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Abstract: Introduction. Development of supervised AI algorithms requires a large amount of la-

beled images. Image labelling is both time-consuming and expensive. Therefore, we explored the 

value of e-learning derived annotations for AI algorithm development in medical imaging. Meth-

ods. We have developed an e-learning platform that involves image-based single click labelling as 

part of the educational learning process. Ten radiology residents, as part of their residency training, 

trained the recognition of pneumothorax on 1161 chest X-rays in posterior-anterior projection. Using 

this data, multiple AI algorithms for detecting pneumothorax were developed. Classification and 

localization performance of the models was tested on an independent internal testing dataset and 

on the public NIH ChestX-ray14 dataset. Results. The AI models F1 scores on the internal and the 

NIH dataset were 0.87 and 0.44, respectively. Sensitivity was 0.85 and 0.80 for classification and 

specificity 0.96 and 0.48 for classification. F1 scores were 0.72 and 0.66, sensitivity 0.72 and 0.72. 

False positive rate was 0.36 and 0.32 for localisation. Conclusion. Our results demonstrated that e-

learning derived annotations are a valuable data source for algorithm development. Further work 

is needed to include additional parameters such as user performance, consensus of diagnosis, and 

quality control in the development pipeline. 

Keywords E-learning derived annotations; Pneumothorax; Artificial intelligence; Crowdsourcing; 

Educational data mining 

Introduction 

 

Development of AI models capable of not only classifying exams as positive or neg-

ative but also localizing possible findings like pneumothorax requires large amounts of 

labelled training data [1]. Image labelling is a time-consuming and laborious task that lim-

its the amount of training data available [2]. The creation of training data by designated 

experts is neither a cost-effective nor a scalable approach. Crowdsourcing, the process of 

outsourcing a task to a network of many people, is a promising approach for the labelling 

of medical images that could drastically improve the ability to create large amounts of 

training data in a short time [3]. Previous work has demonstrated that labelling by non-

experts is an alternative for the creation of large amounts of training data [1]. However, 

another study highlighted that the crowds' lack of medical knowledge, misunderstanding 

of the task or monetary incentives resulted in low quality of labels [4].  

 

However, instead of including untrained users, the recognition and labelling of dis-

eases could be an opportunity to attract medical students and residents to train their ra-

diological skills while bringing a certain level of education to the annotation process. Due 
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to an extensive theory-based education obtained in medical schools, students and resi-

dents are an enormous resource of medical knowledge. They understand the purpose, 

reason, limitations, and estimated results of a medical examination. However, they lack 

tools that enable them to translate their theoretical knowledge into practical skills [5-8]. 

By aligning practical training for students and residents with the labelling of diseases, an 

environment can be created that both helps them to improve their practical skills and at 

the same time creates high-quality datasets with the methods of crowdsourcing. Such an 

approach, derived from educational data mining (EDM), a research field that is concerned 

about gaining valuable information from educational environments, could transform the 

medical knowledge of students and residents into a useful resource for image annotation 

[9]. While the usage of educational data is not new, digitalization in education has boosted 

the number of available data points. Analysis of educational data provides valuable in-

sights not only about the student but also about the content [10]. Educational data is al-

ready being used to train machine learning algorithms to personalize learning experience 

[11], continuously improve educational content [12] and advance e-learning technologies 

[13]. An e-learning application that involves image annotation could be used to locate and 

measure findings, information that is subsequently used for training of AI algorithms.  

The objective of this study is to explore the value of e-learning derived annotations 

for the development of AI algorithms in medical imaging, exemplified on a chest X-Ray 

dataset of pneumothoraces. 

 

Methods 

E-learning platform 

The e-learning platform is an in-house development of our radiology research group. 

The system is designed to expose users to large volumes of images in a short period of 

time and rapidly train their ability to recognize a given finding. Due to the high amount 

of effort required in the annotation of findings, a crowdsourcing approach to provide 

feedback was applied. Following this concept, users' responses are used to solve a case. 

Medical students in German-speaking countries are familiar with this way of solving 

cases. Most student councils have developed their own platform or use commercially 

available platforms to solve old exam questions via crowdsourcing [14]. 

