-Si-based alloys were systematically
reviewed in the current work. Meanwhile, this paper also provided an analysis about the strengthening
mechanism of rare earth elements on the oxidation behavior for Mo-Si-based alloys after discussing the
oxidation process. Furthermore, the research focus about the oxidation protection of Mo-Si-based alloys in the
future was prospected to expand the application field.
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1. Introduction

As the world population increases, the problem of global resource shortage has become increasingly
prominent. It is well known that in addition to waste recycling, improving energy utilization and exploring
new energy are effective methods to solve resource problems, and are also the main trend of future scientific
and technological development [1-3]. Nowadays, the development of new energy is overwhelming. As a new
high temperature structural material, the Mo-Si-based alloy is expected to replace the nickel-based alloy and
play an important role in turbine engine and industrial furnace components [4-7].

A large number of studies have pointed out that Mo-Si-based alloys have outstanding high temperature
performance characteristics, such as moderate density, strong electrical and thermal conductivity, ultra-high
melting point, high thermal impact resistance, etc., which has been widely used in various industries [8-11].

However, these alloys also have some inherent defects that limit their generalization as structural materials
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[12-14]. For example, MoSi,-based alloys exhibit low room temperature fracture toughness, poor high
temperature creep resistance, and catastrophic oxidation at 400 °C to 800 °C. Although MosSis-based alloys
have relatively strong creep resistance, they generally present accelerated oxidation or "pesting oxidation"
phenomenon below 1000 °C, which is a thorny problem [15-19]. To overcome these shortcomings, relevant
researchers have been working hard since the end of the 20th century [20-25]. Fortunately, people finally
succeeded in improving the properties of alloy through material designs [26-29], preparation techniques [30-
34] or surface modification methods [35-38]. Among them, doping second phases such as W, Nb, ZrO,, La,0s,
ALO;, Cr0s3 in material designs to strengthen the performance of substrate is generally regarded as an
important measure [39-41].

There is no doubt that in some refractory metal materials like niobium-based, molybdenum-based and
tungsten-based materials, adding active elements may significantly improve the mechanical properties [42-44].
Rare earth or its oxides, as a kind of active element, have received particular attentions and widespread
applications [45-48]. In recent years, researchers have made great breakthroughs in studying rare earth
elements to enhance the mechanical properties of metal materials. However, so far, there are few reports on
the oxidation behavior of Mo-Si-based alloy doped with rare earth elements. Therefore, this paper
comprehensively and systematically reviewed the actions of rare earth elements such as La, Hf, Ce and Y on
the antioxidant properties of Mo-Si-based alloys, especially the Mo-Si-B system, and summarized the relevant

strengthening mechanisms.

2. Effects of rare earth elements on oxidation behavior of Mo-Si-based alloys

It’s well known that the increase of oxide layer thickness is primarily caused by the internal diffusion of
O, [49-52], and studies have shown that alloying with active elements can effectively reduce the internal
diffusion rate of O, [53-55]. For example, appropriate adding rare earth elements, on the one hand, can separate
oxygen atoms at the metal-oxide interfaces and oxide scale grain boundaries and react with O, thus hindering
the diffusion of O; [56-59]. On the other hand, it can optimize the oxide scale microstructure and improve the
scale adhesion [60-63]. Therefore, alloying with rare earth elements is of great significance to enhance the
antioxidant properties. The influences of adding rare earth elements like La, Hf, Ce and Y on the oxidation

behavior of Mo-Si-based alloys will be reviewed in detail below.
2.1 Effects of rare earth elements on oxidation behavior of Mo-Si-B alloys

Among all kinds of Mo-Si-based alloys, the most widely studied are Mo-Si-B alloys because of their

excellent characteristics[64-70]. Therefore, it’s very necessary to explore the effects of rare earth elements on
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oxidation behavior of Mo-Si-B alloys.
2.1.1 Effects of La element addition

Compared with pure Mo-Si alloys, adding La element can significantly optimize the microstructure of
these alloys by the means of reducing the grain size and making the intermetallic particles disperse more evenly,
thus improving the fracture toughness, bending and compressive strength significantly [71-74]. Based on the
existing studies of Mo-128Si-8.5B alloy (at.%) [75-79], we further analyzed the actions of doping La or La,O3
second phase on the oxidation behavior.

