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Abstract 
Hormones must be balanced and dynamically controlled for the Female Reproductive Tract (FRT) 

to function correctly during the menstrual cycle, pregnancy, and delivery. Gamete selection and 

successful transfer to the uterus, where it implants and pregnancy occurs, is supported by the 

mucosal epithelial lining of the FRT ovaries, uterus, cervix, fallopian tubes, and vagina. Successful 

implantation and placentation in humans and other animals rely on complex interactions 

between the embryo and a receptive female reproductive system. The FRT's recent breakthroughs 

in three-dimensional (3D) organoid systems now provide critical experimental models that match 

the organ's physiological, functional, and anatomical characteristics in vitro. This article 

summarizes the current state of the art on organoids generated from various parts of the FRT. 

The current analysis examines recent developments in the creation of organoid models of 

reproductive organs, as well as their future directions. 
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Introduction 
The female reproductive system has a unique function in that it includes the beginning of life 

while simultaneously having the ability to end it. The vagina, cervix, uterus, endometrium, and 

fallopian tubes are all composed of mesodermal derivatives, whereas the ovaries are constructed 

of endoderm. The development, proliferation, and differentiation patterns of each of these tissues 

are distinct (Mancini & Pensabene, 2019). 

Importantly, in order to fulfil their reproductive role, these tissues rely on the capacity of their 

constituents to self-renew. However, it is in their efforts to allow life to begin by performing 

transportation functions, assisting with implantation, and acting as barriers to internal and 

external stressors and pathogens that its constituents risk cellular deregulation as a result of 
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threatening impacts such as hormonal dysregulation, infections, or auto-immune diseases, which 

can lead to carcinogenesis. (N. Desai et al., 2012). 

In humans and other mammals, successful implantation and placentation are reliant on elaborate 

interactions between the embryo and a receptive female reproductive system (Fritz et al., 2014). 

Early embryonic death is a common side effect of infertility. At the conclusion of the per-

implantation period, up to 60% of all pregnancies are terminated. The disturbance of the embryo–

maternal communication is one of the main reasons for this (Herrler et al., 2003). 

The time interval preceding conception and nidation (implantation) or attachment of the embryo 

to the uterus has been identified as the preimplantation stage of development in mammals. The 

preimplantation period lasts about 30, 7, 4, and 5 days in cattle, humans, mice, and rats, 

respectively. The zygote undergoes numerous cleavage divisions after fertilization, dividing the 

ooplasm into several equal-sized compartments termed blastomeres. The zona pellucida 

surrounds the blastomeres as a whole. (Madan, 2011). 

The blastocysts are firmly enclosed by the maternal endometrium, according to ultrasound 

findings (Madsen et al., 2015; Meyer et al., 2019). The extra-embryonic matrix (EEM, zona 

pellucida) represents the interface between mother and embryo because the human embryo does 

not hatch until day 6. However, signals during the first 6 days should therefore pass through this 

matrix to reach their destination, so EEM can be considered as a mail box when studying embryo–

maternal signaling (Herrler et al., 2003). 

In vitro 3D model of Female Reproductive Tract 
In general, various study models that have evolved through time to become increasingly complex 

and representative, and even personalized, have provided insight into tissue development, 

homeostasis, and disease. Hypothesis testing for FRT tissues has depended on two-dimensional 

(2D) models (such as cell lines) for many years, alongside short-term three-dimensional (3D) in 

vitro cell-culture and in vivo explant systems. However, it wasn't until 2009 that the idea of a total 

shift to long-term 3D in vitro cell-culturing technologies was envisioned (Heremans et al., 2021). 

Numerous biological insights have been gained through 2D cultivation of immortalized cell lines 

or those generated from cancer in organs of interest (Haycock, 2011; 3D Model Systems, 2020). 

Their benefits include repeatability and accessibility. However, they lack many complex aspects 
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of in vivo microenvironments, such as cell-cell/cell- Extracellular Matrix (ECM) interactions, and 

they fail to replicate important properties of native tissues, such as active cell signaling pathways 

and function, due to changes in cell lines (Heidari-Khoei et al., 2020). 

Traditional 2D culture systems, which grow alone or in co-culture on plates and conduct 

experiments supported by in vitro imaging for various functional, pharmacological, toxicological, 

and even clinical applications, have long been widely used and are well-known for their low cost 

and high repeatability. Due of the limitations associated with the lack of particular tissue 

architecture, mechanical-biochemical signals, cell-cells, and ECM, 2D culture methods cannot 

achieve a degree of 3D organization comparable to in vivo. (A. M. Capuzzo et al., 2020; A. M. 

Capuzzo & Vigo, 2021). 

