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Abstract: The performance of lattice-Boltzmann solver implementations usually depends mainly1

on memory access patterns. Achieving high performance requires then complex code which2

handles careful data placement and ordering of memory transactions. In this work, we analyse the3

performance of an implementation based on a new approach called the data-oriented language,4

which allows the combining of complex memory access patterns with simple source code. As5

a use case, we present and provide the source code of a solver for D2Q9 lattice and show its6

performance on GTX Titan Xp GPU for dense and sparse geometries up to 40962 nodes. The7

obtained results are promising, around 1000 lines of code allowed us to achieve performance in8

the range of 0.6 to 0.7 of maximum theoretical memory bandwidth (over 2.5 and 5.0 GLUPS for9

double and single precision, respectively) for meshes of size above 10242 nodes, which is close to10

the current state-of-the-art. However, we also observed relatively high and sometimes difficult to11

predict overheads, especially for sparse data structures. The additional issue was also a rather12

long compilation, which extended the time of short simulations, and a lack of access to low-level13

optimisation mechanisms.14

Keywords: parallel programming; CUDA; GPU; LBM15

1. Introduction16

Current high-performance computers use some form of parallel processing on many17

levels: beginning at instruction-level parallelism (ILP) and single instruction multiple18

data (SIMD) support, through the use of dynamic random access memories (DRAM),19

which transfer data in blocks containing several dozen bytes, up to multi/many-core20

chips and clusters of machines connected with a fast network. Thus, to effectively use21

the available hardware, the processed data should be carefully arranged in a way that22

allows usage of all available hardware with minimal losses. For example, DRAM block23

transactions connected with SIMD processing are tuned to large data sets containing24

elements processed in the same way. When neighbouring elements require different25

operations, the hardware usually is significantly underutilized. These limitations cause26

that many computational problems, for example in the physic simulations area, require27

not only sophisticated algorithms but also non-trivial data layouts in memory to achieve28

high performance. Typical examples of such problems are simulations on sparse ge-29

ometries, i.e. geometries for which computations must be done only for a small part of30

area/volume.31

The lattice-Boltzmann method (LBM) is a computational fluid dynamics (CFD)32

algorithm based on cellular automata idea, where automaton cells correspond to points33

(called nodes) of a uniformly discretized domain of computations. One of the main34

advantages of LBM is its inherent parallelism, thus many high-performance LBM im-35

plementations are known. For dense geometries, the implementation may be relatively36

simple [1,2] and allow to achieve high hardware utilisation (up to almost 80% of peak37

theoretical memory bandwidth) [3,4]. However, when the significant part of geometry is38

solid and many nodes of a discretized domain do not take part in computations, then the39
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more complex implementation techniques have to be used to avoid memory, bandwidth,40

and computational power waste.41

LBM implementations for sparse geometries are based on two main approaches:42

indirect addressing, where each node contains additional information about localisation43

of neighbouring nodes, and spatial discretisation, where the information about geometry44

sparsity is stored for fragments containing a number of neighbouring nodes from the45

domain. Two main indirect addressing approaches are the connectivity matrix [5], used in46

MUPHY [6] and ILBDC [7] solvers, and the fluid index array [4,8,9]. Spatial discretisation47

is used in HemeLB [10], Palabos [11], OpenLB [12], Musubi [13] and WaLBerla [14]48

platforms. A more detailed review of LBM implementations for sparse geometries can49

be found in [15].50

Although there are known many techniques that allow increasing the utilisation51

of hardware resources for computations on sparse geometries, implementation of these52

techniques requires a significant amount of work, especially for different machines.53

Even the rather simple implementation of one-level spatial discretisation from [16,17]54

requires more than ten thousand lines of heavily templated C++ code. In this context, an55

interesting approach to reduce the amount of work required to port the code to different56

platforms was presented in [4], where the final code for target machines was generated57

from templates written in the Python Mako library.58

Recently, the data-oriented parallel programming language Taichi appeared [18],59

which simplifies the development of high-performance codes for computations on both60

sparse and dense data structures. It allows not only to generate the final code for different61

target machines, but the more important feature is decoupling information about data62

structures from computational kernels. By providing structural nodes, which can be63

used to build complex, hierarchical data structures, and at the same time offer a simple64

interface simulating access through [] operator like for dense data structures, the Taichi65

language allows to design only simple, basic codes describing computations only.66

In this work, we present an implementation of the lattice-Boltzmann method in67

Taichi language for both dense and sparse geometries and investigate its performance68

on a massively parallel graphic processing unit (GPU). To our knowledge, currently,69

there are no published studies on Taichi-based LBM solvers. A simple code of one70

existing attempt is available [19], but it was designed to keep the code simple, thus its71

performance is low. The implementation presented in this work is loosely based on72

this simple version, but we significantly redesigned the code to improve performance73

and handle a wider set of boundary conditions. Our implementation is created mainly74

for performance analysis, although we did some elementary correctness tests. We also75

provide the source code1 which, as we believe, can be a good starting point for building76

high-performance simulations of more complex physical phenomena.77

2. Materials and Methods78

2.1. Taichi language79

The Taichi programming language [18] is an actively developed open-source [20]80

just-in-time compiler that translates Python-like source code to the binary code for dif-81

ferent hardware platforms (various CPUs, CUDA, AMDGPU and others). The language82

uses the standard Python syntax extended with decorators marking some functions83

as kernels. During compilation, the kernels are transformed to optimised binary codes,84

which are then called from the surrounding Python source. Such a solution allows85

to easily bind efficient, application-specific kernels with a wide variety of available86

libraries and tools, especially that Taichi provides a basic GUI system and simple built-in87

interfaces to NumPy and PyTorch libraries.88

Kernel compiler applies few levels of optimisations, including simple template89

instantiation, loop unrolling and vectorization, constant folding, and others. Inside90

