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Abstract: Unlike the volume, the expression for the surface area of a regular conoid has not yet been 

obtained by means of direct integration or a differential geometry procedure. As this non-develop-

able form is relatively used in engineering, the difficulty to determine its surface, represents a seri-

ous shortcoming for several problems which arise in radiative transfer, lighting and construction, 

to cite just a few. In order to solve the problem, I conceived the surface as a set of linearly dwindling 

ellipses which remain parallel to a circular directrix, a typical problem appears when searching the 

length of such ellipses. I employed a new procedure which, in principle, consists in dividing the 

surface into infinitesimal elliptic strips to which we have successively applied Ramanujan’s second 

approximation for the longitude of the ellipse. In this manner, we can obtain the perimeter of any 

transversal curve pertaining to the said form as a function of the radius of the directrix and the 

position of the ellipse’s center on the X-axis. Integrating the so-found perimeters of the differential 

strips for the whole span of the conoid, an unexpected solution emerges through the newly found 

number psi (ψ) which seems like a refined approximation to the third decimal of Pi but derived 

from a definite integral equation. As the strips are in truth slanted in the symmetry axis, their width 

is not uniform and we need to perform some adjustments in order to complete the problem with 

sufficient precision, but this is discussed separately in the annexes. Relevant implications for math-

ematical symmetry applied to multifarious architectural and engineering forms can be derived from 

this finding. 

Keywords: conoid; ellipse; Ramanujan; calculus of surface areas; number Psi; number Pi; 3D-con-

struction of complex geometries; Engineering Design Objects; Architectural Forms 

 

1. Introduction 

1.1. Outline of the problem 

Since antiquity the meaning of the number Pi has been associated to the length of a 

circumference, that is, such magnitude, if the diameter of the circumference equates the 

unit, gives Pi, and accordingly for different measures of the diameter. Even in the Book of 

Kings of the Olde Testament, when instructions are transferred to build an offering’s laver 

(known as the brazen or molten sea) of circular design in the Temple of Solomon in Jeru-

salem, it is mentioned that the perimeter has to be three times the diameter [1] a fair esti-

mate for an ancient time. 

This said, could we not try to find, from a scientific point of view, the meaning of 

different powers of Pi, like for instance, PiN?  

The answer for us is affirmative, and in this article we would discuss the particular 

case of the second power of π, namely, Pi squared or Pi2. Such innovative result emerges 

when we try to calculate the surface area of a Conoid, a ruled surface generated by parallel 

straight lines which project from a circumference directrix onto a linear edge (Figs.1 and 

2).  
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Figure 1. A typical straight conoid with circular directrix, where R=L=5. 

 

Figure 2. Explanation of the parts of a straight conoid with circular forming line, in this case 

R=L=4. 

The equation that regulates such warped figure for x positive is:  

����

(���)� + �� = ��                                        (1) 

 

Where R stands for the radius of the directrix in the case of a circumference and L is 

the length in the X direction as drawn in figure 2. If we assume for convenience L=R, it 

results that, 

                            
����

(���)� + �� = ��                          (2) 

 

To obtain the solution of the lateral area of such surface, after not reaching a conclu-

sion with sundry methods, we have employed Ramanujan’s second approximation for 

ellipses. [2] 
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2. Methods and materials 

2.1. Resolution of the proposed approximation 

In his well-known conjecture to calculate the perimeter of an ellipse, Ramanujan 

stated that the perimeter (P) of the curve equates: 

              

               P=π(3(a+b) - �(3� + �)(3� + �))                     (3) 
 

Where a represents the major and b stands for the minor semi-axis. (Fig.3)  

 

Figure 3. Elliptical straps’ finite approximation for radius 4 and length 1. 

Such approximation, is rather easy to handle and it works well for the extreme case 

of b=0, a straight line, that appears in the limit edge of the conoid and its contour. 

For the directrix, we can substitute a for R, the radius of the circumference at the edge. 