The 3D cell cultures, total display improved work, yet need cell extremity and the 3D association 

that is available in vivo. Other 3D culture frameworks incorporate spheroids that frequently come 

up short on the limit with regards to self-organization and separation because of the shortfall of 

applicable cell ancestor or undeveloped cells (Łaniewski et al., 2017; Yin et al., 2016) .  

Organ explants and organotypic slice cultures that mimic the native organ's complex 3D 

architecture, cellular heterogeneity, and function are extremely useful for studying development 

and physiology, but they are limited by their inability to proliferate, short lifespan, and cell 

phenotype drift due to improper culture media orientation. Organoid technology is a novel in 

vitro model that may be utilized as tissue and organ proxies to bridge the gap between in vitro 

and in vivo research. (S. P. Desai et al., 2013). 

The innovation of organoids in the last decade offers new in vitro models to be considered as 

intermediaries of both tissues and organs to overcome any problems between in vitro and in vivo 

(Lancaster & Knoblich, 2014; Choi et al., 2016). Organoids constructed and validated over time 

repeat elements of various target organs. In this way, the fallopian tubes, the uterus and only the 

trophoblast as organoids of the ovaries were made in the research sights for the problems related 

to FRT. These models are opening new roads to explore the typical science and pathology of the 

FRT.  

Organoids are miniature replicas of self-organizing structures that mimic many biological and 

pathological characteristics of organs, including several reproductive organs. Organoids of the 
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ovaries, uterus, fallopian tubes, and as well as trophoblasts, have been generated in the laboratory 

in this regard.  Current achievements in building organoid models of reproductive organs as well 

as future directions will be highlighted. 

Endometrial organoids 
To prepare for embryo implantation, the endometrium undergoes cyclic modifications in 

response to steroid hormones, as well as paracrine and autocrine factors. Embryo implantation is 

a complicated procedure that necessitates a receptive endometrium, a capable blastocyst, and a 

coordinated maternal-embryo interaction. Dysmenorrhea, infertility, endometrial polyps, 

endometrial cancer and endometriosis, which is the most frequent cancer of the female 

reproductive organs, are all associated with the endometrium (Burkitt et al., 2012). 

Blauer created and confirmed a culture condition in which normal human endometrium was 

grown as glandular organoids in a Matrigel matrix alongside stromal cells for the first time. 

However, this 3D culture method diverged from the commonly used organoid concept in terms 

of principles and protocols. In 2017, two different groups reported successful endometrial 

organoids production in mice and human endometria. Dissociated endometrial cells were 

implanted in Matrigel droplets in culture medium that is routinely used to facilitate the growth 

of organoid models of other organs to create these endometrial organoids (Chumduri & Turco, 

2021) 

The endometrial organoids' molecular and functional characteristics were identical to those of 

their parent cells. Endometrial organoids, like in vivo endometrium, feature glandular-type self-

organization, apicobasal polarity, and functional activity, such as mucus production, in addition 

to being sex hormone sensitive (Chen & Schoen, 2019). 

Some endometrial organoids have been obtained from endometrial and adjacent endometrial 

adenocarcinomas from postmenopausal subjects. This starting condition has helped grow the 

small amount of material adopted, for an assortment of high-throughput assessments, and could 

be a significant platform for: examining implantation problems, histotrophic sustenance period 

in early pregnancy, new procedures useful for gynecological pathologies such as endometriosis 

and malignant endometrium growth and create an endometrial biobank (Senol et al., 2016). 

In contrast to healthy endometrial-derived organoids, the tumor organoids showed a variety of 

patient-specific morphologies, including pleomorphic cells with hyperchromic nuclei, 
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disorganized epithelium and basement membrane breakdowns, and invasion of the isolated cells 

to the surrounding Matrigel. The organoids generated from the tumor were however positive for 

the MUC1 and SOX17 glandular markers, confirming their glandular origins (Elad et al., 2020). 

Research on the chromosome stability of endometrial organoids utilizing the CGH array showed 

that the organoids created had maintained their genetic integrity for many months in culture. 

These genetically stable endometrial organoids might be produced and maintained to create a 

patient-specific biobank of endometrial tissues without losing their proliferative potential after 

thawing. The culture system has the ability to expand a small number of starting materials in a 

variety of high-performance assessments, including implantation, the histotrophic nutritional 

period during pregnancy, new gynecological pathologic therapy strategies for endometriosis and 

endometrial cancer, and the creation of an endometrial biological bank (Xiao et al., 2017).  

The contemporary organoids, on the other hand, are devoid of stromal cells. The physiological 

roles of endometrial epithelial and stromal cells, as well as the genesis of numerous pathologic 

diseases such as endometrial cancer, are well understood. Endometrial organoids will never have 

the context they need to be true mini organs until they have a fuller complement of cell types 

(Stejskalová et al., 2021). 