1 Available at https://github.com/tadeusz-tomczak/tilb
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kernels, the highest level loops can be automatically parallelised provided that operations91

are done on Taichi fields.92

Fields are the multidimensional data structures that provide an array-like data93

access interface via the [] operator. Internally fields use a hierarchy of structural nodes94

(SNodes) which define dimensions, size and data arrangement in memory. Information95

from SNodes is used, both during kernel compilation and runtime, to optimise data96

access to field elements and to distribute workload onto available threads/processors.97

Compilation-time optimisations allow decreasing overheads caused by traversing nested98

SNodes but require that field definition must be known at the moment of kernel compi-99

lation and enforce separate kernel compilation for different data structures.100

The types of SNode allow using different data layouts. The dense layout is a simple,101

multidimensional array. The bitmasked layout allows adding information whether given102

elements contain valid data or not. This layout does not reduce memory usage because103

all bitmasked elements must be still placed in memory. However, computational kernels104

are called only for data elements masked as valid, thus the bitmasked layout can reduce105

the number of operations for sparse data. Reduction of memory usage for sparse data106

is possible with the pointer data layout that can mark pointers to non-existent data as107

invalid and thus does not require memory allocation in this case.108

The data layout in Taichi can be defined as a hierarchy of different SNodes. For109

example, ti.root.pointer (ti.i, 16).bitmasked (ti.i, 8).dense (ti.i, 4) defines 16 pointers, each110

pointing to 8 bitmasked dense blocks of data where each dense block contains 4 data111

elements (not shown). After definition, this structure can be accessed using simple [i]112

operator, where i ∈ {0 . . . 511}. The calculations of memory addresses, traversing and113

checking values of pointers and bitmasks, and launching the appropriate number of114

computational kernels are internally handled by Taichi. Additionally, some optimisations115

are applied to reduce the overheads caused by additional memory accesses required to116

traverse multi-level, hierarchical data structures.117

2.2. Lattice-Boltzmann method118

The lattice-Boltzmann method (LBM) is a numerical approach to solve the Navier-119

Stokes equations, which describe the motion of fluids. The detailed LBM description120

with the theoretical background is available in many books [21–23], thus in this work,121

we only show a minimal introduction from the implementation point of view.122

In LBM, the domain is discretized into a uniform, usually Cartesian, mesh contain-123

ing nodes distant by the lattice spacing δx along all axes. During computations, nodes124

communicate with some neighbours - the choice of neighbours depends on lattice arrange-125

ment which defines the dimension of the problem and communication pattern between126

neighbouring nodes (lattice linkage). The lattice arrangement is usually described using127

DdQq notation, where d is the dimension, and q is the linkage. For example, the D2Q5128

arrangement defines a 2D lattice where nodes communicate only with neighbours placed129

along the axes (left, right, top, bottom), whereas D2Q9 takes into account also the nodes130

placed at diagonal corners (see Figure 1).131

A single iteration of simulation advances simulation time by the time step δt and
includes one-time communication between all nodes and additional computations. To
simplify equations, it is usually assumed that δx = 1 and δt = 1. In such case, the initial
characteristic velocity U and the fluid viscosity ν have to be set up to keep the required
Reynolds number

Re =
U · L

ν
, (1)

where L denote the characteristic length which is dependent on the selected size in132

simulated geometry.133

Each node contains a set of particle distribution functions (PDF) fi(x, t), where x
denotes node position, t denotes time, and i denotes the index of function corresponding
to lattice linkage. The PDF numbering can be chosen in different ways, in this work we
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Figure 1. D2Q9 lattice arrangement and indices of lattice links (index 0 deontes the node itself).
Circles denote lattice nodes.

use one of the most often presented in Figure 1. The macroscopic fluid density ρ and
velocity v are related with PDFs according to equations

ρ(x, t) = ∑
i

fi(x, t) and v(x, t) =
1

ρ(x, t)
δx
δt ∑

i
vi fi(x, t), (2)

where vi are called lattice (microscopic) velocities and are equal to vectors from current to134

neighbour node. For D2Q9 lattice shown in Figure 1 the selected values of vi are the135

following: v0 = [0, 0], v1 = [1, 0], v4 = [0,−1], v6 = [−1, 1] etc.136

The LBM operations are described by equation

fi(x + viδt, t + δt) = fi(x, t) + Ωi, (3)

where Ωi is named the collision operator. Simple LBM implementations are then often137

realised as two alternating steps: collision computing new PDF values according to138

the right-hand side of Eqn. (3), and streaming responsible for transferring the values139

computed during the collision step into the places defined by the left-hand side of Eqn. (140

3).141

One of the simple, yet widely used, collision operators is the Bhatnagar, Gross and
Krook (BGK) operator [24] defined as

ΩBGK
i = −ω

(
fi(x, t)− f eq

i (x, t)
)

, (4)

where ω is called the collision frequency and f eq
i is the local equilibrium distribution function.