Thus, a=R and it is easy to demonstrate that, being R/L the tangent of the angle 

formed by the middle section of the figure, the minor semi-axis equates b=x*R/L     

As previously mentioned, R is the radius of the end semicircle and L is the total length 

and for any x value between 0 and L, we would obtain, 

 

P=π(3(R+xR/L) -�(3� +
��

�
)(

���

�
+ �)                   (4) 

And grouping similar terms, 

 

P=π(3R(1+x/L) - ��(3 + �/�)�(3x/L + 1))           (5) 

 

P=π(3R(1+x/L) - ��^2(3 + �/�)(3x/L + 1))          (6) 

 

The half perimeter P1 yields, 

 

P1=(π/2)(3R(1+x/L) - ��^2(3 + �/�)(3�/L + 1))    (7) 

 

We can take R out of the whole expression, 
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P1=(πR/2)(3(1+x/L) - �(3 + �/�)(3�/� + 1))             (8) 

 

And L as well, 

 

P1=(πR/(2L))(3(L+x) - �3�� + 10�� + 3��))                   (9) 

 

To obtain the lateral area of the conoid composed by decreasing strips along the cen-

tral section, we need to perform the integration of, 

 

�� =
��

��
∫ �3� + 3� − �3�� + 10�� + 3��)�

�

�
��      (10) 

The first two terms are immediate and give the solution; 

 

�� + �� = �3�� +
���

�
�

�

�

                        (11) 

And the final result is for these two terms, applying the limits of integration is, 

 

�� + �� = 3 ∗ �� +
���

�
=

���

�
             (12) 

This, multiplied by the constants out of the integral yields,  
����

�
 ; 

The third term is slightly more complicated being of the square root type and it in-

volves a logarithmic primitive. 

 

�� = ∫ �√3�� + 10�� + 3���
�

�
��              (13) 

 

This integral presents the root of an expression of the type a+bx+cx2.  

As such, it is recommended to find the value of Δ=4ac-b2, for this case, 36L2-100 L2= - 

64 L2 

The solution yields, [3] 

 

�� =  �
������

��
√3�� + 10�� + 3�� −

����

��
�

�

√�
� log �2�3(3�� + 10�� + 3��) + 6� + 10���

�

�

      (14) 

 

And substituting, 

 

�� =  �
��

�
(4�) −

����

��
�

�

√�
� log �2�3(16��) + 16��� − �

���

��
√3�� −

����

��
�

�

√�
� log �2�3(3��) + 10���  (15) 

 

�� =  �
����

�
−

�√���

�
+ �

���

�√�
� log(16�) − �

���

�√�
� log �8��(3) + 16���       (16) 

 

By virtue of the properties of division of the logarithm, 

 

�� =  �� �
��

�
−

�√�

�
− �

�

�√�
� log �

√���

�
��         (17) 
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And from Eq. 12, the sum of the two previous immediate integrals was, 

 

�� + �� =
���

�
          (12) 

The total result for the so-conceived area, subtracting I3 from Eq.17 is, 

 

��

��
�� �

�

�
−

��

�
+

�√�

�
+ �

�

�√�
� log �

√���

�
��                   (18) 

 

After careful simplification, the Area the conoid based in R and L gives: 

 

� =
���

�
�

�����

�
+

�√�

�
+ �

�√�

�
� log �

√���

�
��        (19) 

 

Which can be reduced to, 

 

� = � =
���

�
�

�√�

�
−

�

�
+ �

�√�

�
� log �

√���

�
��          (20) 

 

And consequently,  

 

A= 
���

�
�

�

�
�15(√3 − 1) + 16√3��� �

√���

�
���          (21) 

2.2. Discussion of the findings 

The more astounding fact is that the definite integral that we had sought for, when 

solved gives the number ψ explained in Eq. 25, which can be assimilated to π. Thus; 

 

∫ �3� + 3� − �3�� + 10�� + 3��)�
�

�
�� = �� �

�
≈ �� �

�
        (22) 

