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Abstract

Evaporation from surface water plays a key role in water accounting of basins, water resources
management, and irrigation systems management, so simulating evaporation with high accuracy is
very important. In this study, two methods for simulating pan evaporation under different climatic
conditions in Iran were developed. In the first method, six experimental relationships (linear,
guadratic, and cubic, with two input combinations) were determined for Iran’s six climate types,
inspired by a multilayer perceptron neural network (MLP-NN) neuron and optimized with the genetic
algorithm. The best relationship of the six was selected for each climate type, and the results were
presented in a three-dimensional graph. In the second method, the best overall relationship obtained in
the first method was used as the basic relationship, and climatic correction coefficients were
determined for other climate types using the genetic algorithm optimization model. Finally, the
accuracy of the two methods was validated using data from 32 synoptic weather stations throughout
Iran. For the first method, error tolerance diagrams and statistical coefficients showed that a quadratic
experimental relationship performed best under all climatic conditions. To simplify the method, two
graphs were created based on the quadratic relationship for the different climate types, with the axes
of the graphs showing relative humidity and temperature, and with pan evaporation was drawn as
contours. For the second method, the quadratic relationship for semi-dry conditions was selected as
the basic relationship. The estimated climatic correction coefficients for other climate types lay
between 0.8 and 1 for dry, semi-dry, semi-humid, Mediterranean climates, and between 0.4 and 0.6
for humid and very humid climates, indicating that one single relationship cannot be used to simulate
pan evaporation for all climatic conditions in Iran. The validation results confirmed the accuracy of
the two methods in simulating pan evaporation under different climatic conditions in Iran.

Keywords: Iran, Pan Evaporation, Genetic Algorithm, MLP Neural Network, Experimental
Relationship

1. Introduction

Evaporation is one of the main components of hydrology and accurate estimation of evaporation plays
an essential role in estimating the water balance of basins, designing and managing irrigation systems,
and managing water resources (Abtew and Melesse, 2013; Dehghanipour et al., 2020a; Ghazvinian et
al., 2020a, 2019; Majhi et al., 2020). There are two types of methods, direct and indirect, for
estimating evaporation (Tabari et al., 2010; Zounemat-Kermani et al., 2019). Pan evaporation is one
of the direct methods commonly used to determine evaporation from free water surfaces in most parts
of the world (Irmak et al., 2002). Pan evaporation is also used for determining crop water
requirements, irrigation scheduling, rainfall-runoff modeling, and computation of water balance
components (Majhi et al., 2020). In recent years, numerous methods and experimental relationships
have been developed for indirectly simulating evaporation (Alazard et al., 2015; Armstrong et al.,
2019). Over the years, various studies have sought to identify linear experimental relationships
(Harbeck, 1958; Marciano and Harbeck, 1952; Meyer, 1942) and nonlinear experimental relationships
(Althoff et al., 2020; Benzaghta et al., 2012; Eray et al., 2018; Guven and Kisi, 2011; Hernandez-
Pérez et al., 2020; Izady et al., 2016; Kim and Kim, 2008) as indirect methods to simulate evaporation
from free water surfaces. Some of these experimental relationships are listed in Table S1 in
Supplementary Material (SM). Four input meteorological variables (air temperature, relative
humidity, wind speed, and vapor pressure) have been used in most cases (Harbeck, 1958; Kokya and
Kokya, 2008; Marciano and Harbeck, 1952; Shaw et al., 2010). On the other hand, Filimonova and
Trubetskova (2005) used two variables (temperature and relative humidity), Poormohammadi et al.,
(2010) used two parameters (temperature and vapor pressure), and Patra, (2001) used only
temperature in their experimental relationships. Moreover, copious studies have assessed the
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sensitivity of input parameters in simulating evaporation (Table S2 in SM). These studies have shown
that temperature, relative humidity, wind speed, and sunshine hours are the most sensitive parameters
(Singh and Xu, 1997), and these variables are included in the experimental relationships listed in
Table S1. In addition, artificial intelligence has been widely used for modeling and simulating pan
evaporation (Alsumaiei, 2020; Malik et al., 2017; Marti et al., 2015; Tezel and Buyukyildiz, 2016;
Wang et al., 2017). In recent years, multilayer perceptron neural network (MLP-NN) has become one
of the most useful artificial intelligence tools in simulating pan evaporation, and its ability for
simulation of pan evaporation has been verified in many studies (e.g. Alsumaiei, 2020; Ashrafzadeh et
al., 2020; Patle et al., 2020), as listed in Table S3 in SM.