Co-culturing endometrial organoids with stromal cells may improve the organoid model and 

provide a suitable paradigm for investigating reciprocal epithelium-stroma interactions in vivo. 

The inaccessible luminal compartment and apical appearance of the epithelium of organoids 

make physiologically relevant research difficult. A luminal compartment might be created by 

unfolding the spherical organoid into a 2D planar tissue construct and monolayer culture of 

primary epithelial cells from organoids (Stejskalová et al., 2021). 

Ovarian organoids 
The ovaries oversee oocyte maturation and release into the fallopian tubes on a cyclical basis. 

They also operate as endocrine glands, secreting estrogen and progesterone, which work together 

to orchestrate the endometrium's cyclical changes. The ovary, like other reproductive organs, is 

dynamic, as seen by the ovarian surface epithelium's (OSE) periodic rupture and healing 

(Schomberg, 1978).  

There haven't been any long-term cultures of healthy ovarian epithelium described yet. To study 

the relationship between chronic inflammation and ovarian cancer, the first 3D cultures of OSE 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 August 2021                   doi:10.20944/preprints202108.0562.v1

https://doi.org/10.20944/preprints202108.0562.v1


were produced(Wong & Auersperg, 2003). Tissue-derived cultures of OSE from women with 

benign gynecological diseases were seeded on Matrigel-coated wells overlayed with 2 percent 

Matrigel in medium based on 3D cultures of mammary epithelial acini (Kwong et al., 2009). 

Single cell-layered epithelial spheroids with a central lumen produced, surrounded by a 

basement membrane. The spheroids had apical polarity but were unable to develop over time. 

Continuous TNF treatment resulted in a precancerous phenotype in the spheroids, with enhanced 

proliferation and loss of apicobasal polarity. More recently, 3D cultures from OSE have been 

obtained from BRCA1/BRCA2 mutation carriers with a high risk of ovarian cancer (Alzamil et 

al., 2021). 

Furthermore, ovarian cancer organoids have somatic mutations and amplifications/deletions, 

and their marker expression and mutational landscape are similar to that of the parent tumor 

(Maenhoudt et al., 2020). Other ovarian illnesses, such as premature ovarian failure and 

polycystic ovary, might be used to create organoids to research the processes that cause these 

diseases (Heidari-Khoei et al., 2020).  

Fallopian tube organoids 
Fallopian tubes are bilateral ducts that connect the uterine body to the ovaries. The fallopian tube 

(also known as the oviduct or uterine tube) is a vital organ in the female reproductive system that 

aids egg maturation and selection, gamete and embryo transit, sperm reservoir, polyspermy 

control, fertilization, and early embryonic development (Heidari-Khoei et al., 2020). 

Heidari-Khoei in his work, exposes how two main methods for the realization of organoids of the 

fallopian tubes, have different problems (Heidari-Khoei et al., 2020). Because such culture 

methods lack tubular folded structures and do not allow for live imaging or perfusion 

investigations, they are only useful for studying gamete interactions and early embryo 

development in depth. The fallopian tube was created in self-organizing organoids using a 

modified intestine organoid technique. Isolated fallopian epithelial cells were planted in a 2D 

culture, then cultured in a 3D Matrigel matrix with growth factors (EGF, FGF, and TGF-), niche 

specific factors (Wnt3a, R-spondin-1 [RSPO1], ALK4/5, and Noggin), and an anoikis inhibitor 

(ROCK inhibitor) (Kessler et al., 2015). 

The organoid configurations of the fallopian tubes described closely resemble the in vivo 

counterparts' normal physiology and morphology. In terms of screening technologies, cancer 
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biology, and reproductive medicine, they provide potential models for investigating the biology 

and pathology of the fallopian tubes (Alzamil et al., 2021; Wong & Auersperg, 2003). However, 

although these systems present limitations for the interaction studies between gametes or 

embryos due to their small size, they could be considered if they were to be used for cross-talk 

communication between FRT structures. The ability to recreate and validate an in vitro system 

considering the multitude of factors present is still far away. 

Trophoblast organoid 
The placenta is an additional embryonic organ that is necessary for the mammalian embryo's 

survival and growth. The trophectoderm layer of the blastocyst adheres to the endometrial 

epithelium after implantation in humans and continues to differentiate into three forms of 

trophoblasts: extravillous CTB (EVT), cytotrophoblast (CTB), and syncytiotrophoblast (STB) 

(Laronda et al., 2013). 

CTB cells that are not differentiated develop through the STB to create cell columns and chorionic 

villi. EVT infiltrate the deciduum when CTB cells at the tips of villi develop into EVT. 