�

�� ∫ �3� + 3� − �3�� + 10�� + 3��)�
�

�
�� = � ≈ �        (23) 

� ≅
�

�� ∫ �3� + 3� − �3�� + 10�� + 3��)�
�

�
��             (24) 

 

It was inconceivable at the beginning of the study that such fancy integral equation 

when solved would give a value very similar to � 

For a variety of reasons, including its occurrence in the first written text in Grecian 

alphabet (750 B.C.) at Abu Simbel (Egypt) in stone and also its appearance in the banner 

of Barbados, homeland to Ms. Rihanna, we have decided to identify the expression inside 

the parenthesis as ψ, Psi, a letter unique to the Greek language.  

 

ψ =
�

�
�15�√3 − 1� + (16)√3��� �1 +

√�

�
�� = 3.140923532703498    (25) 
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ψ ≈ π                             (26) 

 

ψ is much alike to π up to the third decimal, which is quite surprising and for engi-

neering purposes both numbers can be equated and this will considerably clarify Equation 

21 as, 

A=
���

�
[� ≈ �] =

����

�
       (27) 

We find such result remarkable in sundry senses. Firstly, because, ψ is a transcendent 

irrational number [4], akin to Pi but original in concept and newly derived from pure in-

tegration. Secondly, if substituted for Pi in the discussion, it could perhaps improve the 

accuracy of Ramanujan’s approach and this remains a question open for discussion in 

future developments. 

Thirdly, it involves the surprising fact that the area of the figure studied, when com-

plete with the four quarters of conoidal strips, if the radius and the length are taken to the 

unity, R=L=1 would yield the value of Pi squared or Pi multiplied by itself. The news is 

that Pi^2, π2 has a three-dimensional, non-trivial and distinct meaning that we have found 

at last (Figs. 4 and 5). 

 

Figure 4. An elemental depiction of the figure whose lateral area equates π2 if R and L are one. 

       

Figure 5. a. and b. More refined representation of the figure divided in two halves. 
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2.3. Definition of the Antisphera 

A volume composed of four symmetrical opposed sets of conoidal strips as previ-

ously defined (radius=1, longitude=1) would have a lateral surface of π2, that is Pi squared. 

When conceiving such a form, obvious similarities with the sphere come to mind and 

that it is why we have named this curious figure in Grecian “Antisphera”. The plan of the 

figure resembles a perfect square of two by two, but the front view is a circle of diameter 

one and the lateral view is four-pointed star. It constitutes a three-dimensional example 

of the circle’s quadrature, sought since antiquity [5]. 

Its equation in continuous form responds to, 

 

����

(±(���))� + �� = ��     (28) 

 

We consider just this to be a noticeable finding to merit diffusion.  

However, the principle problem is not completely solved since the parallel infinites-

imal strips may not fit perfectly with the curved surface and they would act as a kind of 

envelope. We have estimated that for engineering purposes this is deemed sufficient when 

the angle of inclination of the figure, θ, is not too steep (less than π/2.5), but in order to 

improve accuracy we have calculated a coefficient to take into account the differences of 

width of the said strips (See Annex 1). 

Since we certainly know that at the middle section of the surface, the width of an 

actual unit section of the conoid is not dx but instead dx/cosθ, we need to take into account 

this feature and effect an interpolation between both values. 

It can be discussed if the variation of the strip is curvilinear or not, but several exper-

imental calculations (See 2.4), estimate that for the time being, this is the preferred approx-

imation for angles under pi/2.5 (other approaches are also being considered for higher 

values of θ, see Annex 1). 

Such coefficient of Cabeza-Lainez, κ, would accordingly be, 

 

� =
������

�
=

������

�����
           (29) 

 

Where tan(θ) = R/L as θ is the arctangent of the central section of the figure. 