In general, the studies cited above have left four research gaps in simulation of evaporation: (i) A
limited geographical area has been used to develop these methods, which can result in errors in
applying the methods. (ii) The structure of the experimental relationships developed does not have the
desired simplicity and users cannot easily use them, and using neural networks is not user-friendly
and accessible for all users. (iii) In most proposed relationships, the vapor pressure variable is a
required input, but this parameter is not commonly measured at all weather stations. (iv) The methods
lack the ability to simulate evaporation under different climatic conditions. For instance, Ivanov’s
relationship is suggested for dry and semi-dry climates (Linacre, 1993; Patra, 2001; Samoilenko,
1952) and Penman’s relationship for coastal regions with humid and very humid conditions (Ghorbani
et al.,, 2018). In the present study, Iran was selected as the study region for development of two
comprehensive and practical methods for simulating pan evaporation under different climatic
conditions. Iran, which is one of the largest countries in the Middle East, has six different climate
types. Potential evaporation is greater than precipitation in the country (Mohamadi et al., 2010), and
simulating evaporation with high accuracy can play an important role in national water resources
management.

The present study provided several advantages and innovations compared with previous research,
including: (i) The choice of study region, as Iran covers a vast area and has six different climate types
(dry, semi-dry, Mediterranean, humid, semi-humid, very humid), (ii) introduction of two practical and
simple graphs as the first method and a simple basic relationship with six climatic correction
coefficients as the second method to simulate pan evaporation for the six climate types in Iran, as both
methods are more comprehensive, yet simpler to apply, than those in previous studies; and (iii) use of
common meteorological data available from all weather stations in Iran in the comprehensive methods
for simulating pan evaporation.

The remainder of this paper is organized as follows: Section 2 describes the study area and Section 3
introduces the methodology used to develop evaporation modeling. Results are presented in Section 4
and discussed in Section 5, while some conclusions are presented in Section 6.

2. Study Area

Iran is located in West Asia, and in terms of geographical location lies in the Northern Hemisphere
between 25 to 40 degrees north and 44 to 63.5 degrees east (Moshir Panahi et al., 2020). The territory
of Iran comprises about 1,650,000 km? and most regions have dry to semi-dry climatic conditions
(Moshir Panahi et al., 2020). Climatic conditions are affected by two important mountain chains,
Alborz and Zagros, which extend from northwest to eastern and southern regions of Iran, respectively,
and represent a change in altitude from -25 to 5600 m above mean sea level (Soroush et al., 2020).
Differences in climatic conditions also exist due to uneven distribution of precipitation and humidity
in the country (Soroush et al., 2020). The northern part is coastal and humid, with heavy precipitation
due to the Alborz mountains, while central, southern, and eastern parts are dry with frequent droughts.
Most parts in the west, northwest, and southwest of Iran have a semi-dry climate and above-average
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precipitation, due to obstruction of rain-producing air masses by the Zagros mountain chain (Seifi and
Soroush, 2020).

A significant proportion of precipitation in Iran is produced by the Mediterranean system, which
moves from west to east through the action of westerly winds. Mean annual precipitation in Iran is
about 240 mm/year, equivalent to one-third of the global average. Annual precipitation ranges from
approximately 1800 mm for the Caspian Sea coastal plains to 400 mm for the Alborz and Zagros
Mountains (Raziei et al., 2005), but is lower than 100 mm following local topology in the internal
plains located in Iran’s eastern and central parts (Raziei et al., 2005). In terms of temperature, most
regions of Iran are affected by the tropical high-pressure system, which results in very hot and dry
summers in much of Iran (Raziei et al., 2005). In the cold-season areas in Iran, ranging from 10-70°
north and 10-80° east, important climatic indices include the Arctic, Central Asia, Western Europe,
and Anatolia to north Caspian indices (Doostan and Alijani, 2016). The cold temperature areas of Iran
lie mostly along the Zagros Mountains, in the northwest, and in small parts of the northeast. There is a
strong spatial distribution of hot and cold temperature areas in Iran, with an obvious role of greater
altitude in cold areas (Doostkamian et al., 2017).

Since most parts of Iran experience dry and semi-dry climatic conditions, evaporation is an important
meteorological variable (Ghazvinian et al., 2020b, 2020c; Karami et al., 2021). Drought is a natural
and repeatable phenomenon that can cause severe crises, and the most critical factors in drought
development are precipitation and evaporation (Hatefi et al., 2016). In recent years, droughts have
become more frequent and severe in Iran (Dehghanipour et al., 2020b, 2019; Hatefi et al., 2016).
Drought is a growing problem in Iran because excessive groundwater use during drought conditions
causes annual evaporation to exceed annual renewable water supply due to precipitation (Moshir
Panahi et al., 2020).