Assuming both δx and δt equal to one, the collision frequency results from the fluid
viscosity ν as

ω =
1

3ν + 1
2

. (5)

The local equilibrium distribution function is defined as

f eq
i (x, t) = wiρ

(
1 + 3vi · v +

9
2
(vi · v)2 − 3

2
v · v

)
, (6)

where constants wi depend on lattice arrangement and for D2Q9 are w0 = 4
9 , w1,2,3,4 =142

1
9 , w5,6,7,8 = 1

36 .143

3. Implementation144

The LBM implementation can directly follow Eqn. (3) but in our version, we applied145

some of the typical, widely known techniques developed for higher performance. The146

general idea of the presented implementation is shown in Algorithm 1. The algorithm147

contains three main operations.148
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Algorithm 1: General idea of the presented LBM implementation. ρ, v, f ′i and
f ′′i denote temporary values used only inside the kernel.

1 for all nodes do
2 Set initial values of ρ, v
3 Set f pre

i = f eq
i

4 repeat
5 for all nodes at positions x do in parallel
6 Kernel stream and collide
7 for all directions i do
8 gather f ′i ← f pre

i (x− vi)

9 compute ρ and v from f ′i using Eqn. (2)
10 for all directions i do
11 compute f eq

i from ρ and v using Eqn. (6)
12 compute new f ′′i from f ′i , f eq

i , RHS of Eqn. (3), and Eqn. (4)
13 store f post

i (x) ← f ′′i

14 for all nodes at positions x do in parallel
15 swap f post

i (x) � f pre
i (x)

16 until end of simulation;

Lines 1-3 are responsible for the initialization of PDFs values fi that are set to149

equilibrium state f eq
i computed from initial values of velocity and density. Initialization150

is done only once at the beginning of computations. Then, the simulation comes down151

to computing values of PDFs for the successive time steps.152

A single iteration of lines 5–15 corresponds to a single time step. During the time153

step computations, all nodes are processed in parallel. To avoid race conditions, we use154

two copies of fi functions: f pre
i = fi(t) functions were computed during the previous155

time step and are only read, and f post
i = fi(t + δt) functions are computed during the156

current time step and are only written. There are also known parallel implementations157

that use a single copy of PDFs only [25] at the cost of increased code complexity.158

To minimise the memory bandwidth, we implemented the fused kernel (lines 6–13),159

where collision and streaming are done in one step with a single read and write of fi160

values. Additionally, we use the reversed order of collision and streaming, also known161

as the pull scheme [26]. Direct implementation of Eqn. (3) computes the collision first162

and then scatters the new, computed fi values to neighbour nodes. In the pull approach,163

first, the fi values from the previous time step are gathered from neighbour nodes, then164

the collision is applied, and, eventually, the new fi values are stored in the current node.165

This scheme keeps addresses of all writes to memory aligned what may additionally166

decrease memory traffic because unaligned memory writes often are more costly than167

unaligned reads (for example due to allocate-on-write policy).168

After processing of all nodes, the values of f pre
i and f post

i are exchanged in lines169

14–15. However, since we have not found an efficient way to exchange fields, then we170

use two kernels with identical computations, but one of the kernels reads f pre
i and writes171

f post
i and the second kernel does the opposite.172

The operations shown in Algorithm 1 do not include support for boundary condi-173

tions, which is also present in the implemented kernel. To detect boundary nodes, we174

store in memory an additional field encoding each node type (fluid, solid, boundary175

type) along with a bitmask containing information about which neighbour nodes are176

present. We also use a separate field to store values for boundary nodes with fixed177

conditions, e.g. constant velocity. Supported boundary conditions are constant velocity,178

constant pressure, and bounce back according to [27].179
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In addition to the optimisations mentioned above, we also applied a few low-180

level optimisations: we used the structure-of-arrays instead of the array-of-structures181

data layout, minimised the number of memory operations and placed them in a non-182

divergent code to allow coalescing, and used numeric constants reducing the number of183

floating-point arithmetic operations. These optimisations were applied after analysis184

of the generated GPU assembly. Also, we resigned from encapsulating functionalities185

inside Python classes due to a small drop in performance. Additionally, the whole code186

(except auxiliary functions) is placed in a single source code file what simplified the187

management of memory allocation and kernel generation. The complete code contains188

slightly more than 1000 source lines of code, including geometry generation and storage189

of results.190

For convenience, we also allocate memory for values of velocity v and density ρ,191

although these are not used during computations but only for data initialization, storage192

of results, and visualisation. To allow run-time generation of images illustrating velocity193

fields, we also allocate an additional field for image memory, although it can be removed194

when not used.195

4. Results196

The experiments were done on the machine containing GTX Titan Xp GPU with197

12 GB GDDR5X memory with the 384-bit bus at 5.705 GHz (547.68 GB/s), i7-4930K198

CPU, and 48 GiB DDR3 4× 64-bit memory at 1067 GHz (68.256 GB/s). We used Linux199

operating system with CUDA compilation tools release 10.0 and Taichi language version200