Zhang et al. [80] prepared Mo-128Si-8.5B (at.%, abbreviated as MSB) samples added with different
contents of La,O; through arc-melted and spark plasma sintered methods, and the specific contents were
presented in Table 1. Fig. 1 (a) gives the XRD patterns of MSB+xLa,Oj3; samples (x=0, 0.3, 0.6, 1.2 wt.%). It
can be seen that all the samples consist of MosSiB», Mo3Si and a-Mo three phases, which is consistent with
the phase diagram of isothermal Mo-Si-B composites [76]. At the same time, it also reveals that even if La,Os3
is added will not affect the phase composition of samples. Figs. 1 (b-e) are micrographs of the four samples
prepared, where the white regions are a-Mo phase, and the black regions are MosSiB,/Mo3Si phases dispersed
in the 0-Mo matrix. It can also be found from micrographs that the grain size of a-Mo and MosSiB,/Mo3Si
will be reduced after adding La,Os, in which the a-Mo size change is more pronounced, whereas the decrease
of each phase size is not sensitive to the La;O; mass fraction. Moreover, the distribution of MosSiB>/MosSi
phases is more uniform after doping La,Os. This is because parts of La>O3; can be used as nucleation sites,
which leads to the increase of nucleation density. On the other hand, La>Os particles play a "pinning" role on
the a-Mo boundary to inhibit its grains growth. The results in Table 1 further reveal the effect of La,Os on
grain size.

Table 1. The La,Os mass fractions and grain sizes of various samples studied. Reproduced with permission

[80]. Copyright 2011 Elsevier.

Materials MSB MSB + 0.3 MSB + 0.6 MSB + 1.2
Mass fraction of La203 (wt.%) 0 0.3 0.6 1.2
Grain sizes of a-Mo (um) 19.78 10.88 9.56 9.46

Grain sizes of Mo3Si/MosSiB2 (um) 3.04 2.46 2.55 2.17
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Fig. 1. XRD patterns (a) and microstructure images (b-¢) of MSB+xLa,03 samples (x=0, 0.3, 0.6, 1.2 wt.%) before

oxidation. Reproduced with permission [80]. Copyright 2011 Elsevier.

Weight variation curves for different mass fraction La>Os;-doped MSB samples after oxidation at 800 °C
are shown in Fig. 2 (a). The results point out that the mass loss of alloy can be significantly reduced after
adding La;O3, where MSB+0.6 sample exhibits the least mass loss during transient oxidation stage. It is due
to the fact that La;Os-doped MSB samples present a finer grain size, which makes it faster to form a protective
borosilicate scale to prevent further volatilization of MoOs. The role of grain refinement has also been reported
elsewhere [81-87]. Again, La;Os in the alloy can decrease the grain boundary transport rate, leading to the
reduction of weight loss rate. To determine the impact of La>O; on the oxidation behavior, Zhang et al. [80]
further studied the cross-sectional structure of MSB+0.6 sample oxidized at 800 °C. It has been noticed from
Fig. 2 (d) that the cross section of this sample is composed of oxidation scale, interlayer and substrate. Among
them, the top layer is the dense B203-Si0; scale and the interlayer comprised with MoO-, which is confirmed
by XRD analysis and the content of each element (i.e. Mo, Si, B, O). Furthermore, compared with MSB sample,
the intensity and peaks of B,O3 and SiO, of MSB+0.6 sample are raised visibly (Fig. 2 (b)), indicating that the
antioxidant capacity of MSB+0.6 sample is enhanced. Burk [88, 89] and Jéhanno [90] et al. also reported
similar results.

In addition, Majumdar et al. [59, 60] also investigated the oxidizability of Mo-9Si-8B (at.%) sample doped
with 2at.% La at 750-1400°C. It is established that the La-doped sample exhibits relatively good antioxidant
capability below 1000 °C, which is the result of stable lanthanum oxides like 3La;03;-MoOs, La,Os and
La,03-3Mo0O; produced at the oxidation scale to inhibit the formation and volatilization of MoO;. However,
when the temperature exceeded 1000 °C, the addition of La might adversely affect the sample oxidation
properties. Fig. 2 (c) displays the weight change curves of La-doped and undoped samples at 1300 °C, it can