In this study, pan evaporation in Iran was simulated using the MLP-NN neuron and genetic algorithm
optimization model. For this purpose, observed data from 38 synoptic weather stations in Iran were
selected to represent the six different climate types (dry, semi-dry, Mediterranean, semi-humid,
humid, very humid). Data from six synoptic weather stations (Semnan, Shahroud, Yasuj,
Kermanshah, Sari, and Rasht) were used to develop experimental relationships, and data from the
remaining 32 stations were used to validate these experimental relationships. The geographical
location and climate conditions at the selected synoptic weather stations are shown in Figure 1. As can
be seen, there is a humid and very humid climate in northern Iran and the coastal region along the
Caspian Sea, while Mediterranean and semi-humid climatic conditions are found mainly in the west
and northwest of Iran, and southwestern regions have a dry or semi-dry climate. The number of
selected synoptic weather stations with dry, semi-dry, Mediterranean, semi-humid, humid, and very
humid climatic conditions was 13, 9, 4, 3, 3, and 6, respectively. Because significant regions of Iran
are located in dry and semi-dry regions, greater number of synoptic weather stations were selected in
these areas.
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Fig. 1. Location of the selected synoptic weather stations in Iran from which data were obtained. (For
more information about the synoptic weather stations, see Table S4 in Supplementary Material.)

3. Materials and Methods

Two methods for simulating pan evaporation were developed. The steps in the first method were as
follows:

(1) Selection of six synoptic weather stations in Iran with six different types of climatic conditions
(Fig. 1).

(2) Development of three experimental relationships (linear, quadratic, cubic), with two different
input combinations (two-parameter and four-parameter), for each selected synoptic weather station
(i.e., type of climatic conditions). The structure and input combination of these relationships are
shown in Table 1. The relationships were defined into linear, quadratic, cubic types using a MLP-NN
neuron. For the six different climate types considered for Iran (which are based on the De Martonne
method), a total of 36 experimental relations were defined and their coefficients were determined
using the genetic algorithm optimization model.

(2) The ability of the relationships to simulate evaporation was compared and the best relationship
was selected for each climate type. Finally, the outputs of these six best-performing relationships were
presented in the form of a three-dimensional graph, to simplify interpretation.

The steps in the second method were as follows:

(1) Among the six relationships selected when developing the first method, that with the greatest
ability to simulate evaporation in its relevant climatic conditions was selected as the basic
experimental relation.

(2) Six climatic correction coefficients (C.) were defined, one for each of six types of climatic
conditions, and evaporation in each climate type was simulated by multiplying by its coefficient (C.)
in the basic experimental relationship. The value of these coefficients (C.) was determined using the
genetic algorithm optimization model.

Finally, both methods were verified using data from 32 synoptic weather stations in Iran, and the
results were compared. Fig. 2 presents an outline of the steps involved in the work, which are
discussed in more detail in sections 3.1-3.4.
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Table 1. Input combinations and relationships applied to simulate pan evaporation

Combination Input Equation Experimental equations and parameters
number parameter* type
1 T-RH 1 E =axT +bxRH +c
2 T'R:S:INS ) 1 E =axT +b xWS+cxSSH +d xRH +e
_ 2 2

1 T-RH 2 E=ax(T) +bx(RH)  +c
T-RH-WS -

2 SsH 2 E —ax(T)?+bx(WS)? +cx(SSH)? +d x (RH)? +e

1 T-RH 3 E=ax(T)>+bx(RH)>+c
T-RH-WS -

2 SSH 3 E=ax)?+bx(WS)®+cx(SSH)? +d x(RH)® +e

* T = temperature (°C), RH = relative humidity (%), WS = wind speed (knots), SSH = sunshine hours (hours).
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3.1 The De Martonne method for climate classification
In the De Martonne method, dryness index is calculated as:

P

| =
T +10

1)

where P is mean annual precipitation (mm), T is mean annual temperature (°C), and I is dryness (De
Martonne) coefficient. Based on the De Martonne drought coefficient values, climatic conditions in
Iran are categorized into dry, semi-dry, Mediterranean, semi-humid, humid, and very humid (Table 2).