Therefore, the final expression to compute the lateral area of this particular surface, 

Antishpera, with the caveats referred above, produces, 

 

� =
����

�

(������)

�����
                 (30) 

  

But if R and L coincide, Eq. 30 is reduced to, 

 

� =
����

�

(1+√2)

2
           (31) 

 

In the case of a new volume that we had defined as Antisphera, (Fig. 6), if R is the unit 

and if we adjoin the four quarters of which it is composed, 

 

� = ���� (1+√2)

2
= �� (1+√2)

2
       (32) 
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Nevertheless, if we should make, 

 

�� =
2

(1+√2)
                       (33) 

 

It would mean that for an Antisphera of precise Radius = 0.9102, 

 

� = ��                  (34) 

 

In this fashion, again a new and distinct meaning, has been attributed to the second 

power of π, by virtue of such elaborate demonstration. This is a non-descript and original 

finding to assign a three-dimensional meaning to the product of Pi by itself. 

 

Figure 6. Depiction of the Antisphera for R=5. 

In Annex 2 we have compared the lateral area obtained by our method whith other 

automated surface calculators like Matlab’s Alphashape and Grasshopper’s (Fig. 7). 
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Figure 7. Antisphera in bronze by the artist Sergio Portela and in gold by Joseph Cabeza-Lainez. 

In Annex 2 we have compared the lateral area obtained by our method whith other 

automated surface calculators like Matlab’s Alphashape and Grasshopper’s (Fig. 7). 

We have also conceived a different procedure to obtain the area of the figure by using 

the straight lines instead of the ellipses of the conoid. This easier method shall be described 

in Annex 3. 

2.4. Calculations of the area for an elliptic conoid 

In 2.1 we had stayed the discussion after attaining the area values for the conoid end-

ing in a circumference, but in a similar manner we can continue to use Ramanujan’s pre-

diction for an ordinate fragment of the same conoid whose extreme is merely an ellipse. 

For any real number n, the area yields, 

 

��� =
��

��

(������)

�����
∫ �3L + 3� −  �3�� + 10L� + 3L�)���

��

�
                 (35) 

 

��� =
���

���

(������)

�����
�9 �18�(2 + �) − (6� + 10)��(3� + 10) + 3 + 10√3� + 96√3��� �

���(�����)�������

�
��            (36) 

 

For n=1 the solution is Eq.21. 

As before, we have employed the coefficient κ (Eq.29), but we need to be advised that 

for values of θ nearing π/2.5 the expressions proposed in the annex 1, that is, κ1 or κ2 

should be introduced in its stead. 

2.7. Calculations for the volume of the conoid 

As a complement of the theories exposed, the computation of the volume of the 

conoidal figure by means of the previous integral method is relatively simple and exact. 

Since the value of the area of an ellipse is πab, and as before, a=R and b= xR/L     

  

� = �� ∫ [�R/L ]��
��

�
 = 

������

�
         (37)      
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This equates the volume of the equivalent cylinder multiplied by s=n/2. 

 

If n=1 and the limit is L ,  V= 
����

�
                  (38) 

 

that is half the volume of the equivalent cylinder (as s=½). 

Finally, if L=R, the volume gives V= 
���

�
      (39) 

making R=1 as in the Antisphera we receive, V=π/2, which is also interesting. 

With R=0.9102 as in Eq. 33, the volume reaches, 0.3770π 

The volume and area properties in the conoid are smaller than in the cylinder but still 

larger than the equivalent cone. This will prove advantageous for the sustainability of 

many different structures and buildings, as the envelope and consequently the energy 

exchange is less pronounced and the cost of materials is lesser.   

The finding of the volume of a conoid is sometimes attributed to Johannes Kepler but 

to our knowledge the first polymath to deduct it by comparison with the volume of a cone 

of the same basis, was Camillo Guarino Guarini in his monumental treatise, Euclides 

Adauctus et Methodicus[5]. 

In Annex 3, the repercussions for radiative heat transfer inside the figure are dis-

cussed. 