Endovascular EVTs enter and remodel the spiral arteries, while interstitial EVT cells invade and 

remodel the decidualized endometrium. Nutrient exchange and synthesis are carried by 

multinucleated STB cells. To keep the pregnancy going, they emit placental hormones such 

placental lactogen, chorionic gonadotropin, and progesterone, as well as a variety of other 

proteins and steroids. Interstitial CTB cells fuse together to form these cells (Li et al., 2011). 

Major pregnancy-related problems such as intrauterine growth restriction, preeclampsia, 

miscarriage, repeated abortion, and preterm labor are caused by placental malfunction and 

insufficiency. Due to a paucity of relevant functional models, our understanding of the human 

placenta is restricted. The placenta has been studied using a variety of experimental methods, 

including animal models and in vitro cell culture models. Human and other animal placentas, on 

the other hand, have different structural and functional features, therefore data from animal 

models is not applicable to people (Haider et al., 2018). 

Placenta-derived cell lines, isolated primary placenta cells, and human placenta tissue explants 

are all in vitro models of human trophoblasts. JEG-3, BeWo, and JAR are three cell lines derived 

from choriocarcinoma cells. Easy use, endless supply of material, purer cell source, less expensive 

to purchase, convenience of use for gene silencing techniques, and these sources avoid some of 
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the ethical considerations involved with the use of animal or primary human tissues are all 

advantages of these cell lines (Turco et al., 2018).  

Immortal cell lines, on the other hand, have a number of drawbacks as a result of their malignant 

transformations. The HTR-8/ SVneo cell line, which was created by transfecting first trimester 

EVT cells with the simian virus 40 large T antigen gene, or the AC1-M59 and ACH-3P cell lines, 

which are choriocarcinoma cells fused with primary first and third trimester trophoblast cells, 

respectively, can be used to solve this problem. (Turco et al., 2018). 

However, some of these cells don't meet the requirements for human trophoblast cells because 

they lack critical protein markers (GATA3, KRT7, and TFAPC2), the HLA class I profile, the 

chromosome 19 miRNA cluster (C19MC), and hypomethylation of the ELF5 promoter. 

Alternative models have been created, such as human embryonic stem cells (hESCs) treated with 

bone morphogenetic protein 4 (BMP4) (Sheridan et al., 2020). 

Despite the fact that these trophoblast-like cells are used as models to investigate early 

trophoblast lineage segregation, their global gene expression patterns, trophoblast-specific 

markers, and HLA status are considerably different from those of primary trophoblast 

populations. Organoid platforms for in vitro growth of first-trimester CTBs were recently 

developed by two separate research groups. Turco described seeding specific first-trimester 

placenta development cell clusters into Matrigel drops and culturing them in a trophoblast 

organoid medium (TOM) containing FGF2, EGF, A83-01, CHIR99021, and RSPO (Deloria et al., 

2021). 

Hepatocyte growth factor (HGF), PGE2, and Y-27632 were added to improve cell survival and 

growth. Within a week, the researchers found rapid cell expansion when TOM was used. When 

villous CTBs (vCTBs) were embedded in Matrigel with a predetermined cocktail of growth 

factors and signaling inhibitors, tiny cell clusters formed within a few days of culture, according 

to Haider et al. After 2-3 weeks, these clusters grew quickly and turned into organoids with 

uneven structures (Abbas et al., 2020). 

Organoid structures appeared after 10–14 days in these two well-defined environments, and 

homogenous trophoblast organoids were generated. The prenatal origin of trophoblast organoids 

was confirmed by microsatellite analysis and HLA typing. The trophoblast organoids were 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 August 2021                   doi:10.20944/preprints202108.0562.v1

https://doi.org/10.20944/preprints202108.0562.v1


genetically stable and showed mitochondrial activity following cryopreservation after more than 

6 months of passages. Finally, they showed that the organoids were clonal in origin and that 

massive organoids could be grown from single cells in 3-4 weeks (Horii et al., 2020). 

The identities of these trophoblast organoids were verified against trophoblast-specific criteria at 

similar or higher levels than the choriocarcinoma lines JEG-3 and JAR. Principal component 

analysis of placental villi, trophoblast organoids, placental stromal cells, and decidual organoids 

using 12,673 probes revealed that the trophoblast organoid clusters were more closely related to 

the placenta, with enrichment for trophoblast-specific genes such as GATA3, CGB3, and PSG6 

(Sheridan et al., 2020). 

The trophoblast organoid structures had a surrounding foundation membrane beneath the SCT, 

VCT in the middle of the organoids, numerous secretory organelles, syncytial masses that lined 

the central cavity, and surface microvilli that nearly mirrored the organization of placental villi 

in vivo. Proteomic examination of the conditioned medium by liquid chromatography-tandem 

mass spectrometry (LC-MS/MS) revealed the secretory function of trophoblast organoids (Li et 

al., 2011). 