Table 2. Climatic classification for Iran based on the De Martonne method
Climate De Martonne drought coefficient range

6
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Dry Less than 10
Semi dry 1010 19.9
Mediterranean 20 t0 23.9
Semi humid 24 10 27.9
Humid 28 t0 34.9

Very humid More than 35

3.2 Genetic algorithm optimization model
The genetic algorithm is an evolutionary algorithm employed for optimizing and effectively searching
huge spaces based on genes and chromosomes (Ehteram et al., 2018). The search includes four steps:
(i) The initial population containing a set of chromosomes forms is established; (ii) the value of each
member is determined by defining an objective function, and new members are generated using
genetic operators, which include the production of offspring from selective parents, mutation on the
last population members, and gradual evolution (Goldberg, 1989); (iii) selection is conducted
considering the fitness level of the members, and several most fit chromosomes are selected for
reproduction; and (iv) genetic operators act on population members and modify and combine their
genetic codes (Goldberg et al., 1992; Zhang et al., 2012).
In this study, the genetic algorithm optimization model was used for two purposes: determining the
optimal weights for each mathematical relationship listed in Table 1, and determining the climatic
correction coefficients to use with the basic experimental relationship. In the genetic algorithm
optimization model used, the number of parents, number of offspring, number of mutant members,
mutation rate, and number of iterations was 300, 200, 90, 0.04, and 200, respectively. The roulette
wheel selection method was applied to select parents from the parent population (Ho-Huu et al.,
2018). According to the fitness function, a member of the parent population can be selected if it has a
better condition regarding the fitness function value, i.e., parents whose objective function has a lower
value (Sharma et al., 2012). Equation 2 expresses the probability distribution function applied in the
roulette wheel selection method:
(—pBxcost) 2

P_e (worst cost)

where P is the selection probability of any member of the parent population, S is the selection

pressure of the parent population, cost represents the objective function value for the parent
population, and worst cost is the maximum value of the objective function, i.e., the family with the
worst conditions for the parent population. After selecting the parents, the uniform crossover approach
is used for producing the offspring, as expressed by equations 3 and 4:

Yoi =& XXo; +(1—ai)xxli, ae{O,l} 4)
where ys; is the first offspring, y-i is the second offspring, xi is the first selected parent, and Xy is the
second selected parent.
Selection of a member from the parent population to apply the mutation operator was carried out

randomly. The normal distribution was used to apply the mutation operator to the parent population.
Therefore, if x; is the gene to be mutated, the mutant gene is generated by equations 5 and 6:

Xi new :N(Xi'az)zxi +0oxN(0,1) (5)

o =0.1x (X max _Xmin) (6)

where Xinew IS the mutant member, N (0, 1) is the standard normal distribution, and o is the step-length
of normal distribution.
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3.3 MLP-NN neuron

Three different experimental relationships (Table 1) were defined, inspired by the processes in a
MLP-NN neuron. The process that occurs inside a MLP-NN neuron is as follows: input variables are
multiplied by a series of fixed weights, the values obtained are summed with a constant value, the
final values are given to an activation function, and the output of the intended neuron is calculated.
The activation functions employed in MLP-NN neurons include hyperbolic, exponential, Gaussian,
and linear functions, and so on. The linear function is the simplest form of activation function, with
the general form Y=X, which simplifies the experimental relationships suggested. Figure 3 and Eq.
(7) describe the process in a MLP-NN neuron.

X W,

= lﬂ
X W,

X, —| F(.) Output
X Wy

X3

b
Fig. 3. Schematic diagram of a multilayer perceptron neural network (MLP-NN) neuron.

Output = F (W, x X, +W,x X, +W,xX ;+ ... +b) (7)

where F is the activation function, X1, Xz, and X; represent the input variables, and Wi, W, and W3
represent the weights multiplied by inputs.

In this study, the MLP-NN neuron was designed to define three types of experimental relationship
(linear, quadratic and cubic). In the linear relationship, input parameters were multiplied by different
weights, and then the values obtained were summed with a constant value. For the quadratic and cubic
relationships, the second and third powers, respectively, of the input data were multiplied by weights,
and the values obtained were summed with a constant value.