 

The developed platform incorporates a web based DICOM viewer, Figure 1.  The 

pseudonymized data is stored in a SQL database. The web-application is split into a UI 

and a server component. The front end provides an overview of learning sessions, a nav-

igation bar, an image upload feature, and a “create session” feature. The server compo-

nent contains the system architecture. The web-based DICOM viewer uses the open-

source cornerstone.js library, which is developed by the Open Health Imaging Foundation 

(OHIF). Users annotate images as part of training sessions. The labels are stored in a SQL 

database along with the images. The software was deployed on a research server inside 

the hospital's IT network. 
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Figure 1. Screenshot of a learning session showing a pneumothorax case. The black area is an em-

bedded, fully functional DICOM viewer. The viewer supports zooming, panning, greyscale, meas-

uring HU and distances (ROI tool) and scrolling (sectional imaging). 

E-learning experience 

A learning session using the above platform contains collections of images to train 

the recognition of a specific finding (e.g., pneumothorax). During a session, trainees re-

view images and are requested to label the decisive feature for diagnosis of the finding 

(e.g., visceral pleural edge for pneumothorax). Images are shown using the web based 

DICOM viewer that includes zoom and grey scaling functionalities. The labels are single-

click annotations with a fixed size of 100x100 pixels, Figure 2. Thus, the labels do not rep-

resent a complete semantic segmentation, but what the individual user considers the most 

important area for detection of the finding. The user annotations are then stored in the 

database. Once a user has annotated an image, a heatmap calculated on the basis of all 

annotations of previous users is shown as an overlay of the original image. The more la-

bels overlap, the higher is the value of an area in the heatmap, Figure 3. The overlay of the 

examination image with the heatmap allows users to compare their suggestions with that 

of the crowd. Of note, the users are blinded to other users’ annotations as the heatmap 

gets calculated only after the individual users’ final annotation. Users of the e-learning 

platform in our study are radiology residents with a mean working experience of 3 years 

(range 1 - 5 years) in diagnostic imaging. 
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Figure 2. - Screenshot of a chest X-ray showing left sided pneumothorax and a single user's click 

label on pleura visceralis (rectangle). 

 

Figure 3. - Screenshot of a chest X-Ray showing left-sided pneumothorax and the heatmap in plasma 

colour scale. Blue = zero annotations, yellow = maximum overlapping annotations, and purple all 

overlapping in between. The middle third of the visceral pleura of the left upper lobe received the 

most annotations, indicated in yellow, and therefore appeared to be the most informative area for 

detecting pneumothorax among users. 
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Figure 4. Example of ground-truth (green) and predictions (red) by our model on the external data 

set. The prediction can make up only a small part of the ground-truth prediction since the model 

was trained to predict the area where users thought the pneumothorax to be most visible. 

 

All users received an introduction to the novel e-learning platform including opening 

a session, annotating the revealing finding, and interpreting the meaning of the calculated 

heatmap. 

 

Internal data set 

Images were identified by searching our research database using the RIS report and 

DICOM metadata. Chest X-rays of adult patients were obtained between 1st of January 

2018 to 31st of December 2019.  

 

Images for inclusion in the positive group were identified by using the search terms 

“pneumothorax”, “standing position” and “posterior-anterior projection” on the written 

reports. To minimize false-positive selections, the terms “no pneumothorax”, “pneumo-

thorax absent” and “no sign of pneumothorax” were excluded.  

 

Images for inclusion in the negative group were identified by searching for negative 

phrases such as “no pneumothorax”, and no exclusion criteria were applied.. The images 

were visually reviewed for the presence and size of pneumothorax by a resident with 4 

years of imaging experience. Due to the large image size and the limit of GPU memory, it 

was necessary to reduce the image batch size. We evaluated downsampling to 25% and 

50% of the original image resolution. As a consequence, cases with less than 5 mm width 

of the finding were excluded.  