Peptides, hormones, and enzymes secreted by trophoblast organoids include pregnancy-specific 

glycoprotein (PSG), early placental insulin-like protein (INSL4 or EPIL), human chorionic 

gonadotropin (hCG), growth differentiation factor 15 (GDF15), kisspeptin (KISS1), chorionic 

somatomammotropin hormone 1 (CSH1), and aldose reductase. Both endovascular and 

interstitial EVT express HLA-G, a strong tolerogenic molecule at the maternal-fetal interface, and 

its expression grows as trophoblasts move towards the spiral arteries (Haider et al., 2018). 

A few HLA-G+ cells were discovered in trophoblast organoids in basic organoid medium. HLA-

G+ cells that had migrated out of the organoids appeared in the 3D culture and invaded it, 

adhering to the plastic dish. As a result, the organoids resembled the villous placenta 

anatomically, functionally, metabolically, and endocrinologically. Overall, the trophoblast 

organoid model appears to be a potential tool for studying human placental development and 

trophoblast malfunction and insufficiency. Researchers would be able to explore the mechanisms 

that underpin maternal-fetal interactions during pregnancy if they developed an advanced 

culture system that included both endometrial and trophoblast organoids (Elad et al., 2020).  
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General method and tips for Organoid Culture: from planning to 

imaging 
To create a 3D organoid structure, is always needed to start from a source. Organoids can be 

cultured from donor tissue, progenitor organ cells, embryonic and pluripotent stem cells induced 

stem cells and one of the sources of culture material for the realization, it is a primary culture in 

vitro, which can come from: tissues with high proliferative capacity, tissues with low activity (in 

this case ovaries and other organs of FRT), cells free from tissues or organs and finally blood cells 

or serous fluid. 

The preparation of a primary culture takes place following precise steps. To isolate a 

homogeneous population from a tissue it is necessary to destroy the ECM and the junctions that 

hold the cells together, using different techniques: by migration from an explant, by mechanical 

disintegration and finally enzymatic disintegration. The cells able to survive the disintegration 

and proliferate will originate in a cell pool called primary culture («Primary Culture», 2010). 

The possibility of physically isolating the populations of interest or the single cells taken is of 

great importance in the field of cell cultures and in the advent of 3D modeling such as organoids. 

The strategies, in a general way, for cell separation from a mixed population are: exploit the 

different aptitude of different cell types to growth in vitro and separate cells on the basis of 

survival capacity in particular conditions such as the insertion of growth factors specifics reported 

in the works for organoid FRTs; exploit the difference in the different ability to adhere or not to 

growth substrates; use different enzymes for dissociation and always linked to this the use of 

specific growth media mentioned in the previous works. 

After a careful analysis for the preparation, the fundamental steps for the preparation of the 

primary culture line are Sample collection, mechanical dissection, enzymatic treatment, enzyme 

inhibition, control of cell number and viability, seeding, evolution control over time, expansion, 

bio banking. 

While several methods, such as the use of low adhesion round bottom plates and bioreactors, 

have been employed for the generation of three-dimensional models, an organoid can be grown 

in tissue culture plates embedded in the purified extracellular matrix in the form of a hydrogel 

and immersed in a specific culture medium containing the growth factors of the model to be 

studied (A. M. Capuzzo & Vigo, 2020). The organoid dome technique can also be used with 
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different models, providing communication between compartments and desired crosstalk, and 

submerged organoids can remain in the culture for the long term by adapting to the development 

and maturation timelines necessary for the formation of the desired system (The Organoid Culture 

Handbook, s.d.). 

Organoids are frequently grown in matrix hydrogels, which encourage the formation of three-

dimensional structures but must be removed prior to passing, cryopreservation, and organoid 

analysis. Extracellular proteins can be degraded by proteases within the matrix organoid («Three-

Dimensional Culture», 2010).  

Organoids can be cryopreserved for cell line banking or the creation of repositories. For organoid 

cryopreservation, the same methods and chemicals that are used to freeze down cell lines and 

primary cells can be utilized, such as a base medium containing 20% FBS and 10% DMSO. 

Troubleshooting cell viability during cryopreservation is a technological issue due to their 

complicated structural components. Tissue type, organoid maturation, shape (freezing of entire 

structures, partially dissociated fragments, or totally dissociated single cell suspensions), and 

density may all need different freezing media and freeze-down strategies (5 Steps to Live-Cell 

Imaging, s.d.). 

It's crucial to keep track of and manage organoid viability to establish consistent and reliable 

culture procedures. It's also necessary when employing 3D culture models for drug development 

or toxicity testing. The MTT Assay, which is used to identify metabolically active cells in 

undamaged and unfixed organoid tissue, is a common approach for determining cell viability. 