0.7.26. Code profiling was done in NVIDIA Visual Profiler.201

4.1. Validation202

We have validated the code for the three standard cases: lid-driven cavity, flow203

through a channel and flow past a cylinder. Due to simple boundary conditions and204

collision models, not all cases gave good agreement with physical models, but we used205

them as a method to validate code correctness. All computations were done in single206

precision using the dense Taichi data layout.207

4.1.1. Lid-driven cavity208

The lid-driven cavity flow is a standard CFD benchmark, where the flow inside a209

square chamber is driven by a constant velocity at the chamber top lid. Depending on the210

Reynolds number, different vortex structures can be observed. The characteristic length211

L equals to the length of the chamber side (L = ny − 1 in lattice units), the x-velocity212

of the top lid is the characteristic velocity U (we used U = 0.1 in lattice units), and213

y-velocity of the top lid is 0. The velocities at all other nodes are assumed to be zero. On214

the top wall, the constant velocity boundary condition was imposed. For other walls, we215

used the bounce-back boundary conditions.216

Table 1. Validated cavity simulations for different Reynolds numbers Re. Time of computations is
given for GTX Titan Xp GPU and includes the compilation of kernel (about 20 seconds) and a few
dozens of saves of simulation state to disk.

Re Mesh resolution Number of time steps Computation time

100 128× 128 12 000 29 seconds
1000 256× 256 100 000 56 seconds
3200 1024× 1024 1 000 000 4 minutes
5000 2048× 2048 3 000 000 44 minutes

10000 4096× 4096 10 000 000 12.5 hours

The results were compared with data from [28] for different mesh resolutions217

nx × ny, an example is shown in Figure 2. To get the correct Re values, the fluid viscosity218
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Figure 2. Lid-driven cavity results for Re = 5000 and D2Q9 lattice with 2048× 2048 resolution.
The left picture shows the magnitude of velocity and streamlines (denoted with white lines) after
3 · 106 time steps. The right plot contains a comparison of velocity profiles with the reference data
from [28]. The complete simulation took about 44 minutes on GPU.

was computed according to Eqn. (1) as ν = U · (ny − 1)/Re. A uniform fluid density219

ρ = 1 was imposed initially. For some combinations of mesh resolution and Reynolds220

numbers (for small resolutions and high Re numbers, as well as for large resolutions and221

small Re numbers), we observed numerical instabilities. Verified simulation settings are222

shown in Table 1. The simulation for Re = 10000 was stopped before fully converged223

(mean squared error ∑(v− vre f )
2/n was at the order of 10−3, maximum relative error224

was about 30% for vx at y = 0.2813) and stabilized (we could still observe small, fading225

swirling waves), but it was slowly approaching the reference velocity profiles. We also226

observed that, for Re = 3200, a single reference data point at (y = 0.4531, vx = 0.86636)227

was significantly different than others.228

4.1.2. Channel flow229

The flow through a channel can be solved analytically and is often used to validate
the correctness of CFD solvers. In the channel flow case, the fluid flow is analysed for a
long channel with a radius R (for 2D case the radius equals half of the channel height),
and the initial conditions force the flow along the channel. The stabilized flow should
form a parabolic velocity profile

vx = vmax ·
(

1−
( r

R

)2
)

(7)

with maximum velocity vmax at the centre of the channel (r denotes the distance from230

the centre).231

We tested two versions of channel flow differing with inlet boundary conditions.232

Simulation parameters were set to get similar vmax for both cases. The first case, denoted233

as chan_v, used the constant velocity vx = 0.1 boundary condition at inlet. For fluid234

nodes, initial density was set to ρ(t0) = 1.0. In the second case, chan_p, the inlet235

boundary condition was set to constant pressure with ρ = 1.016, and the initial density236

for fluid nodes was set to ρ(t0) = 1.008. Both versions used channels containing 4096×237

512 nodes with bounce-back boundaries on top and bottom walls. Outlet condition238

was set to constant pressure with ρ = 1.0, fluid viscosity was ν = 0.25, initial velocity239

for fluid nodes was set to v(t0) = [0, 0]. We calculated 106 time steps what on GPU240

took about 10 minutes per case, including saves of simulation state every 104 time steps.241

The achieved computational kernel performance was 5.38 GLUPS, 387 GB/s for the242

single-precision version.243

As can be seen in Figure 3, the obtained velocity profiles were close to parabolic.244

The maximum values of velocities were slightly different (vmax = 0.158 for chan_v and245
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Figure 3. Velocity vx for channel flows with constant inlet velocity vx = 0.1 (left top picture)
and constant pressure ρ = 1.016 (left bottom) together with velocity profiles vp (right plot). The
profiles were taken at points x = 15 · R (marked with arrows), where R is half the channel height.
Squares denote reference values computed from Eqn. (7) for arbitrarily chosen vmax = 0.159.