3.4 Statistical indices for model evaluation

There are various measures available to evaluate models and algorithms. In the present study, the
experimental relationships and the climatic correction coefficients obtained for the basic relationship
were quantitatively evaluated using statistical correlation coefficient (r), Nash-Sutcliffe efficiency
(NSE), root mean square error (RMSE), and percentage bias (PBIAS) (Egs. 8-11).

i’\Zil(obsi ~obs; )(sim; —sim; ) @)

N —
( iEl(obsi —obs; ) ( iél(mmi —sim, )

N X 2
_Zl(S|mi —obsi)
— 1=
NSE =1- N ) (9)
iZ:)l(obsi —obsi)
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N 2
> (obsi —S|mi)

N
NZ (ob im: )x100
obs. —sim. )x
pRIS =1 (1D
N N
> obs;
i=1 !

where N is the number of data, obs; is observed daily evaporation (mm/day), sim; is simulated daily
evaporation (mm/day), cE is average observed evaporation (mm/day), and ﬁ is average

simulated evaporation (mm/day). The correlation coefficient shows the agreement between observed
and modeled values, with its value varying from zero to one (the closer to one, the more acceptable
the results). NSE shows the relative difference between observed and simulated values and its value
ranges from infinitely negative to one (the closer to one, the more accurate the results)(Nash and
Sutcliffe, 1970). RMSE indicates the difference between observed and simulated data. RMSE is non-
negative, and a value near zero shows higher reliability of the model. PBIAS indicates the mean bias
in the simulated data relative to the observed data and thus the smaller the value, the higher the
reliability of the model (Yapo et al., 1996).

4. Results
4.1 Determination of weights of experimental relationships used with two input combinations
(first method)

Observed and simulated pan evaporation at the six selected synoptic weather stations: Semnan (dry),
Shahroud (semi-dry), Kermanshah (Mediterranean), Yasuj (semi-humid), Sari (humid), and Rasht
(very humid) with the two input combinations (two-parameter, four-parameter) are shown in Figure 4
(Semnan and Rasht) and Figure S1 (other synoptic weather stations). As can be seen, observed
evaporation and evaporation simulated using all three experimental relationships showed acceptable
agreement for the six selected synoptic weather stations representing different climate types.

First input combination, Semnan station(Dry)
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Fig. 4. Time series of observed and simulated pan evaporation using linear, quadratic, and cubic
experimental relationships (shown in red, blue, and green, respectively) and two input combinations
(2000-2020, Table 1). (a) Semnan station (dry, two-parameter input combination), (b) Semnan station

(dry, four-parameter input combination), (c) Rasht station (very humid, two-parameter input
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combination), and (d) Rasht station (very humid, four-parameter input combination). Observed
evaporation (2000-2020) is shown in black.

The values obtained for correlation coefficient (r), NSE, RMSE, and PBIAS in comparisons between
observed and simulated evaporation using the three types of experimental relationships and two input
combinations are shown in Table S5 in SM. Based on the values obtained, there was little difference
between the two-parameter and four-parameter input combinations. Moreover, at all six synoptic
weather stations, r and NSE were higher for the quadratic experimental relationship than for the cubic
and linear experimental relationships. On the other hand, RMSE and PBIAS were lower for the
guadratic experimental relationship than for the other two relationships.

Error tolerance diagrams were created for the six selected synoptic weather stations and the two input
combinations to compare the statistical coefficients of experimental quadratic relationships. In the
graph for each climate type, evaporation values were arranged from low to high on the horizontal axis
and the difference between observed and simulated evaporation according to the linear, quadratic, and
cubic experimental relationships was plotted on the vertical axis. Figure 5 shows the error tolerance
diagram for Semnan station, while those for the other five synoptic weather stations are shown in Fig.
S2in SM.

Based on the error tolerance values in Figures 5 and S2, the error in simulating high evaporation was
greater for the linear relationship than for the cubic and quadratic relationships with all six types of
climatic conditions and both input combinations, while the error in simulating low evaporation was
greater for the cubic relationship than for the quadratic and linear relationships. Therefore, the higher
values of r and NSE and the lower values of RMSE and PBIAS obtained for the quadratic relationship
can be related to its greater ability to simulate high evaporation than the linear relationship and its
greater ability to simulate low evaporation than the quadratic relationship. The quadratic relationship
was thus the best relationship for simulating evaporation in the six different climate types in Iran.
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Fig. 5. Error tolerance of linear, quadratic, and cubic experimental relationships (shown in red, blue, and
green, respectively) in simulation of pan evaporation at Semnan station (dry conditions) for (a) the two-
parameter input combination and (b) the four-parameter input combination (see Table 1 for input
combinations).