Using this colorimetric test, with tetrazolium salt, it allows to estimate the number of viable cells 

present within the structure, and this therefore allows to evaluate the efficacy of the current 

culture on the vitality of the population («Cytotoxicity», 2010).  

For high-resolution imaging of immunostained organoids, confocal and light sheet microscopy 

are advised. Furthermore, preserving intact organoids for immunostaining to assess marker 

expression is a major issue in the realm of 3D structures. The use of robust and specific primary 

antibodies against tissue-specific markers will enhance tissue imaging and analysis, in addition 

to maintaining tissue integrity and guaranteeing matrix clarity for imaging («Equipment and 

Materials», 2010). 
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Live cell imaging over longer periods of time than confocal imaging is one of the approaches that 

is currently gaining favor. This approach can be challenging since the microscope's objective 

might drift out of focus throughout the experiment, causing us to lose sight of our sample. This 

may be somewhat solved because the newest microscopes feature autofocus capabilities, making 

it simpler to maintain the lens in focus for longer periods of time and reducing focal drift (A. M. 

Capuzzo & Vigo, 2021). 

A time lapse recording technology has been extensively developed in recent years to depict 

natural processes and monitor them at a faster frame rate. He has changed the idea of observable 

events and promoted the method since the creation of bioluminescent proteins, which allow the 

fluorescent tagging of structures in the subcellular compartments of live cells (A. Capuzzo et al., 

2020). 

Development of Co-Culture Crosstalk system between Organoids 
Intestinal organoids were recently co-cultured with stromal cells were created (Stzepourginski et 

al., 2017, pag. 34). Co-culture of organoids with stromal cells might add to the organoid models 

and provide a useful model for studying reciprocal epithelium-stroma interactions in vivo 

(Arnold et al., 2001). 

Bioengineering techniques may make it possible to create more sophisticated tissue-like models 

including non-epithelial populations such fibroblasts, immunological cells, and endothelial cells. 

Co-culture of organoids may be used to study interactions between two distinct tissues, which is 

especially important for maternal–fetal crosstalk utilizing placental (trophoblast) and 

endometrial organoids (Alzamil et al., 2021).  

The uterus is lined with the endometrium, a specialized tissue made up of a layer of epithelial 

cells and underlying stromal cells. During a menstrual cycle, the endometrium undergoes several 

changes to prepare for the implantation of an embryo and eventual pregnancy. Endometrium 

thickening and angiogenesis, or the formation of new blood vessels, are two of these changes. 

The blastocyst implants into the endometrium to prepare for the development of the placenta, 

which connects the mother's and fetal blood supply. The trophoblast, the blastocyst's outer layer, 

invades the endometrium and drives endometrial remodeling in preparation for 

implantation.Zambuto and colleagues set out to create a 3D model to investigate the 

endometrium and trophoblast crpsstalk, including endometrial angiogenesis and trophoblast 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 August 2021                   doi:10.20944/preprints202108.0562.v1

https://doi.org/10.20944/preprints202108.0562.v1


invasion, in a recent research (Zambuto et al., 2019). They created a hydrogel platform that best 

matched endometrial rigidity using tissue engineering methods. After that, they co-cultured 

human umbilical vein endothelial cells (HUVECs) and endometrial stromal cells to validate the 

supports and promote the development of endothelial cell networks, which they used to mimic 

angiogenesis. They next assessed the model's development and dissemination, discovering that 

cells had connected to the matrix and had begun to spread out. 

Endometrial stromal cells develop into decidual cells in response to progesterone and cAMP in 

preparation for pregnancy. Endometrial stromal cells were treated with progesterone and cAMP 

to see if their 3D platform might promote this stromal cell development. These therapies caused 

decidual cell morphology and elevated prolactin and IGFBP-1 levels, according to the researchers. 

Finally, they introduced trophoblast cells to their model to see if it could be used to investigate 

trophoblast invasion and found that cell invasion into the matrix increased (Alzamil et al., 2021). 

The findings of Zambuto and colleagues, taken together, point to a novel model system for 

investigating endometrial dynamics and trophoblast invasion that combines two distinct models. 

Secretome Protein Expression 
Secretome-based screening was originally described in the post genomics era, when secreted 

proteins could be identified using bioinformatics, generated in high-throughput using 

recombinant expression, and examined in a variety of cell-based tests to see if they had an effect. 

Secreted proteins act as agonists or antagonists in the organism, initiating or suppressing 

physiological actions at the cellular level. As a result, cell-based assays, such as those utilized in 

a secretome-based method, are appropriate for measuring many types of responses (Mancini & 

Pensabene, 2019). 

Secreted proteins can also function as decoy factors in signaling pathways, leading in an 

antagonist reaction. Multiple decoy factors of the transforming growth factor (TGF-) superfamily 

control signaling via receptors by binding to cognate ligands and inhibiting a response. A similar 

effect is seen when the extracellular domains (ECDs) of single-pass plasma TM proteins are 

removed from the membrane. The results of a screen can discover proteins of therapeutic 

relevance at various points along the pipeline (Turco et al., 2018). 