be discovered that the weight loss of La-doped sample is significantly higher than that of undoped sample.
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This is because adding La makes the sample cross section present a loose and porous oxide layer structure
when oxidized at 1200 °C (Fig. 2 (e)). Meanwhile, as oxidation temperature rises to 1300 °C, a large number
of cracks and holes are observed on the sample surface (Fig. 2 (f)), which provides a pathway for O, internal
diffusion and MoOs volatilization. In contrast, even if undoped sample is oxidized at 1300 °C for 72 h, a
continuous and compact oxidation scale can be still observed in its cross section (Fig. 2 (g)) [88]. Thus,

undoped sample has better antioxidant properties in high-temperature environments.
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Fig. 2. Weight change curves of various samples oxidized at defferent temperatures (a, c); Surface and cross-sectional
SEM/BSE images of various samples oxidized at different conditions: 800 °C (d) with corresponding surface XRD
analysis results (b), 1200 °C for 2 h (e), 1300 °C for 23 h (f), 1300 °C for 72 h (g). (a, b, d), (c, e, f) and (g) reproduced

with permissions [80], [60] and [88], respectively. Copyright 2011 Elsevier, 2014 Elsevier and 2009 Taylor & Francis.

2.1.2 Effects of Hf element addition

Extensive experiments have reported that adding Hf/HfB, to Mo-Si-B composites can clearly improve
their performance features, such as high temperature strength, high temperature stability, creep resistance,
fracture toughness, etc. [91-95]. Potanin et al. [96] discussed the oxidation behavior of MoB-HfB,-MoSi,
composites at 1200 °C in detail. The composition of each alloy is illustrated in Table 2, where the difference
between X34, and X34, samples is that the former presents two-level structure (TLS), while the latter presents
single-level structure (SLS). The microstructures of studied samples is depicted in Figs. 3 (a-c), on the whole,
the three samples all contain MoB and MoSi, phases. The difference is that X34, and X34, samples also have
additional HfSiO4 and HfB; phases and their grain sizes are finer than that of X0 sample. Fig. 4 gives the

oxidation kinetics curves of the three samples, it can been observed that the weight increases of X34, and X34,
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samples are more obvious because adding HfB> can make the samples generate HfSiO4 (6.97 g/cm?) and HfO,
(9.68 g/cm®), whose specific weights are greater than SiO, (2.36 g/cm?) [97]. By the way, the weight gain of
X34, sample is smaller than that of X34, sample owing to the fact that X34, sample presents special
arrangement and finer grain size.

Figs. 3 (d-1) show the cross-sectional structure of X0, X34, and X34, samples after oxidation at 1200 °C
for 30 h. It has been noticed that the X34, and X34, samples do produce Six.iHfxO»/HfSiO4 phases during the
oxidation process, which is consistent with the above analysis results. Meantime, two-layered oxide films are
formed on the surface of all samples, whereas there are great differences in the oxide-film composition and
structure. In other words, the X0 sample oxide scale containing SiO; layer (top layer) and MosSis layer (bottom
layer), the X34, sample oxide scale consists of Six.iHfiO,-doped amorphous SiO» layer (upper layer) and
crystalline a-SiO; layer (lower layer), while the X34, sample oxide scale is comprised with crystalline a-SiO»
layer (outermost layer) and HfSiO4 layer (interlayer). Among them, the formation of amorphous SiO; in X34,
sample is due to the dissolution of hafnium. Furthermore, Six.iHfO, is generated because hafnium and silicon
are equivalent elements leading to the incorporation of hafnium into the lattice of silica, as shown in Fig. 5. It
is worth noting that the X34, sample oxide scale exhibits denser structure is caused by the existence of high
wetting angle makes Si0,-B>03; melt can shrink HfSiO4 particles together, resulting in the formation of smooth
and compact oxide films [98].

To summarize, addition of HfB» to X0 sample can produce HfSiO4/Six.1HfxO, particles dispersed in oxide
film, and even form an HfSiOy interlayer. It has been proved that the HfSiO4 and ZrSiO4 particles have similar
effects. On the one hand, they can promote the healing of cracks and holes in borosilicate scale [99, 100], on
the other hand, they can both act as barriers and HfSiO4 particles can also increase the crystallization
temperature of amorphous scale [101]. Therefore, adding HfB, can enhance the alloy antioxidant effects. The
research results of Sciti et al. also confirmed this conclusion [97].