The coefficients obtained for the linear, quadratic and cubic relationships are shown in Table S6 in
SM. According to the determined weights of the best (quadratic) relationships, those for four types of
climatic conditions (dry, semi-dry, semi-humid, and Mediterranean) were similar to each other, but
different from those for the remaining two climate types (humid and very humid), which were similar
to each other. In Figure 6, the similarities of the relationship weights of the dry, semi-dry, semi-
humid, and Mediterranean climate types, and of the humid and very humid climate types, are shown
in a bar graph for the two-parameter input combination, where pan evaporation based on two input
variables (relative humidity in the range 0-100%, temperature in the range 0-50°C). Pan evaporation
was then simulated using the experimental quadratic relationships and simulated evaporation under
each climate type was drawn as contour curves. Figure 7a presents the results for the four synoptic
weather stations with dry, semi-dry, semi-humid, and Mediterranean conditions and Fig. 7b shows the
results for the two synoptic weather stations with humid and very humid conditions. The contours of
the evaporation values (dashed lines) show the approximate values of simulated evaporation for the
stations. The average evaporation values for the groups of four and two stations are shown within bold
lines and can be used to simulate pan evaporation. The two graphs were created using the six best
experimental relationships. The variables temperature (°C) and relative humidity (%) must be
extended along the horizontal and vertical axes to reach each other at a specific point, at which the
value of the contour indicates pan evaporation.
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Fig. 6. Graphical representation of weights of the six experimental relationships with the two-parameter
input combination (a, b, and c, see Table 1) for the six different climate types in Iran.
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Fig. 7. Graphs of the six best experimental relationships (quadratic relationships) simulating pan
evaporation with the two-parameter input combination, under (a) dry, semi-dry, Mediterranean, and
semi-humid climatic conditions and (b) humid and very humid climatic conditions.

4.2 Climatic correction coefficients for climate types based on the basic relationship (second

method)

The results in section 4.1 showed that quadratic relationships were best in simulating evaporation for
the six climate types in Iran. Based on the statistical coefficients (Table S5), the quadratic
experimental relationship for the semi-dry climate showed better performance than those for other
climate types and was selected as the basic experimental relationship. The climatic correction

coefficient (C.) for semi-dry conditions was then set at 1, and the C. values for the dry,
Mediterranean, semi-humid, humid, and very humid climate types were determined using the genetic

algorithm optimization model for two input combinations.
Observed evaporation and simulated evaporation values obtained using the basic experimental

relationship with the climatic correction coefficients determined for the Semnan and Rasht stations,
with both input combinations, are presented in Fig. 8, while those for other climatic conditions are
shown in Fig. S3. The agreement between observed evaporation and simulated evaporation in the

diagrams indicates that the method is acceptable for use in six different climate types in Iran.
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Fig. 8. Time series of observed and simulated pan evaporation using the basic relationship with six
climatic correction coefficients (2000-2020) for: (a) Semnan station (dry, two-parameter input
combination), (b) Semnan station (dry, four-parameter input combination), (c) Rasht station (very

humid, two-parameter input combination), and (d) Rasht station (very humid, four-parameter input
combination)

Table S7 shows the values of C,. and the values of correlation coefficient (r), NSE, PBIAS, and RMSE
obtained on comparing observed and simulated evaporation with both input combinations for the six
selected synoptic weather stations. The statistical coefficients confirmed that using the basic
experimental relationship with six climatic correction coefficients is an acceptable approach for
simulating evaporation at the six selected synoptic weather stations. Moreover, according to the
statistical coefficients, there was little difference between two-parameter and four-parameter input
combinations. The C. values varied between 0.4 to 0.6 for humid and very-humid climates and
between 0.8 and 1 for dry, semi-dry, Mediterranean, and semi-humid climates (Table S7). Therefore,
there was a significant difference between the climatic correction coefficients for these two groups,
indicating that bone experimental relationship cannot be used to simulate pan evaporation for all
different climate types in Iran.

The basic experimental relationship (quadratic experimental relationship for semi-dry climatic
conditions) with the two-parameter input combination was:

Epasic = 0-015169(T )2 —0.0001093(RH )2 +1.004339 (12)
and the following equation can be used to simulate pan evaporation for all climate conditions:

E pan — Ce Bpasic) (13)

where T and RH are the two input parameters, daily temperature (°C) and daily relative humidity (%),
and Enasic is simulated basic daily evaporation (mm). Daily simulated pan evaporation, Epan, iS
simulated by multiplying climatic correction coefficient (C.) by basic simulated evaporation. The
C.values used in Equation 12 are presented in Table 3.
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Table 3. Climatic correction coefficient (Cc) values obtained with the two-parameter input combination
for different climate types

Climate C.
Dry 0.845

Semi Dry 1
Mediterranean 0.889
Semi Humid 0.962
Humid 0.476
Very Humid 0.411

4.3 Validation of selected relationships and climatic correction coefficients for simulating pan
evaporation

The performance of the best experimental relationships and of the basic experimental relationship
with C, values was examined by determining statistical indicators for 32 synoptic weather stations in
Iran. Table S8 shows the values of r, NSE, PBIAS, and RMSE obtained using the best experimental
relationships and both input combinations for the 32 stations, for which PBIAS was <20%, NSE
>70%, and r>80%. This confirms that the experimental quadratic relationships had very good ability
to simulate pan evaporation for the six climate types in Iran.