The primary screen's actives may be of interest. ECDs can be used in follow-up screening 

procedures to identify the cognate receptor. Transcriptome profiling can identify genes in 
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pathways that are elevated by secretome proteins, which can then be verified using siRNA 

and/or cell line models lacking the gene of interest. In the literature, affinities and/or Kd values 

between ligand cognate receptor pairs range from low picomolar to low micromolar. Before doing 

an unbiased secretome screen, it is important to quantify the concentration of each sample in the 

secreted protein library. This eliminates false negatives caused by low protein concentrations in 

the assay. Therefore, most efforts have developed methods for determining the amount of protein 

generated (Deloria et al., 2021). 

The Haptoglobin protein on some occasions, in the oviduct and in the uterus of pigs, has been 

evaluated on its possible impact and role in the in vitro embryogenesis of pigs. In several studies, 

an orderly ratio of sows in the various estrous stages was made late follicular stage, early luteum 

and late luteum. The haptoglobin mRNA was then tested using RT-qPCR. In addition, 

immunohistochemistry was used to break down the protein joint, and the results were 

complemented by Western-Blot and proteomic analyses of oviductal and uterine secretions. The 

findings show that haptoglobin is plentiful in the porcine oviduct and uterus during the late luteal 

phase of the estrus cycle. Despite the comparator and reference groups, haptoglobin expansion 

during gamete co-hatching had no effect on sperm infiltration, monospermia, or efficacy rates; 

blastocyst advancement was basically further developed when haptoglobin was available 

(haptoglobin: 64.50 percent vs. control: 37.83 percent ; p0.05). Overall, the presence of haptoglobin 

in the oviduct and uterus of sows at different phases of the estrus cycle shows that it is important 

in the propagation interaction (Bazer & Johnson, 2014). 

LIF mRNA is distinguished in the human endometrium, expanding during the secretory phase 

(Arici et al., 1995). Even more explicitly, LIF and LIFR communicate at most during the 

"implantation window" and are confronted with the presence of the blastocyst (Aghajanova, 

2004). Immunohistochemical examination of LIF in 89 biopsies of mature women reveals its most 

notable articulation during the middle luteal stage in the luminal epithelium, fundamentally 

more prominent than the organs or stroma (Arici et al., 1995). In this way, LIF is positioned to 

directly mark the peri-implant blastocyst. The secretion of LIF from the glandular endometrium 

depends on hormone levels via paracrine signals and on progesterone, as treatment with 

mifepristone, an enemy of the progesterone receptor, reduces the emission of LIF from the 

glandular endometrium (Arici et al., 1995). Endometrial LIF is susceptible to several 

developmental variables and molecular cytokine signals, including interleukin-1, tumor necrosis 
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factor (TNF), platelet-determined development factor, and epidermal development factor (EGF), 

while it is hindered by interferon gamma (Karpuzoglu-Sahin et al., 2001). 

Improved Fertilization In Vitro 
Women with spontaneous or premature ovarian failure had no effective reproductive treatments 

until 1983, despite early IVF findings improving the technology for treating tubal disease. In 

December of that year, a 25-year-old woman with secondary amenorrhea and premature ovarian 

failure became the first person to successfully deliver a pregnancy using a donor egg. Dr. Peter 

Renou of the Monash IVF group in Australia successfully inseminated a single egg donated by a 

29-year-old lady who was undergoing IVF for tubal disease with the recipient's husband's sperm. 

The embryo was placed into the uterus of the recipient, resulting in a live full-term kid. (Karaki 

et al., 2002). 

Over the last two decades, the major indication for oocyte donation has shifted from women with 

early ovarian failure to women of beyond reproductive age. One of the elements driving this 

tendency is the changing demographics of the population. More women are deferring children 

to pursue education and employment; marriages are occurring later in life; divorce and 

remarriage are becoming more prevalent; and modern contraception and abortion services have 

eliminated many unintended pregnancies. Traditional IVF is still a possibility for older 

individuals, however pregnancy chances drop substantially beyond 36 years of age due to the 

normal oocytes' age-related decline (Wang & Sauer, 2006). 

Pregnancy rates among women utilizing donor oocytes, on the other hand, have been reported 

to be as high as 50% per embryo transfer across all age groups. Women in their sixties have given 

birth after receiving donor oocytes, demonstrating that the postmenopausal uterus may still 

support pregnancy with the appropriate hormonal support. Oocyte recipients, on the other hand, 

have a greater risk of obstetrical complications such as cesarean section (40–76%), pregnancy-

induced hypertension (16–40%), and gestational diabetes (40–76%)(Karaki et al., 2002). 