0.160 for chan_p). Since we were using the quasi-compressible fluid model, then we246

were not able to achieve a complete agreement with theoretical models.247

4.1.3. Flow past cylinder248

Flows past stationary cylinders of different shapes are also one of the typical CFD249

problems. For low Reynolds numbers, the flow is stationary. With increasing Re, the250

unsteady phenomenon called Kármán vortex street appears.251

Our simulations were based on the chan_v channel flow described above. All252

parameters were identical except for viscosity which was changed to observe different253

flow patterns. We used two often analysed, standard circular and square cylinders to find254

errors with handling boundary conditions at corner nodes. The cylinders were placed at255

a distance from the inlet equal to two heights of the channel. On the cylinder surface, we256

used the bounce-back boundary condition. The simulation time and performance was257

similar to the chan_v case. The results are shown in Figure 4 where typical behaviour258

can be observed.259

4.2. Performance260

4.2.1. Memory bandwidth261

Before analysis of the implemented kernel, we first measured available memory262

bandwidth during a simple copy of data between 1-dimensional arrays for different263

data layouts implemented in Taichi. The results are shown in Figure 5. Notice that264

we use both SI (k = 103, M = 106, G = 109) and binary (Ki = 210, Mi = 220, Gi = 230)265

prefixes. As an approximate reference, we run the NVidia bandwidthTest utility. Internally,266

bandwidthTest measures calls to cudaMemcpy method, but it should be noted that this267

utility does not use preliminary "warm up" of the measured code. Also, the bandwidthTest268

has no support for size arguments larger than 231 bytes, and the results are displayed in269

MiB/s and must be scaled. We have not investigated the strange behaviour observed270

around size 1 MiB, but we believe that the values starting from a range of single MiB are271

reasonable.272

For Taichi, we prepared a simple kernel copying data from a 1-dimensional array273

to the other. The number of threads per thread block was explicitly set to 512 since it274

resulted in high average performance. Time duration measurements were done using275

Python time.perf_counter for 100 kernel calls (as in bandwidthTest). Additionally, before276

each measurement, we initially called the measured kernel five times to force runtime277

compilation and warm up the whole system.278

As can be seen in Figure 5, the memory bandwidth measured for Taichi kernels279

strongly depends on the used data layout. For the large size of transferred data, the280
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(a) ν = 0.5

(b) ν = 0.1

0 0.1 0.2 0.29

|v|

Figure 4. Velocity magnitude |v| and streamlines (white) after 106 time steps for flows past a
cylinder at different viscosities ν. The top picture shows a separation bubble comprising two
symmetric and counter-rotating recirculation zones. Other images contain unsteady Kármán
vortex street patterns. At the inlet, constant velocity is set to vx = 0.1. Mesh resolution is
4096× 512 nodes, sphere diameter and square edge are equal to half of the channel height.

maximum transfer (419.7 GB/s for 500 MB block size) was observed for the standard281

dense layout. In the gigabyte range, the average bandwidth was 416 GB/s which is only282

5% lower than 436 GB/s reported by bandwidthTest.283

When the bitmasked layout is used, the memory bandwidth strongly depends on284

the amount of data masked by a single bit. For a single masking bit per 8 bytes of data,285

the maximum bandwidth was 258 GB/s (at about 4 GiB block size). When a single bit286

was used to mask the whole block of data and small data blocks were transferred, the287

measured bandwidth was similar to that for dense layout. However, starting from about288

200 MiB block size, the bandwidth slowly dropped to 352 GB/s for a 5.41 GiB block289

size. For many different sizes of bytes per single bitmask, e.g. 64 KiB, the measured290

bandwidth dropped even to less than 30 GB/s. For fine-grained bitmasking, the highest291

bandwidth (up to 304 GB/s when few GiB of data were transferred) was observed when292

128-byte blocks were masked.293

The pointer layout has the lowest maximum measured bandwidth, although it is294

less dependent on the size of the block of data assigned to a single pointer than the295

bitmask layout. For a single pointer per 8 bytes of data, the bandwidth was below 20296

GB/s and, additionally, we had to significantly decrease the amount of allocated memory.297

With the increasing size of the pointed data block, the bandwidth steadily increased,298

achieving 247 GB/s at 124 MiB transferred data block for a single pointer per 512 bytes of299

data, as shown in Figure 5. Then, with increasing the amount of data per single pointer,300

the maximum bandwidths stayed in the 230-250 GB/s range for up to 16 MiB of data per301

pointer. After this limit, the bandwidth dropped to 144 GB/s when a single pointer was302

used for a block containing 1 GiB of data. We can also observe that the pointer layout303

has different overheads than other data layouts - for the small size of the data block, the304

performance plot for the pointer layout has a different shape than for other layouts.305

The data from Figure 5 allow us to draw a general conclusion that for dense data306

layouts, the Taichi language brings in a small, usually negligible overhead. However,307

sparse layouts (bitmask and pointer) reduce available bandwidth by at least about 40%308

for fine-grained resolution. It should be noticed, that for all data layouts available in309

Taichi we were trying to find parameters giving the highest bandwidth, although we310
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Figure 5. Bandwidth comparison of CUDA bandwidthTest and Taichi kernels copying linear
memory. Numbers after "bitmask" and "pointer" denote the size of the data block assigned to a
single bitmask/pointer.

did not do the exhausting measurements for all available combinations. We could then311

miss some significantly better settings, although it seems unlikely.312

4.2.2. LBM performance313

The performance P of LBM implementations is often measured in lattice updates per314

second (LUPS), which define the number of processed nodes per unit of time. However,315

direct comparison of PLUPS values for different implementations is difficult since the316

amount of processed data per node depends on both the lattice arrangement and the data317

type, usually either single (32 bits) or double (64 bits) precision floating-point number.318