Table 2. The elemental composition of various samples. Reproduced with permission [96]. Copyright

2019 Elsevier.
Composition (at.%)
Samples
Mo Hf Si B
X0 35.0 - 60.0 5.0
X34,
23.2 11.3 39.7 25.8

X34,
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Fig. 3. Microstructure of various samples: (a) X0, (b) X34, and (c) X34,; Cross-sectional SEM images of samples after
oxidation at 1200 °C for 30 h: (d, g) X0, (e, h) X34, and (f, i) X34,. Reproduced with permission [96]. Copyright 2019

Elsevier.
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Fig. 4. Kinetic curves of the samples oxidized at 1200 °C. Reproduced with permission [96]. Copyright 2019 Elsevier.
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Fig. 5. (a) TEM micrograph of the oxidized X34, sample; (b) EDS and diffraction patterns of the oxide scale.

Reproduced with permission [96]. Copyright 2019 Elsevier.

2.1.3 Effects of Ce element addition

Actions of Ce on oxidation performance of Mo-Si-B alloys have been investigated deeply. Das et al. [102,
103] performed isothermal oxidation experiments about Mo-14Si-10B and Mo-13.98Si-9.98B-0.16Ce alloys
(at.%, abbreviated as MSB; and MSBCe, respectively) synthesized by arc melting. The experiment results
have suggested that doping a small amount of Ce has little effect on oxidation kinetics of the alloy at 500 °C
and 700 °C (Fig. 6 (a)), while the presence of Ce presents a palpable effect on the alloy oxidation behavior at
900-1300 °C. Figs. 6 (b-d) provide the mass variation curves of MSB; and MSBCe oxidized at 900-1300 °C,
respectively. It can be seen that the mass loss of MSB; increases after the addition of Ce (Figs. 6 (c, d)). Even
so, MSBCe exhibits shorter transient oxidation periods as compared to MSB1, and its steady-state stage curve
almost presents a horizontal trend, revealing that MSBCe is more effectively protected than MSB,.

At the same time, the microstructural morphology of two oxidized alloys is shown in Fig. 7. During
oxidation at 900 °C, one-layered oxide film (i.e. Mo-oxide film) and flowing glassy phase are observed on the
surface of both alloys (Figs. 7 (a, d)). The difference is that the glassy phase in MSBCe flows faster due to the
presence of Ce, hence MSBCe presents a smaller mass variation at 900 °C (Fig. 6 (b)). However, after oxidation
at 1100 °C for 24 h, the oxide-layer structure of both alloys has changed distinctly, namely SiO; layer is formed
on top of the Mo-oxide layer (Figs. 7 (b, €)). When the oxidation temperature reaches 1300 °C, B>Os has begun

to evaporate from the oxide scale, resulting in increased viscosity and weak fluidity of the scale, which leads
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to the deterioration of alloy antioxidation ability [104-108]. Nevertheless, the addition of Ce increases the
volatilization temperature of B,Os, leaving the fluidity of oxide scale largely unchanged. So the flow traces of
glassy scale can still be observed on the MSBCe surface even at 1300 °C; in contrast, the MSB; surface has
little flow traces (Figs. 7 (c, f)). There is no doubt that scale flow can heal pores and cracks on the alloy surface,
thus Ce addition has a positive effect on the oxidation protection of MSB;.

In addition, Das et al. [109] also researched the oxidation reaction of Mo-Si-B-Al-Ce alloys at 1100 °C.
It is well known that adding Al to Mo-Si-B systems may lead to the failure of alloy oxidation protection owing
to the formation of mullite [110-114], which is also verified by the mass loss curves of Al-doped alloy in Figs.
6 (b-d). Das [109] noted that adding Ce can further inhibit the malignant oxidation of Mo-Si-B-Al systems at
1100 °C, since the presence of Ce hindered the generation of mullite and promoted the formation of dense

protective Al-oxide films on the alloy surface, thereby improving the antioxidant capacity.
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Fig. 6. Mass loss curves of various alloys at different temperatures. (a) and (b-d) reproduced with permissions [102] and

[103], respectively. Copyright 2010 Elsevier and 2016 Elsevier.
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Fig. 7. Surface and cross-sectional SEM (BSE) images of MSB, (a-c) and MSBCe (d-f) alloys oxidized at different
temperatures for 24 h: 900 °C (a, d), 1100 °C (b, ) and 1300 °C (c, f). Reproduced with permission [103]. Copyright