For the assessment of endometrial receptivity, early research using transvaginal ultrasonography 

(TVUS) measurement of endometrial thickness aimed to replace invasive procedures like 

endometrial biopsy. A thickness of 7 mm in the pre-ovulatory endometrium is considered the 

cut-off below which poor implantation occurs. Patients with endometrial thickness as low as 4 

mm 60 have been observed to become pregnant. In 2014, a meta-analysis found that endometrial 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 August 2021                   doi:10.20944/preprints202108.0562.v1

https://doi.org/10.20944/preprints202108.0562.v1


thickness did not have a high enough positive predictive value for conception on its own (Kyrou 

et al., 2009). 

More recent research has focused on TVUS measurements of sub endometrial contractility, which 

manifests as "endometrial waves" with hormonally responsive patterns and propagation 

directions. These peristaltic waves are directed from the fundus to the cervix (FC waves) during 

the follicular phase, but from the cervix to the fundus (CF waves) during the late follicular and 

ovulatory phases to aid sperm transit to the fallopian tube. Following ovulation, the uterus enters 

a state of quiescence that is conducive to embryo implantation (Kyrou et al., 2009). 

The clinical and laboratory methodology for ART continued to advance, and a surplus of embryos 

more than what is used or required for the initial IVF therapy grew more common. During the 

early days of IVF, patients with extra embryos had the option of rejecting them, donating them 

to another infertile couple, or donating them for scientific purposes. Although embryo 

cryopreservation was an option, the freezing and thawing methods generally resulted in lasting 

cell damage, and most embryos did not survive. This is best demonstrated by the extremely low 

pregnancy rates observed following the transfer of frozen/thawed embryos in the 1980s (Eskew 

& Jungheim, 2017). 

Intensive efforts to create various freezing/thawing procedures and cryoprotective substances 

finally resulted in the first human pregnancy from a frozen embryo in 1983, which unfortunately 

ended in premature membrane rupture and pregnancy termination at 24 weeks of gestation. 

Despite the setback, cryopreservation technology advanced in the 1980s, leading to an increase in 

embryo survival and conception rates (Eskew & Jungheim, 2017). 

Only approximately half of the embryos survived the freeze/thaw process in the early years of 

research, resulting in a pregnancy rate of 13.4% per embryo transfer operation, with only 4.6 

percent of the individual thawed embryos implanting. In the United States in 2003, frozen embryo 

transfers accounted for 21981 of the 112872 IVF cycles (17.8%), with a 27.0 percent overall live 

birth rate per embryo transfer procedure (Xiao et al., 2017). 
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Conclusions 
Despite current restrictions, organoids give an interesting time as in vitro models of the 

conceptive framework that consider conceptive science research, exact displaying of regenerative 

organs, clinical dynamic, and individualized medication for patients with gynecologic malignant 

growths furthermore, infections like endometriosis. Likewise, bio-banked organoids can be 

utilized for drug screening or in vitro preliminaries to foresee singular patient medication 

reactions. Advances on state-of-the-art advances will without a doubt improve this original 

instrument for clinical application. 

The FRT varies dramatically during life, and it’s appropriate functioning is critical for 

reproductive health and happiness. The absence of physiologically realistic models, as well as 

reasonable ethical concerns, have impeded research in this subject. The development of FRT 

organoids that can represent both healthy and sick tissues will be revolutionary. Organoids are a 

strong model system because they may recapitulate important morphological, molecular, and 

functional aspects of tissues while also being adaptable to a wide range of downstream 

applications. 

Organoids are more expensive and time-consuming than 2D cell lines, but the method is simple 

and can be replicated by other laboratories. We will be able to investigate the fundamental 

biology of how these tissues function, as well as how various cell types interact, and get insight 

into cancer and infectious disease etiology, using FRT organoids. They also present prospects for 

translational research in medication discovery and personalized medicine. These new 

technologies open new avenues for addressing unresolved concerns in the FRT's study field, 

holding enormous promise for enhancing female's health and well-being. 

Without 3D cell culture technologies, in vitro modeling of critical developmental processes as 

well as clinical disease has become difficult. Because of the accurate simulation of a live tissue's 

complex environment, 3D cell cultures have accelerated biology research and led to more 

advanced procedures. Incorporating all of the different cell types found in a complex tissue, 

realistic modeling of regional differences in ECM composition, stiffness, and organization, and 

constructing robust vascular networks to ensure nutrient delivery throughout the construct are 

all challenges that remain in developing fully physiologically relevant 3D cell cultures systems. 
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The disclosed and discussed in vitro 3D FRT cell culture might serve as a springboard for the 

creation of novel methods and experimental designs tailored to specific demands. 
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