3. Generation of new figures based on the previous findings 

In Section 2, we defined the symmetrical figure composed of four conoids, namely 

the Antisphera. [Fig. 8] 

 

Figure 8. Three-dimensional rendering of the Antisphera. 

Nevertheless, we have conceived that by altering the symmetry and parts of the pre-

vious figure, a series of other interesting bodies derives, maintaining initially the ratio 

R=L. 

The first one is opposed geometrically to the Antisphera because straight lines of the 

edge intersect at its center plane, which is void. Due to this elusive and somewhat dual 

nature we have coined the name Dyosphera© for this shape [Fig. 9]. 
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Figure 9. The horizontal part of the body known as Dyosphera. 

In total, the Dyosphera features eight conoidal sections, organized in groups of four, 

rotated π/2 degrees [Fig.10] 

The corresponding Equations are, 

����

�� + �� = ��    (40) 

Combined with, 

 

����

�� + �� = ��    (41) 

 

Figure 10. Distorted depiction of the complete Dyosphera. 

The open cavities and sinuous receptacles of this strangely (Figs. 11 and 12) symmet-

rical figure make it particularly suitable for aeronautical and machinery parts. It is also a 

very stable form because it possesses four circular bases. 
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Figure 11. the Dyosphera in 3D print, detail of interlocks. 

 

Figure 12. The Dyosphera standing on one of its four bases. 

Horizontal parts of the Dyosphera, can be adroitly combined with the upper part of 

the Antisphera [Fig. 13], to obtain a different figure that we have called Alosphera©. 

In fig. 13, we can see represented the Alosphera, its main feature is that two bases are 

square and two circular, what makes it suitable por different uses, with straightforward 

storage of various units and we have come to guess that some cellular growths of different 

organisms may respond to this evolutive pattern.[13] 
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Figure 13. The Alopshera. 

The Alosphera is the first Antisymmetric figure that we have identified but, like the 

Dyosphera, it also presents eight conoids. 

Finally, a very important antisymmetric finding is the Pterasphera [Fig. 14]. 

 

Figure 14. Initial Section of the Pterasphera. 

This body as we shall discuss below is tubular in nature. Being internally connected 

in its entirety, it is apt for conducting all kinds of fluids in an advantageous manner since 

for instance it can reduce the velocity and at the same time the noise of transporting the 

required fluids. Unlike Antisphera it is self-standing and well balanced, which turns it suit-

able for elongation in the manner of a tower.  

4. Future proposals based on the devised form 

As a corollary for the theories exposed we will discuss two prospective forms that 

we have obtained with conoids taking into account evolving technologies. The first one is 

a system of skylights in which the glazed parts instead of being planar are also conoids 

(Fig. 15). Keeping in mind the discussion on heat and light transfer of Annex 4, this feature 
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presents undoubted advantages [19]. Firstly, the glazing is better shaded and protected 

by the opaque upper conoid. Secondly, sunlight and heat transmission are modulated by 

the smooth curves supplementary to the innovative glass properties. In this way the glass 

surface becomes resistant to severe efforts and collaborates with the general structure.   

 

Figure 15. Outline of proposed Skylights with internal conoid glazing. 

Such new skylights are weather-resistant, break-proof, safer and cleaner in the ab-

sence of maintenance, as dust collection is diminished with the curvature (Fig.16). 

 

Figure 16. 3D print of a conoid used for skylights. 

The second form consists of an innovative proposal for an amphitheater, music or 

sports venue (Fig. 17). 

In this case, being a double conoid, the advantages previously exposed are improved. 

The sections are closed curves, like the ellipse and the circumference in the brim. Thus, 

they work as tension rings or girdles to hold the structure together without severe defor-

mations. The bearing capacity of the shape is extreme. The tiers of the amphitheater are 

the obverse of the external façade, there is no need to superimpose a conical structure 

inside a cylinder like in the Roman Colosseum or in Spanish bullrings. Among other prob-

lems, the ancient structures forced to build massive offload vaults and galleries which 

transferred severe thrusts to the outer façade. As a result, we have calculated that savings 

in building materials of this proposed facility could be remarkable. 
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Figure 17. 3-D drawing of the new Amphitheater. 