Since LBM implementations are usually bandwidth-bound on available machines, in319

this work, we then define LBM performance as a theoretical, minimal bandwidth PB320

required to achieve given LUPS for specific lattice arrangements and data types.321

Let sd denote the size (number of bytes) required to store a single number (sd ∈322

{4, 8} for single- and double-precision floating-point numbers). Assuming that, in an323

ideal case, processing of a lattice node requires only read and write of all q functions324

fi, the minimum amount of transferred data per single node is Bnode = 2 · q · sd bytes.325

The LBM implementation performance can be then defined as PB = Bnode · PLUPS. We326

can also define a theoretical bandwidth utilisation UB = PB/Bpeak, where Bpeak denotes327

the maximum theoretical memory bandwidth of a given machine. For the GTX Titan328

Xp GPU, UB = C · PGLUPS, where C ∈ {0.131, 0.263} for single and double precision,329

respectively, and PGLUPS is performance in 109 LUPS. The values of UB can be then330

compared for different machines showing how much room for potential improvements331

is still available. However, the UB coefficient does not take into account the additional332

limitations of the machine that prevent it from achieving full memory bandwidth.333

The performance of the LBM kernel was measured for dense and sparse geome-334

tries, different data structures, and single and double precision numbers. Results for335

sparse data structures for dense geometry can be treated as an estimation of introduced336

overheads compared to the dense memory layout. Measurements were done using337

Python time.perf_counter for 1000 kernel calls. Before measurements, each kernel was338

called 100 times to force the runtime compilation and warm up the whole system. For339

sparse data layouts, we turned on the experimental async_mode available in Taichi that340

disables analysis of geometry sparsity before each kernel call because, in our case, the341

geometry is static during computations. This mode allowed to increase performance,342

but we observed sporadical problems with stability.343
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Figure 6. Performance of cavity GPU simulation for different mesh sizes, memory layouts and
data types (f32 and f64 denote single- and double-precision floating-point numbers, respectively).

Performance for dense geometries344

As an example of dense geometry, we used the cavity case at different mesh resolu-345

tions. Measurements for each data point require more than 20 seconds because of kernel346

compilation. Thus, we limited the number of checked mesh resolutions to about 100 on a347

logarithmic scale. To keep results comparable, all measurements for different data types348

and layouts are for the same set of geometry resolutions. The obtained performance is349

shown in Figure 6 and Table 2.350

We compared performance for four different data layouts. The dense layout is a351

standard, multidimensional array containing all PDFs for all nodes. As excepted, this352

version offers the highest performance to 70% of peak GPU memory bandwidth. This353

result is close to the best-reported values for highly optimised codes from [3,4] and354

is consistent with performance reported for the same hardware in [17]. During code355

profiling, we observed that loads of all PDFs (excluding f0, f2 and f5) cause uncoalesced356

transactions because, as shown in [4], neighbour fi values are shifted in memory by one357

position. We found no method to correct this behaviour - the typical technique is the358

usage of shared memory but the Taichi language offers no such feature.359

The bitmasked data structures can be used in many ways. At first, we applied a360

single bitmask per each fi function because, due to the structure-of-arrays data layout,361

we were not able to apply a single bitmask per a whole lattice node. The observed perfor-362

mance dropped more than twice compared to the dense layout - maximum bandwidth363

was at the level of 140 GB/s for the single-precision version.364

However, the bitmask layout does not save memory and serves only as a convenient365

way to skip computations for non-existent data. The reasonable way is then to use366

bitmasks only for a field containing encoded node type. This layout enables for simple367

management of sparse geometries and is marked as "bitmask node" on performance368

plots. As can be seen in Figure 6 and Table 2, when a single bitmask is used per whole369

data of a single lattice node, the performance loss is less than 10% compared to the dense370

layout for geometries containing at least 106 nodes. For smaller geometries, the bitmask371

layout has low performance. An additional advantage of this approach is that, due to372

the fine-grained masking of single nodes, only valid nodes are processed, even for very373

complex geometries.374

The pointer layout available in Taichi can also be used in many ways, but the applied375

method should allow storing in memory only values used during computations. We376

then used a single pointer per tile containing data for 162 neighbour nodes. The resulting377
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Table 2. Performance of cavity simulations for different data layouts. Performance PLUPS is given
in GLUPS, PB in GB/s. Column Mesh contains mesh size for which maximum performance was
observed. Average performance is computed for meshes containing at least 10242 nodes.

Layout Maximum Average
Mesh PLUPS PB UB PLUPS PB UB

f32 dense 10242 5.37 386 0.705 5.12 369 0.674
f32 bitmask node 20482 5.13 370 0.675 4.78 344 0.629
f32 tile 10242 5.12 369 0.673 4.53 326 0.596
f32 pointer tile 10242 4.12 296 0.541 3.85 277 0.506

f64 dense 20482 2.65 381 0.696 2.51 362 0.661
f64 bitmask node 39552 2.60 375 0.685 2.40 346 0.631
f64 tile 10242 2.58 372 0.679 2.37 341 0.622
f64 pointer tile 25092 2.46 354 0.646 2.42 348 0.635

data layout is denoted as "pointer tile". Additionally, we measured performance for the378

"tile" layout defined as a dense array of tiles without an additional layer of pointers.379

The measured performance of the tile layout was similar to the dense layout, but380

only for geometries with less than 20482 nodes. After this limit, the achieved bandwidth381

utilisation dropped even below 0.5 for single-precision data and the largest geometry.382