Table S9 shows the values of r, NSE, PBIAS, and RMSE obtained using the basic experimental
relationship with six climatic correction coefficients and both input combinations for the same 32
synoptic weather stations in Iran. In this case, PBIAS was <15%, NSE >70%, and r>80%, again
indicating very good ability in simulating the pan evaporation for the different climate types in Iran.
As can be seen from Tables S8 and S9, there were no significant differences between the results
obtained with the two-parameter and four-parameter input combinations, although the results of the
two-parameter combination were better in some cases. Therefore, it is not economical to use the four-
parameter input combination (temperature, relative humidity, wind speed, and sunshine) and the two-
parameter input combination (temperature and relative humidity) is a better option. Table 4 shows the
range of statistical indicators obtained in validation of the two methods using the two-parameter input
combination for the 32 synoptic weather stations in Iran, while Fig. 9 shows box plots of the statistical
coefficient values (r, NSE, RMSE, PBIAS). In this case, r was >0.87, NSE >0.75, RMSE <2.75 mm,
and PBIAS <10% for the dry, semi-dry, Mediterranean, and semi-humid climate types, while the
corresponding values for the humid and very humid climate types were >0.78, >0.62, <1.75 mm, and
<9%, respectively. These results confirm the ability of both our methods to simulate pan evaporation
for the different climate types in Iran, supporting other findings (first method: two graphs in Fig. 7;
second method: Equation 12 with the six climatic correction coefficients in Table 3).
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Fig. 9. Box plots of statistical coefficients obtained in validation of the two novel methods using data from
32 synoptic weather stations in Iran.

Table 4. Range of values of statistical indicators obtained in validation of the two novel methods with the

two-parameter input combination using data from 32 synoptic weather stations in Iran

Climate Correlation Nash-Sutcliffe Root mean Percentage bias
coefficient (r) coefficient (NSE) squared error (PBIAS)
(RMSE)
Range of statistical coefficients in the validation step in the first method
Dry 0.87-0.92 0.55-0.83 1.971 - 3.897 mm 3.174-18.97%
Semi-dry 0.87-0.92 0.64-0.84 1.924 - 3.144 mm 4.604 - 15.97 %
Mediterranean 0.70-0.90 0.75-0.81 1.936 - 3.144 mm 6.240-17.81%
Semi-humid 0.89-0.94 0.74-0.76 1.884 - 2.433 mm 13.97-30.21 %
Humid 0.78-0.82 0.60-0.64 1.338 - 1.778 mm 7.324 - 18.00 %
Very-humid 0.79-0.83 0.62 - 0.65 1.299 - 1.346 mm 1.58 - 11.05 %
Range of statistical coefficients in the validation step in the second method
Dry 0.87-0.91 0.55-0.83 2.002 - 3.897 mm 2.518-21.95%
Semi-dry 0.89-0.92 0.67-0.84 1.924 - 3.144 mm 4.604-17.81%
Mediterranean 0.88 -0.90 0.60-0.81 1.737- 2.588 mm 1.455-17.97%
Semi-humid 0.89-0.94 0.74-0.76 1.894 - 2.412 mm 10.90-27.41%
Humid 0.77-0.84 0.57-0.62 1.298 - 1.845 mm 10.43 - 22.65 %
Very-humid 0.78-0.83 0.60 — 0.65 1.301 - 1.368 mm 6.153-14.17%
5. Discussion

Based on the statistical coefficients obtained for the three experimental relationships (linear,
quadratic, cubic) in the first method, the quadratic relationship showed the best performance under all
climatic conditions. This derived from the better ability of the quadratic relationship to simulate high
evaporation than the linear relationship and its better ability to simulate low evaporation than the
cubic relationship. The statistical coefficients for the quadratic relationship showed that there was
little difference between the values of simulated evaporation for the two- and four-parameter input
combinations tested. Therefore, it is not economical to use the four-parameter combination, which
includes temperature, relative humidity, sundial, and wind speed, since using a combination of
temperature and relative humidity is sufficient to simulate pan evaporation. Examination of the
weights obtained for the quadratic relationships for the six climate types in Iran showed that the
relationships fell into two groups, representing four (dry, semi-dry, semi-humid, and Mediterranean)
and two (humid and very humid) climate types. Therefore, to simplify this method with the two-
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parameter input combination, graphs were prepared for these two groups with relative humidity and
temperature on the axes and pan evaporation drawn as contours.