2016 Elsevier.

2.1.4 Effects of Y element addition

It has been sure that adding Y element can significantly prolong the service life of Mo-based alloys due
to the fact that Y will exhibit higher oxygen affinity than Mo [115, 116]. Moreover, Y can also inhibit ion
diffusion in grain boundaries and decrease the oxide-scale growth rate [117-119]. The presence of Y improves
the adhesion between oxide film and substrate, thus improving the alloyed oxidation resistance [120, 121].
Therefore, researchers try to add Y element to Mo-Si-B alloys to obtain materials with better performance.
After comparing the variation of Y-doped and Y-free Mo-9Si-8B (at.%) samples in the oxidation behavior at
650-1400 °C, Majumdar et al. [122-124] found that all samples presented a trend of transient mass increase
followed by continuous rapid decrease at 650 °C (Fig. 8 (a)). Among all the samples, the 2at.% Y-doped sample
had the minimum mass loss at 750-1000 °C (Figs. 8 (b-¢)), and the 0.2at.% Y-doped sample presented the
lowest mass loss at 1100 °C (Fig. 8 (f)). This is because the addition of Y can produce stable YsMoOi» and
YsMo201, oxides at the initial period of oxidation, which can inhibit the generation and vaporization of MoOj3,

leading to a decrease in the mass loss of the samples containing Y.
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Fig. 8. Weight change curves of Y-doped and undoped samples oxidized at 650 °C-1100 °C, respectively. Reproduced

with permission [122]. Copyright 2014 Elsevier.

In order to further clarify the role of Y doping on the sample antioxidation behavior, the microstructure
of oxidized samples are analyzed in detail [58, 122]. Figs. 9 (a, b) give the cross-sectional micrographs of 2at.%
and 0.75at.% Y-doped samples oxidized at 900 °C for 24 h, respectively. It can be seen that 0.75at.% Y-doped
sample has a thicker inner MoO- scale than that of 2at.% Y-doped sample, which indicates that properly
increasing the concentration of Y can inhibit the formation of MoO, to some extent. Furthermore, microcracks
are also observed on the outer SiO; scale of 0.75at.% Y-doped sample due to the quite high growth velocity
(about 7.6 pm-h™") of inner MoO: scale, which produces such a large tensile stress that outer SiO, scale breaks
(Figs. 9 (b, d)). It is worth noting that the thickness of inner MoO; scale for 0.75at.% Y-doped sample is
significantly thinner after oxidation at 1100 °C for 72 h (Fig. 9 (¢)). Because SiO» will present viscous flow to
cover holes and cracks on the alloy surface during the temperature exceeds 965 °C [125, 126], which prevents
further oxidation of the substrate. Fig. 9 (e) shows the thickness changes of SiO, and MoO; layers for 0.2at.%
Y-dpoed sample at 1100 °C and 1200 °C, which further supports the above analysis results. When the oxidation
temperature is higher than 1200 °C, a thin yttrium-silicate (Y»Si,O~) scale is observed on the outer surface of
Y-doped samples (Figs. 10 (a-d)), and the thickness of yttrium-silicate film gradually increases as the oxidation
temperature raises (Figs. 10 (c, )) [123]. It has been proved that the outer yttrium-silicate film is conducive to
the alloy oxidation protection through preventing SiO; from forming volatile silicon hydroxide in humid

conditions above 1200 °C [127-129]. Similar studies have been reported by Gorr et al. [130]
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Fig. 9. Cross-sectional BSE images of 2at.% and 0.75at.% Y-doped samples oxidized at differernt conditions: (a, b)
900 °C for 24 h, (c) 1100 °C for 72 h; (d, ) Changes of MoO; laye and SiO» layer thickness in Y-doped samples

oxidized at different temperatures. Reproduced with permission [122]. Copyright 2014 Elsevier.

Mo-9Si-8B-0.2Y

Fig. 10. Surface SE (a) and cross-sectional BSE (c, e) images of 0.2at.% Y-doped samples oxidized at differernt

Y-rich

conditions: 1300 °C for 100 h (a, c) and 1400 °C for 2 h (e); (b, d) are the element mappings of (a, c), respectively.

Reproduced with permission [123]. Copyright 2013 Springer Nature.

There is no doubt that alloying with Zr has a great impact on the antioxidant ability of Mo-Si-B materials.
This is because the addition of Zr may produce polymorphic ZrO, or monomorphic ZrSiOs, which mainly

depends on the oxidation temperature. Among them, the ZrSiO4 can act as an obstacle phase, which is
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beneficial to improve the alloy oxidation behavior; whereas the ZrO, will expand in volume at high
temperatures (>1200 °C), which destroys the integrity of SiO, scale so that it loses the protective effect [131,
132]. Therefore, inhibiting the formation of ZrO» phase is essential to improve the alloy oxidation resistance.