 

External data set 

A subset of the National Institutes of Health (NIH) Chest X-ray Dataset [15] was used 

to evaluate the AI model. The NIH dataset is a publicly available dataset of over 112,000 

frontal chest radiographs accompanied by labels extracted from radiology reports using 

natural language processing. Here, we used the dataset that the group of Filice et al 
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created consisting of 12,047 labelled frontal chest radiographs with 2669 fully segmented 

pneumothoraces [16].  

 

AI model and training 

The internal data set was randomly divided into 80% training and 20% testing. In a 

first step, two models were trained for the prediction of the presence of pneumothorax in 

the image (classification models). In a second step, four models were trained to predict 

where the pneumothorax is located in the image (localization model). The localization 

model was only trained on the samples of the internal data set which have a pneumotho-

rax (using again a split into 80% training and 20% testing set).  

In our study, the annotation did not represent a complete segmentation, but the most 

revealing area of the positive finding for the user. Overlapping annotations meant that 

more users recognized the finding in that particular area and this area might have a higher 

value for pneumothorax detection. Therefore, we trained half of the localization models 

on the entire annotation area, and the other half only on the area of overlapping annota-

tions. To estimate the effects of down sampling on the ability for pneumothorax detection, 

we compared localization models trained on half and one-quarter of the original resolu-

tion. For our best localization model, we trained a 5-fold cross-validation on the internal 

dataset. The resulting 5 models were then combined as an ensemble by averaging their 

predictions. This further improved the predictions on the external dataset. 

 

Classification Model 

For the classification of the presence of pneumothorax an EfficientNet-b0 [17] pre-

trained with noisy student self-learning according to Xie et al. [18] was used. The batch 

size was set to 16, dropout was applied with a probability of 0.4, the model was trained 

for 100 epochs, the initial learning rate was set to 5e-4 and reduced over the training with 

a cosine scheduler. For data augmentation, the following transformations were applied to 

the images during training and a copy added with a probability of 0.3. The intensity of the 

transformation was also randomly sampled from the interval given for each transfor-

mation: Zoom (factor [0.8, 1.2]), contrast (gamma [0.5,1.5]), gaussian noise (mean 0, stand-

ard deviation 100), gaussian smoothing (sigma x/y [0.1, 0.8]), rotation (degree 90), mirror-

ing. Images were resampled to the same spacing as the external NIH dataset and cropped 

to 1024x1024 pixels (same as the external NIH dataset). Before feeding the images to the 

model they were normalized to [-1, 1]. The model was implemented using Pytorch-light-

ning [19] and TIMM [20]. 

 

Localisation Model 

For the localization of pneumothorax, we trained a nnU-Net [21] on our internal 

training dataset. The nnU-Net is a medical segmentation framework that automatically 

configures the data preprocessing as well as the hyperparameters for training a U-Net 

[22]. By optimising their segmentation pipeline across a range of several different medical 

segmentation challenges, the authors of the nnU-Net were able to derive heuristics for 

optimally setting the data pre-processing (e.g. normalization and resampling) as well as 

the U-Net configuration (e.g. number of layers and batch size) based on the characteristics 

of the input dataset.  The automatically configured U-Net surpasses most submissions 

on over 23 public challenges. Thus, the nnU-Net has become the best solution for medical 

image segmentation. The annotations derived from our e-learning platform are no precise 

segmentation but indicate the location of the most revealing feature for detection of the 

pneumothorax. Therefore, it does not make sense to evaluate the pixel-wise segmentation 

performance. Instead, we evaluate the ability of the model to localize the pneumothorax 

(“detection”). The nnU-Net returns segmentation maps. By taking the following approach 

we used these segmentation maps to localize pneumothorax: The binary segmentation 
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was post-processed by dilating it by 10mm and then eroding it by 7mm. This helped to 

fill small holes in the segmentation. Then connected component analysis was applied to 

convert the binary segmentation into instance segmentation since a subject can have mul-

tiple disconnected areas where a pneumothorax is visible. Small instances with a volume 

below 80mm² (this responds roughly to a diameter of 10mm) were removed to reduce the 

number of false positives. 

A pneumothorax is counted as detected if the predicted segmentation overlaps at 

least 10% (in terms of dice score) with the ground-truth segmentation. A low value of 10% 

was chosen since our model does not segment the entire pneumothorax but only the area 

where the annotators rated it as most visible. This is only a subset of the entire pneumo-

thorax as can be seen in the example in Figure 3. 