We observed two issues appearing for the tile data layout. First, the dimension of the383

CUDA thread block had to be reduced to the number of nodes per tile - in our case384

from 512 to 256 threads per block. For the dense layout, such a change of thread block385

size decreased bandwidth from 360 to 338 GB/s for the cavity 40962 case and single-386

precision data. Next, the Taichi has no support for low-level optimisations presented387

in [16,17], e.g. usage of shared memory, warp level programming, and LBM-optimized388

index calculations inside a tile. For example, we tried to store f1 and f3 functions using389

column-major order, but we encountered different behaviour than described in Taichi390

documentation. It is also probable that the observed decrease in performance may be391

caused by other, undetected yet reasons.392

For the pointer tile layout, the performance is slightly surprising. When double-393

precision data is used, then the performance stays high and steady even for the largest394

geometries, despite the drop-out observed for tile layout. On the other hand, perfor-395

mance for single-precision is also almost constant but at the low level (UB = 0.5) given396

by the minimum value observed for tile layout and the largest geometry. We have not397

found the cause of such behaviour yet and only found that the code handling pointers398

in the kernel is quite complex and significantly increases register pressure - the kernel399

required 70 registers what decreased the theoretical occupancy to 37.5%.400

The presented data shows that we achieved high performance for each of the401

presented layouts despite the low bandwidth observed during simple data copy of402

sparse layouts. Only the tile-based layouts have lower performance, and for large403

geometries only (except the pointer tile layout for single-precision data). However, the404

measured performance was erratic and strongly dependent on geometry size for some405

of the analysed layouts, for example, the bitmask node layout, single-precision data, and406

geometries containing between 10242 and 20482 nodes.407

Performance for sparse geometries408

Performance for sparse geometries is measured in the same way as for dense ones,
but only non-solid nodes are taken into account in the performance calculation. Thus,
for each sparse geometry, we define its porosity

φ =
nnon−solid nodes

nall nodes
(8)
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Figure 7. Examples of sparse geometries with 40962 nodes and porosity φ = 0.4. Pressure
boundary conditions were set on inlet (left wall, ρ = 1.016) and outlet (right wall, ρ = 1.0), bounce
back on top and bottom walls and on borders of obstacles, viscosity ν = 0.5. Colours correspond
to velocity magnitude after 106 time steps, a logarithmic scale is used. Calculations took about
half an hour per geometry.

which determines what proportion of all nodes is involved in the LBM calculations. We409

treat all non-solid nodes as computational because LBM implementation is bandwidth-410

bound on our system and, even for the bounce-back boundary nodes, which do not411

require computations, we need to read and write fi functions from/to memory.412

The performance for sparse geometries was measured for square geometries with413

40962 nodes and different porosities φ ≥ 0.1. The large geometry size was chosen to keep414

at least 106 non-solid nodes, even for the lowest porosity. To obtain the required phi, the415

geometry was filled with solid, circle obstacles. We used two different arrangements of416

obstacles: a regular array and a random placement. The regular array contains a mesh417

of 8× 8 circles, which radius depends on the required φ. We did not use regular arrays418

for φ < 0.3 because, in such cases, all geometry walls are filled with solid nodes from419

overlapping circles. For the random placement, the geometry was filled with randomly420

placed circles. The radii of circles were also randomly chosen from r ∈ [8, 256] nodes.421

To estimate overheads for computations on sparse geometries, we define the sparse
computational efficiency

ηP =
P(sparse geometry)
P(dense geometry)

, (9)

where P(sparse geometry) and P(dense geometry) denote measured performances for422

the same data layout and geometry size. It should be noted that ηP does not take into423

account that the number of computational nodes in the sparse geometry is lower than in424

the dense one what may have an additional impact on performance. However, for dense425

data layouts, the memory is allocated for all nodes regardless of a node type. Thus, the426

definition in Eqn. (9) seems reasonable.427

The obtained performance results are shown in Figure 8. As can be seen, for428

all layouts but tile, the performance gradually drops with porosity. This performance429

decrease shows that the geometry sparsity introduces overheads, for example, redundant430

memory traffic caused by neighbouring solid and non-solid nodes, which are visible even431

after using data layouts (e.g. bitmasked) eliminating explicit operations for solid nodes.432

It should also be noted that the performance depends not only on porosity but also on the433

placement of solid and non-solid nodes. For randomly placed obstacles, the measured434

performance was slightly higher than for the regular placement, because randomly435

placed circles formed large, solid areas that minimised the interlacing in memory of436

the data for solid and non-solid nodes. Only for the tile layout, the performance was437

practically constant for porosities φ ≥ 0.4, which suggests that for the tile layout, other438

factors limit performance, as shown in Figure 6 for large geometry.439
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Figure 8. Performance of GPU simulations (top) and sparse performance efficiency (bottom) for
single-precision numbers, different data layouts, and sparse geometries with 40962 nodes and
different porosities. For a given data layout, the lower sequence of points shows performance for
regularly placed circles, and the upper points correspond to performance for randomly placed
circles.