Based on the fact that yttria suppresses the zirconia phase transition [133, 134], Yang et al. [135] designed
and fabricated Mo-12Si-10B-1Zr-0.3Y, Mo-128Si-10B-1Zr and Mo-12Si-10B samples (at.%, abbreviated as
1Zr-0.3Y, 1Zr-0Y and 0Zr-0Y, respectively). Fig. 11 (a) shows the mass variation of the three samples at
1250 °C, it can be seen that adding 1at.% Zr to the 0Zr-0Y sample will lead to continuous and sharp mass loss.
Because the 0Zr-0Y sample has formed dense protective SiO» films during the oxidation, which avoids the
sample sustained mass loss (Fig. 12 (a)), whereas the addition of Zr causes the SiO; scale to become loose and
porous due to the formation of ZrO,, and the porous structure provides channels for O, inward diffusion, thus
accelerating the sample oxidation (Fig. 12 (b)). It is encouraging that further adding 0.3at.% Y can effectively
prevent the rapid mass loss of 1Zr-0Y sample. As can be seen from Fig. 12 (c), ZrSiO4 rather than ZrO, appears
on the sample surface after the addition of Y, thus eliminating the adverse effect of Zr doping. Meantime, the
Y-Mo-rich oxide is also observed around ZrSiO, phase. EDS analysis shows that the Y/Mo atomic ratio of this
oxide is about 1/2, revealing that the oxide may be Y>Mo4O1s5. Again, the XPS spectra also presents that the
oxide has nearly the same Mo 3d and Y 3d bonding energies as Y>Mo4O15 gauged through You et al. [136],
which further verifies the above inference (Figs. 11 (b, ¢)). What’s more, the 1Zr-0.3Y sample surface also
forms a uniformly dense outer Y,SiO7 scale with the increase of oxidation time, which provides a better
protection effect than 0Zr-0Y sample (Fig. 12 (d)). It has been observed from the cross-section enlarged Figs.
12 (e, f) that Y diffuses outward with the metastable Y>Mo04O;s as the carrier and produces Y,Si,O; after a
series of reactions at the top of SiO; scale, which will be accumulated and compressed to form the outer

Y>Si1,07 layer. Therefore, 1Zr-0.3Y sample presents the best antioxidant performance among the three samples.
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Fig. 11. Mass change curves of three studied sampes at 1250 °C (a); XPS analysis of Mo (b) and Y (c) characterized the

1Zr-0.3Y sampe surface oxidized for 1 h. Reproduced with permission [135]. Copyright 2020 Elsevier.
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Fig. 12. Cross-sectional and surface BSE images of three studied sampes oxidized at 1250 °C for different time: (a) 20

h, (b) 5 h, (¢) 1 h, (d-f) 50 h. Reproduced with permission [135]. Copyright 2020 Elsevier.

2.2 Effects of rare earth elements on oxidation behavior of other Mo-Si alloys

Previous studies have pointed out that adding Nb to the Mo-Si-based materials can play a satisfactory
effect in improving mechanical properties due to damaging the stability of Mo3Si phase [137-139]. However,
the presence of Nb will lead to catastrophic oxidation of the material [140-142]. Inspired by the above study
that adding Y can enhance the antioxidant properties of Zr-doped Mo-Si-B alloys, we further discussed the
role of adding Y on the oxidation behavior of Nb-doped Mo-Si alloys.

Majumdar [143] used the nonconsumable arc-melted method to prepare the undoped and 0.5Y-doped Mo-
26Nb-19Si samples (at.%), which simply referred to as Alloyl and Alloy2, respectively. The microstructures
of both samples are shown in Figs. 13 (a, €). It can be found that they are both composed of dark and bright
areas. According to XRD analysis (Fig. 14 (a)) and EBSD mappings (Figs.13 (b-d, f-h)), the dark and bright
areas are (Mo, Nb)sSiz and (Mo, Nb)ss phases, respectively. Moreover, Y»0s particles are also observed on the
Alloy2 grain boundaries. These particles can suppress the elongated grain growths, which results in the
difference of microstructure morphology between the two samples. Meanwhile, Majumdar [143] also studied
the oxidation process of Alloy2 at 1000 °C and 1300 °C. It is established that the sample exhibits continuous
linear mass loss when oxidized at 1000 °C. When the oxidation temperature increases to 1300 °C, the sample
is oxidized more vigorously and loses its antioxidant capacity within 2 h of oxidation, as shown in Fig. 14 (b).
Fig. 15 shows the cross-section and surface micrographs of the oxidized sample. It can be discovered that the