 

Evaluation 

The evaluation of our AI models is divided into two categories. First, the classifica-

tion of radiographs between normal and abnormal CXRs with pneumothorax. Second, the 

localization of the area in the image containing the revealing feature (pleura visceralis). 

Evaluation of the models was performed on the internal testing dataset and validated with 

the NIH dataset. Since the result of the classification model is the binary decision between 

the presence or absence of pneumothorax, it was evaluated on cases with and without 

pneumothorax. For the internal evaluation the 20% split of the full data set was used. For 

external evaluation the full NIH data set was used. Since the results of the localization 

models is the prediction of the pneumothorax area, they were evaluated only on images 

with available annotations. For the internal evaluation the 20% split of annotated images 

were used. For external evaluation the segmented images from the Filice data set were 

used. We used sensitivity, specificity, and F1 score, which can be interpreted as a weighted 

average between sensitivity and specificity and makes it easier to compare models based 

on one metric. For localization the specificity is not defined as the number of true nega-

tives can not be determined: In localization, we are not looking at single pixels but at ob-

jects and there is no meaningful way to derive negative objects (e.g., it is not clear how to 

define an object showing non-pneumothorax). Thus, true negatives cannot be determined. 

Instead, we used the average number of false positives per case. 

Results 

A total of 4394 pa chest radiographs, including 1161 with pneumothorax, were se-

lected from our internal database. Since participants were asked to complete at least 1000 

cases, the e-learning platform recorded 10769 annotations during learning sessions.  

 

Classification performance 

 

No relevant difference was found between the models trained to 25% and 50% image 

resolution. However, when applied to the external data set, a significant decline in perfor-

mance was observed. The F1 score of both models dropped from 0.87 and 0.86 respectively 

when evaluated on the internal data set to 0.44 and 0.42 respectively when evaluated on 

the external data set.  

 

Localization performance 

 

The best performing localisation model was the one trained on full annotation area 

at 25% image resolution. The model showed a F1 score of 0.72, a sensitivity of 0.72, and 

false positive rate of 0.36 on the internal data set and a F1 score of 0.66, a sensitivity of 

0.72, and false positive rate of 0.32 on the NIH data set. The annotation area was found to 
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have a greater impact on the performance of the model than the image resolution. The 

difference in annotation area showed a up to 0.12 higher F1 score in favour of the models 

trained on the full annotation area. The difference in image resolution showed a up to 0.05 

higher F1 score in favour of the models trained on 25% image resolution. Further training 

of the best performing model in 5-fold cross-validation did not substantially improve the 

F1 score. All results are summarized in tables 1 and 2. 

 

Table 1. - Results of the classification models. 

Classification Model 

 F1 Sensitivity Specificity 

 Internal External Internal External Internal External 

25% resolution 0.870 0.441 0.849 0.796 0.963 0.484 

50% resolution 0.855 0.423 0.810 0.901 0.969 0.330 

Table 2. - Results of the localisation models. 

Localisation Model 

 F1 Sensitivity Avg False Positive 

 Interna

l 

External Internal External Interna

l 

External 

25% resolution 

All annotations 

0.724 0.660 0.716 0.718 0.356 0.323 

25% resolution 

Overlapping annotations 

0.605 0.446 0.608 0.444 0.261 0.248 

50% resolution 

All annotations 

0.710 0.630 0.767 0.772 0.575 0.886 

50% resolution 

Overlapping annotations 

0.638 0.501 0.690 0.532 0.480 0.429 

25% resolution 

All annotations 

Ensemble over Cross.Val. 

- 0.669 - 0.686 - 0.345 

Discussion 

During the past two decades, educational data mining has emerged as an important 

resource to improve learning activities, educational content, and learning technologies 

[11]. Crowdsourcing through this process offers a novel, peer-generated approach for 
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cost- and time-efficient generation of large-scale, high-quality data [23]. While much re-

search on e-learning has focused on developing AI models to enhance the learning expe-

rience, little research has explored the application of e-learning derived AI models to real-

world problems, e.g. in the field of medical diagnostics. In this study, we developed and 

validated AI models for classification and localisation of pneumothorax in chest radio-

graphs trained on labels from an e-learning platform.  