The lowest performance was observed for the pointer tile layout. For porosity440

0.1, the performance dropped to 25% of performance for dense geometry. However,441

in contrast to other layouts, performance for the pointer tile layout has the lowest442

differences between geometries with regularly and randomly placed obstacles. It may443

suggest additional overheads not connected with a sparsity of geometry, although more444

detailed research is needed.445

4.2.3. Memory usage446

Memory usage is difficult to measure for the Taichi language since it internally447

preallocates and manages GPU memory. However, we observed that, for the dense448

layout, the maximum size of allocated arrays was very similar for raw CUDA and449

Taichi implementations (two arrays containing about 720 · 220 64-bit elements). After450

exceeding this limit, we observed excessive page faults and a significant performance451

decrease. When we turned off the unified memory support, then memory allocation452

errors appeared sporadically. Although we did not conduct an in-depth analysis, we453

did not find any serious problems, thus it seems that Taichi effectively manages memory454

and introduces minimal overhead only.455

5. Conclusions456

In this work, we presented the implementation of the lattice-Boltzmann solver in457

Taichi, the interpreted, data-oriented language which decouples computations and data458

arrangement in memory. We showed that, although sparse data layouts provided by459

Taichi bring significant overheads when used on a fine-grained level during simple data460
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copying, it was possible to a design high-performance code of the lattice-Boltzmann461

solver for non-trivial cases. Four data layouts have been tested: the dense layout that462

is a simple, multidimensional array; the tile layout with data arranged in square tiles463

containing 162 neighbouring nodes; the bitmask node layout where single nodes could464

be masked; and the pointer tile layout allowing to allocate memory per single tiles but at465

the cost of additional, indirect addressing. An additional advantage of the presented466

solution is short and simple code (about 1000 source lines) which is freely available in467

the hope that it can be a practical basis for further experiments due to its low complexity468

and high performance.469

The obtained performance is comparable to the best existing implementations but470

strongly dependent on used data layouts. For the dense layout, we achieved up to about471

70% of peak memory bandwidth available on GTX Titan Xp GPU, which corresponds472

to 5.37 GLUPS for single- and 2.65 GLUPS for double-precision computations. Slightly473

lower performance, but still up to over 67% of peak memory bandwidth, was observed474

for other dense data layouts, the tile and the bitmask node. The lowest performance,475

up to 54% of the peak, was obtained for the pointer tile layout and single-precision476

computations. Thus, Taichi implementations of LBM for dense geometries should have477

the highest performance with the simple, dense layout.478

For sparse geometries, the layout resulting in the highest performance depends479

on geometry sparsity. Best performance for low porosities φ ≤ 0.3 was observed for480

the tile and the dense layouts, although it was still about two times slower than for481

dense geometries. Geometries with higher porosities were processed the fastest with the482

bitmask node and the dense layouts. The pointer tile layout has the lowest performance483

(about two times lower than the tile layout for porosity 0.1) but, in contrary to the other484

layouts, allows to save memory by skipping data for some solid nodes.485

Apart from data layouts available in Taichi, also other factors may have a significant486

impact on the code performance, which sometimes was difficult to predict. In the487

presented measurements, we observed that both geometry size and placement of solid488

and non-solid nodes has a visible impact on performance. Full performance requires489

geometries containing at least 106 nodes, but such behaviour was also reported in other490

papers about LBM implementations on GPU. However, we have observed uncommon491

performance drop for the tile layout and large geometries, and significant performance492

limitations for the pointer tile layout for single-precision data. We have not found the493

reason yet and believe that significantly more thorough studies are needed to analyse494

overheads introduced by the Taichi language and its internal architecture.495

The source code in Taichi is clean and concise, but we observed a few limitations.496

For example, we have not found a way to pass a static argument to function and use497

it as a compile-time constant index, thus we had to inline some operations manually498

to enable compile-time optimisations. Also, it is difficult to control register usage per499

kernel, and setting the number of CUDA threads per block is limited. For async mode,500

we sometimes observed problems with stability and code profiling by NVIDIA Visual501

Profiler.502

One of the issues was also the long compilation time. Although an additional503

time required for runtime compilation is typical for interpreted languages, it should504

be reported, especially that the presented code takes more than 20 seconds to compile.505

Comparing this with a few seconds needed to obtain the stationary solution for small506

meshes (up to 2562 nodes), the kernel compilation enlarges the simulation time by507

order of magnitude. We suspect that maybe some form of precompiled kernels could508

significantly decrease the time for short simulations. It should be noted that we used509

only one simple collision model and a reduced set of boundary conditions. For more510

complex computational models or universal kernels with support for many different511

collision models, the time required to generate kernel code can be longer.512

Future work includes searching for methods that allow using other optimisation513

techniques used for LBM implementations. We are also planning the implementation of514
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more complex collision models, boundary conditions, and support for three-dimensional515

geometries, although this may require the new design of code due to a larger amount of516

data per node which can increase register pressure.517
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Abbreviations526

The following abbreviations are used in this manuscript:527

528

BGK Bhatnagar–Gross–Krook operator
CFD Computational fluid dynamics
CPU Central processing unit
CUDA Compute Unified Device Architecture
DRAM Dynamic random-access memory
GPU Graphics processing unit
GUI Graphical user interface
ILP Instruction-level parallelism
LBM Lattice-Boltzmann method
LUPS Lattice updates per second
PDF Particle distribution function
SI Système international (d’unités)
SIMD Single instruction, multiple data
SNode Structural node
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