Alloy?2 surface has formed a thick oxide layer after oxidation at 1000 °C for 24h (Fig. 15 (a)). As can be seen
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from Fig. 15 (d), the oxide layer is mainly composed of MoO,, Nb,Os and SiO,, wherein Nb,Os can act as a
channel for O, internal diffusion due to the lack of protective action, which leads to rapid oxidation of the
sample. In addition, the sample surface oxide film, which consists of Y>03, Nb,Os and SiO», appears numerous
cracks and holes during oxidation at 1300 °C for 2 h (Figs. 15 (b, c)), resulting in the loss of protection from

oxidation. Therefore, adding Y to Mo-Si-Nb alloys cannot overcome the oxidizing problem.

Fig. 13. Microstructure morphologies of Alloy1 (a) and Alloy2 (e); EBSD mappings of Alloyl and Alloy2: band

contrast (b, ), phase (¢, g), IPF (d, h). Reproduced with permission [143]. Copyright 2018 Elsevier.
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Fig. 14. (a) XRD patterns of both samples before the oxidation; (b) Weight change curves of Alloy2 oxidized at 1000 °C

and 1300 °C, respectively. Reproduced with permission [143]. Copyright 2018 Elsevier.
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Fig. 15. Cross-section BSE micrograph of Alloy2 (a) with the corresponding EDS mappings (d) oxidized at 1000 °C for
24 h; Surface SEM/SE images of low (b) and high magnifications (c) for Alloy2 oxidized at 1300 °C for 2 h.

Reproduced with permission [143]. Copyright 2018 Elsevier.

3. Strengthening mechanism of rare earth elements

According to the above research, it can be determined that the improvement of oxidation behavior of Mo-
Si-based alloys by rare earth elements is mainly achieved through the following three ways. First, optimizing
the microstructure of the alloy is caused by refining grains or distributing phase compositions uniformly, which
contributes to the rapid formation of oxide scale [80, 96, 103, 144]. Second, producing stable rare earth oxides,
these oxides are dispersed in scale and act as obstacle phases or diffusion barriers, which is conducive to
suppressing the MoQj volatilization and O inward diffusion [59, 122, 123]. Third, forming an additional rare
earth oxide layer, thus further improving the antioxidant capacity [96, 135].

Fig. 16 shows a schematic diagram of the oxidation process for rare earth element doped and undoped
Mo-Si-based alloys at medium-high temperatures, which is helpful to further understand the strengthening
mechanism of rare earth elements. It can be seen that the alloy with finer grain size can be prepared after
adding rare earth elements like La, which will affect the oxidation behavior to some extent. Overall, the
oxidation process of the two kinds of alloys can be divided into two stages: initial and stable oxidation stages.
During the initial oxidation stage, a discontinuous SiO; scale is formed on the surface of alloy without rare
earth doping, which cannot effectively isolate oxygen. As a result, the alloy is oxidized violently and forms a
Mo-oxide (MoO; and MoQ3) layer below the SiO; scale. Among them, MoOs is highly volatile, which leads
to a severe mass loss of the alloy and leaves some holes and cavities on the surface [145]. Fortunately, SiO-
gradually increases and flows to heal these holes and cavities as the oxidation time increases, thus facilitating

the formation of continuous SiO; scale [146]. During the stable oxidation stage, the complete scale can provide
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sufficient protection for the substrate due to the effective restriction of O» internal diffusion, resulting in the
reduction of oxygen pressure inside the alloy. Obviously, low oxygen partial pressure inhibits the continuous
generation of MoQ,, and the original MoO> will continue to oxidize to produce MoOs3 and slowly volatilize so
that the Mo-oxide interlayer becomes thinner [147]. Meanwhile, the substrate below MoO- layer has been
oxidized selectively, leading to the emergence of internal oxidation zone [122], as shown in Fig. 16 (a). In
contrast, the alloy doped with rare earth can generate rare earth oxides such as La>Os3, YsM0O12, YsM0,012,
etc. in the initial oxidation stage. These stable oxides, on the one hand, promote the formation of continuous
Si0; scale. On the other hand, they fill holes in the scale to eliminate the shortcut of O, inward diffusion and
MoOs volatilization, so that the alloy can enter the stable oxidation stage faster. In addition, a double-layer
protective oxide film (i.e. Y2Si1207-Si0; or SiO»-HfSiO4 duplex scales) is formed on the alloy surface during
the stable oxidation stage, providing more effective protection against oxidation, as shown in Fig. 16 (b).
However, it is disappointing that sometimes the addition of rare earth elements may even lead to the
deterioration of alloy oxidation behavior in high temperature environments. For example, adding La to the
Mo-Si-B system above 1100 °C has leaded to its accelerated oxidation attribute to the formation of large