Still, the structure can be easily constructed with straight beam elements and rein-

forcements. The foundations are pointing to the soil as in a kind of shard or spear, that 

means that it will be very stable, safe and simple to develop. 

The outer surface of the conoid is not vertical but inclined and so the surroundings 

of the amphitheater would be self-shaded and rain protected, an interesting feature in 

many climates. 

As for the grandstands, it is not difficult to adapt awnings or other shading systems 

to the inside area in order to protect the tiers from the rain or the sun (Fig.18). 

 

Figure 18. The Amphiteater with proposed retractable shade. 

As mentioned above, the effect of concentration of sound, rather annoying in con-

ventional stadiums will be almost completely avoided due to the convexity of the surface. 

In reference 6 we have demonstrated this by acoustic ray-tracing procedures. These rely 

on the finding of the normal to the conoid surface at each point (See Annex 5). The same 

shading form is being used to protect the remains of Roman amphitheaters that can be 

found in Andalusia (Spain).  

The only remaining questions for modern projects, would be those of selecting the 

relative heights of the stages and platforms and other design issues like transit within the 

venue. Nonetheless we believe that our proposal could be another good example of how 

the conoid-based bodies are able to create a significant volumetric space with a 
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comparatively small enveloping surface, the key is that they offer a high spatial compact-

ness which is usually an added value in terms of heat exchange, costs reduction and sus-

tainability in general. 

5. Repercussions for technology based in tubular forms 

So far, we have presented scientific design developments that we hope will find a 

myriad of applications in technological areas like Nautical, Aerospace, Building, Heritage, 

Retrofit and associated industries or machinery. Such fact attests to the versatility and 

feasibility of the solutions presented which derive from our mathematical investigation 

founded in symmetry.  In the last part of the research, due to their complexity, the sur-

faces have been materialized with the help of 3D fabrication procedures to decide on some 

difficult points of the equations or either on future realizations of the proposals. It is un-

deniable for us that the results attain the domains of Architectural and Engineering de-

sign. Although this will perhaps merit a separate study, we have included here some of 

the most remarkable findings. 

We believe that the implications of this geometrical advance are far-reaching. Due to 

its internal logic, it would be suitable for biotechnology [13]. Specially the last develop-

ment, the Pterasphera being of a tubular nature would be prone to fluid transportation. As 

a spring-like configuration it conjoins flexibility and balance. In figures 19 and 20 we pre-

sent examples of possible association and growth in parallel or opposed patterns. 

 

Figure 19. Two parallel Pterasphera tubules. 
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Figure 20. The same tubules opposed. 

If we analyze the internal section of the tubules (Fig. 21) it is composed of two semi-

ellipses of varying sizes, but the span is constant at R, the extreme one is a semi-circum-

ference of radius R and the middle horizontal section is a complete ellipse of minor axis R 

and major axis 2R. 

 

Figure 21. Horizontal section of a Pterasphera of major axis 10 and minor 5. 

An unusual characteristic is that dimensions of the section are constant but its shape 

is not (Fig. 22). thus the velocity of the fluid inside the tubule can be deftly regulated from 

the same form. This would offer a clear alternative to reduce the noise level in the ducts 

or to decant particles in suspension. 
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Figure 22. Horizontal extreme (semicircle) and middle sections (ellipse) of a Pterasphera, same area 

but continuously different form. 

The longitudinal central section of the Pterasphera gives a lozenge of horizontal di-

mensions R and the sides are inclined to the angle (π/2 – θ), with θ = arctan(L/R). The 

perpendicular distance between inclined sides is of d = Rcos θ. 