The statistical coefficients obtained for the six experimental relationships in the first method indicated
that the experimental relationship for semi-dry climatic conditions had the greatest ability to simulate
pan evaporation. Therefore it was chosen as the basic relationship in the second method. The climatic
correction coefficients of this basic relationship determined for other climate types ranged between
0.8 and 1 for the dry, semi-dry, semi-humid, and Mediterranean climate types, and between 0.4 and
0.6 for the humid and very-humid climate types. The significant difference between the range of
values show that one single experimental relationship cannot be used for all different climatic
conditions using the specific input data. Based on this finding, all experimental relationships
presented in previous studies (Alazard et al., 2015; Armstrong et al., 2019; Delclaux et al., 2007,
Filimonova and Trubetskova, 2005; Granger and Gray, 1989; Linacre, 1993; Samoilenko, 1952;
Subramanya, 2008) need to be revised for use in different climatic conditions, and climatic correction
coefficients need to be determined.

A review of previous studies modeling pan evaporation using neural networks and neural fuzzy
systems showed that the reported correlation coefficient (r) was between 0.67 and 0.91 (Haghighatjo
et al., 2017; Moazenzadeh et al., 2018; Nourani and Sayyah Fard, 2012; Samadianfard et al., 2018;
Seifi and Soroush, 2020). In contrast, the values obtained for the two methods developed in this study
for 38 synoptic weather stations in Iran lay between 0.6 and 0.9. Only one MLP-NN neuron with a
simple activation function (y=x) was used in this study, yet there was little difference in the range of r
values obtained for the two simple methods developed, and for neural networks and fuzzy neural
systems in previous studies. Therefore, use of complex relationships will not necessarily improve
performance in simulating pan evaporation and is not economical.

6. Conclusions

Access to a comprehensive but simple method for simulating pan evaporation can play a significant
role in estimating the water balance of basins, designing and managing irrigation systems, and
managing water resources. In this study, we developed two simple and practical methods for
simulating pan evaporation under the six types of climatic conditions found in Iran. In the first
method, six experimental relationships (linear, quadratic, and cubic, with two- and four-parameter
input combinations) were determined for each climate type in Iran, inspired by the MLP-NN neuron
approach and the genetic algorithm optimization model. From these, the best relationship for each
climate type was selected and used in the second method as the basic relationship, together with
climatic correction coefficients (C.) determined for other climate types using the genetic algorithm
optimization model. The accuracy of the two methods was tested using data from 32 synoptic weather
stations throughout Iran.

In the first method, statistical evaluations showed that a quadratic relationship had the greatest ability
to simulate pan evaporation for the six different climate types, owing to its better ability to simulate
higher evaporation than the linear relationship and to simulate lower evaporation than the cubic
relationship. Examination of the quadratic relationships obtained for the six climate types showed that
those for dry, semi-dry, Mediterranean, and semi-humid climate types were similar, but differed from
those for humid and very humid climate types (which were similar to each other). Therefore, two
graphs were created for these two groups of climate types, with the horizontal and vertical axis
showing temperature and relative humidity, respectively, and with average pan evaporation drawn as
a contour.

In the second method, statistical evaluations showed that the quadratic relationship for the semi-dry
climate type performed best, so it was used as the basic experimental relationship for the six climate
conditions. The values of climatic correction coefficients obtained with this relationship ranged
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between 0.8 and 1 for the dry, semi-dry, Mediterranean, and semi-humid climate types, and between
0.4 and 0.6 for the humid and very humid climate types.

Both methods for estimating pan evaporation were verified by simulating pan evaporation at 32
synoptic weather stations throughout Iran, which gave NSE values >70%, correlation coefficient (r)
>80%, and PBIAS <20%. Two input combinations (with four and two parameters, respectively) were
applied for the 32 synoptic weather stations and the statistical coefficients obtained showed no
significant differences between these for either of the two new methods. Therefore, using the four-
parameter input combination (temperature, relative humidity, sunshine and wind speed) was not
economical, as the two-parameter input combination (temperature, relative humidity) performed
equally well.

The two new methods presented have some advantages over existing methods, e.g., they consider the
six climate types in Iran and a wide area was covered by the data. Thus both methods can simulate
pan evaporation for all climate types in Iran, but other methods are not applicable for all climatic
conditions. Both methods are also simpler to use than existing methods and the only inputs required
are temperature and relative humidity data, which are available for all weather stations in Iran.
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