amounts of cracks and holes [60]. Therefore, the challenges ahead remain severe.
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Fig. 16. Schematic diagram of the oxidation process for Mo-Si-based alloy at medium-high temperature: (a) without

rare earth elements, (b) doped with rare earth elements.
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4. Conclusion and outlook

This paper comprehensively reviewed the role of rare earth elements on the oxidation behavior of Mo-Si-
based alloy. Based on the thorough study about the oxidation process of Mo-Si-based alloy, the strengthening
mechanism of various rare earth elements such as La, Hf, Ce and Y was summarized. The addition of La to
Mo-Si-B alloys can make grains become finer to promote the rapid formation of continuous boroilicate scales;
Meantime, producing stable La-containing oxides with a "pinning" effect like 3La,O3-MoO3s, La,Os and
Lay03-3Mo03, which limits the formation and evaporation of MoOs3, thus significantly enhancing the alloy
oxidation resistance at temperatures below 1000 °C. Mo-Si-B alloys doped with Hf can generate HfSiO4
particles that promote the healing of holes and cracks in oxide scales; Besides, it is likely that HfSiO4 inner
layer will be formed to inhibit the MoOs3 volatilization and O, inward diffusion. These are helpful to improve
the antioxidant capacity of the alloy. Alloying with Ce can shorten the transient oxidation period of Mo-Si-B
alloys; Moreover, the presence of Ce can also raise the volatilization temperature of B>Oj3 in oxide films, which
plays a positive role in maintaining the viscosity and integrity of borosilicate scale. It is worth mentioning that
the addition of Ce to the Mo-Si-B-Al system can also hinder the formation of mullite and promote the
emergence of protective Al-oxide scale, thus providing more effective protection against oxidation. Adding Y
can passivate Mo-Si-B alloys to prevent further oxidation. On the one hand, the existence of Y will produce
stable Y-Mo-rich oxides (YsMoO12, YsM0,012, etc.), which suppresses the formation of MoOj; and accelerates
the nucleation and growth of protective SiO; scales; On the other hand, a Y>Si,07 outer layer is created which
acts as a diffusion barrier. Furthermore, adding Y to the Mo-Si-B-Zr system also suppresses ZrO, formation,
thus eliminating the adverse effect of Zr doping on oxidation behavior.

However, it is noteworthy that adding rare earth elements do not always improve the antioxidation ability
of Mo-Si-based alloys in practice. For example, adding Y to the Mo-Si-Nb system cannot prevent its
catastrophic oxidation; The addition of La also causes deterioration in the oxidation behavior of Mo-Si-B alloys
above 1000 °C. Therefore, a further search for other oxidation protection methods is necessary. Some research
schemes worth exploring in the future are listed below, hoping to help solve the problems encountered in the
practical application of Mo-Si-based alloys. Before using, preoxidation treatment at an appropriate temperature
can obtain protective silica scales on the alloy surface, thus effectively inhibiting the inward diffusion of O,
and obviously extending the service life of alloy. Processing of preceramic polymers is a very promising
method owing to its simple operation and low cost. Preceramic polymers, which mainly includes many silicon-

containing ceramic precursors like polysilazanes, polycarbosilanes and polysiloxanes, can be decomposed into
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SiC, SiCN, SiCO or Si3N4 to form protective silica scales at high temperature environments, thereby exhibiting
the excellent antioxidant properties. Considering the type, concentration, chemical activity, selective oxidation
and other factors of elements in the alloy, relevant numerical simulation or mathematical model is established
to quantitatively study the relationship between oxidation behavior and microstructure. Combined with the
emerging coating technology to design a suitable silicide-based coating such as MoSi, ceramic coating for the

Mo-Si-based system, which will help to provide a superior antioxidant capability.
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