This characteristic will facilitate insertion in existing rectangular ducts for example 

in retrofits. Serial fabrication is also simple since the form allows cuboid molds of middle 

section over 2R x Rcosθ. 

In figures (23 to 25) we present an example of vertical growth of the tubules, resem-

bling vegetal pillars. 

 

Figure 23. A pair of tubules of different height. 
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Figure 24. Different perspectives of the tubule. 

We decided to explicate this finding, because of the possibilities that it showcases. 

For instance, in tower buildings. Vertical connections are always feasible at the middle 

plane of the column, but the external envelop will benefit from the sun tracking or shading 

properties already exposed combined with new photic materials of variable transparency 

(Figs. 25 and 26)). In consequence lighting, thermal and acoustic features will considerably 

improve the existing conditions. 
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Figure 25. The entwined tubule. 

The structure of the so-conceived tower can be as lightweight as desired due to its 

inner balance and counterweight, the middle section is perfectly rectangular. As we have 

explained previously, alone or better in groups (Fig. 25), it should perform adequately 

under earthquakes, extreme wind conditions or other unpredictable circumstances.   

 

Figure 26. 3D print of the model tubule. 
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After several trials we realized that the tubule could be rectified by means of appro-

priate sections. This is a considerable advance as it permits application not only in ducts 

but also in tunnels, the author has already launched a proposal for a model tunnel (Figs.27, 

28) illuminated with daylight by PV fixtures. [19]. 

 

Figure 27. Rectified tubule as a model for tunnels. 

 

Figure 28. Frontal view of the tunnel. 

The speed within the tunnel can be regulated by the form in itself as the lower floor 

is not entirely planar except the central line, diverse advantages can be gained by this 

geometrical adaption (Fig. 29). Optic and acoustic properties are much enhanced as 

demonstrated in Annexes 3 and 4 [17]. 

Recently I have devised a set of n-dimensional crossings for the above tunnels (Figs. 

30-35). Therefore, is entirely possible to construct grids of tunnels that will allow for many 

different uses in galleries and filtration circuit plants for instance. 

 

Figure 29. Inside view of the tunnel. 
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Figure 30. Corner crossing depiction of the tunnel. 

 

Figure 31. Corner of the tunnel grid in 3D print. 

 

Figure 32. Four ways crossing for the tunnels. 
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Figure 33. 3D model of the central crossing. 

 

Figure 34. Detail of the conoidal crossing. 

 

Figure 35. Proposal for an eightfold conoid crossing. 

I believe that diverse technological fields could have a keen interest in the new forms 

that I have found both for the macro and micro-scales. It is indeed a leap into a sustainable 

future based on smart geometries that we hope to see beyond. 

7. Conclusions and future aims 

We have obtained a new transcendent number that we would call ψ, of a very precise 

nature which provides a sufficiently accurate value of π.  Thanks to Ramanujan’s clair-

voyant prediction we have found the approximate lateral area of the conoid, a recurrent 
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form in organic structures whose scientific and technical knowledge was insufficient and 

desired.    

We have shown its utility for the design of many types of aeronautical parts and 

vessels. Due to its particular geometric properties it can both work for heat-storage or 

dissipation as the case may be, it performs aptly especially in thermal, luminous and 

acoustic radiation domains. We have also discussed how the notions that led to this form 

have evolved since Early Modern Times. All the former make these structures rather sus-

tainable. 

Further advantages to be outlined are: it enhances the employ of an engineering and 

architectural form which can save considerable amounts of materials and building lapses 

not only when used as cover or roofing in the sense of vaults or domes, but also vertically 

for cantilevered stadiums and amphitheaters that tend to derive from the cylinder since 

the Roman Colosseum.  

From the building perspective, easy reinforcement for pre-stressed construction and 

enhanced structural behavior could be other reasons to use them. Self-shading of the 

structure and built-in protection from weather phenomena are added values and contrib-

ute to its durability. 