 

The classification models in our study showed a sensitivity of 0.85 and a specificity 

of 0.97, when evaluated on the internal data set and a sensitivity of 0.9 and a specificity of 

0.48 when evaluated on the NIH ChestX-ray14 data set. This decline in specificity in the 

evaluation on the NIH dataset has already been reported in previous studies [24] and is 

partly attributed to the poor quality of the report generated labels [25]. Compared to pre-

vious studies, our models showed lower specificity in the evaluation on the NIH dataset. 

In the study of Taylor et al., classification models reached a specificity of 0.85 [24]. One 

explanation might be the size of the training data set, which was three times larger in 

Taylor et al. with 13,292 CXR. The best performing localization model in our study was 

the one trained on the full annotation area at a resolution of 25%. This model showed 

similar performance on the internal and NIH data sets, with F1 scores of 0.72 and 0.66, 

respectively, sensitivity of 0.72 and 0.72, respectively, and average false-positive rates of 

0.36 and 0.32, respectively. A direct comparison to most previous studies evaluated on the 

NIH dataset is not possible, due to missing assessability of the Dice score in our approach. 

In comparison to similar studies, our model outperformed the model of Taylor et al. which 

showed a sensitivity of 0.49 [24] and the model of Wang et al. which showed an average 

false positive rate of 0.52 of [15]. In the sub analysis of our trained localization models, the 

annotation area seems to have a higher impact on the models' overall performance than 

the image resolution. The models trained on the full annotation area showed a higher F1 

score, higher sensitivity and lower average false positive rate compared to the models 

trained on the overlapping annotation area. These results may not be surprising, as the 

models trained on the entire annotation space had more training data of the feature to be 

identified. Although these results emphasize the status of full-feature segmentation as the 

gold standard, our models trained on much less elaborate training data showed a reason-

able performance. The comparison of the models trained at image resolutions of 25% and 

50% showed that the image resolution seemed to have only a marginal impact on F1 score 

and sensitivity, while the average false positive rate was considerably lower at the 25% 

resolution. Considering that image resolution is a critical factor in the detection of pneu-

mothorax, these results seem to be confusing [26]. However, the detection area is twice as 

large at 50%, thus increasing the probability of false positive detection. 

 

Limitations 

Our work has several limitations. First, It is important to restate that our intention is 

not to develop an algorithm that achieves the best performance. Currently, the greatest 

challenge in the development of AI models is the high effort involved in the preparation 

of training data. Our approach is intended to provide new opportunities to gain training 

data for development of AI models with reasonable performance as shown here. These 

algorithms could be used supportively to prioritize for expedited review. Second, cur-

rently the training data are based on data from a single institution. Although performance 

on the external NIH dataset was similar, it is difficult to predict exactly how well the al-

gorithms would transfer to other institutions. Third, the "ground truth" in this study is 

based on the consensus opinion of the residents performing the annotation of the images; 

no expert review other than the approved report has taken place to confirm the diagnoses. 

Finally, this is a retrospective study, the model’s performance have not yet been prospec-

tively evaluated in a clinical environment. 

Conclusion 
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Overall, our initial experiences have shown that it is possible to train AI models based 

on e-learning derived annotations and that these models are able to achieve reasonable 

performance. These results are promising that educational data mining can be a valuable 

source to gain training data for machine learning. This approach could be a win-win for 

academic institutions as well as medical students and residents. By providing examina-

tions in a radiological work environment, medical students and residents can train their 

practical skills in diagnostic imaging. In return, academic institutions receive valuable 

data for research activities such as the development of AI algorithms. In addition, the de-

veloped approach can open new ways to enhance the development of AI in diagnostic 

imaging. By integrating additional parameters, such as the times users spend on each im-

age, assessment of individual user ability to identify the requested feature, and user’s con-

sensus on the feature, multiparametric models could be trained. Further work is needed 

to examine the value of these additional parameters for development of multiparametric 

AI. 
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