In the process, we have created no less than four new types of figures which present 

a high potential in many fields. Especially the last one Pterasphera, and its rectified version, 

owing to its tubular nature can provide interesting developments in tunnels, biotechnol-

ogy and fluid-conducting devices.  

The repertoire of possibilities derived from this geometric finding and exploration 

appear endless to me. 

Overall, the paramount finding hereby exposed is the attribution of a precise mean-

ing for the number π2, an achievement that leaves us wondering on the many-fold possi-

bilities for these notions, that is π3, πN and π elevated to various powers. 
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Annex 1 

Discussion for higher values of the conoid angle  

The κ coefficient previously defined must, for coherence, remain over, 

� >
�����

�
      (1) 

It is however clear that, for values of θ > 1.25 the former relation may cease to verify 

(Figure 1) 

 

Figure 1. Depiction of Cabeza-Lainez coefficient κ (blue) and limit case (red) 

 

For lower quantities, the coefficient performs smoothly, since cosθ tends to be one 

and the same does κ, so our prediction becomes even more accurate. 

But for values over pi/2.5, it is convenient to define a new coefficient. We are currently 

estimating different adjustments to present them in a further development of our theory. 

In the meantime, a tentative assumption for the value of the area, would be the following, 

 

� =
����

�
+

���

�
=

��

�
(�� + 2�)=

����

�
(1 +

��

��
)                (2) 

 

Thus, the new coefficient κ1 would be, 

 

�� = 1 +
����

�
          (3) 

 

A suggested experimental refinement of this factor from θ= π/2.5 and onwards is, 

 

�� = ��� �
�

�
− �� +

��������

�
          (4) 

In most problems of engineering, high values of the said angle are rare because they 

imply that the conoid is very close to the circle or in other words, there is little or no space 

left inside the surface, which may become contradictory with the nature of spatial design 

[6]. 

Annex 2 

Subsequently, we have proceeded to compere the aftermath with numerical simula-

tion available, for instance the command Alphashape for computation of areas in Matlab 
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and the graphic interface Grasshopper. The results show a considerable agreement and our 

findings stay in the middle of the output for both approximate tools (Table 1). 

 

Table 1. Results of computing the area of several conoids by the method proposed by author and 

with graphic interpolation procedures allowed by the software Grasshopper and the command Al-

phashape of Matlab. 

Radius 

=L unit 

Alpha- 

Shape 

Cabeza 

Approx. 

Grass- 

Hopper 

0.25 0.1958  0.1862 0.1842 

0.50 0.7712 0.7446 0.7369 

1 3.0726 2.9784 2.9476 

2 12.155 11.913 11.790 

3 27.734  26.805 26.528 

4 48.886 47.654 47.161 

5 76.019 74.460 73.690 

6 109.27 107.22 106.11 

7 148.83    145.94 144.43 

8 194.54  190.61 188.64 

9 246.41 241.25 238.75 

10 304.254 297.841     294.76 

 

More thorough data are being prepared, but the procedure for the graphic interfaces 

is clumsy and haphazard as a bespoke volume is required every time in order to compute 

the areas and the mesh of interpolation has to be decided beforehand with frequent hol-

low regions. This is a clear advantage of our method. 

Annex 3. An alternate method to obtain the lateral area of the figure 

As we have already noticed the conoid is composed of straight lines parallel to a plan, 

these have a maximum height at the middle section coincidental with the tangent of the 

angle R/L and a minimum elevation in the horizontal lines at the extremes.  

The length of such straight lines is defined as the hypotenuse of the triangles that 

appear in different sections of the volume. 

 

h2=L2+z2           (1) 

 

With the same meanings of L,R and z, as before. 

But in the circumference of the directrix, z is related to the radius R, as, 

 

        z2+y2=R2  and,  z2= R2 -y2   for y positive. 

The hypotenuse in terms of y will give 

 

h2= L2+R2 -y2     � = ��� + �� – �� 

 

if we assign a thickness of dy to these inclined lines and integrate from 0 to R, we 

would find the area of an eight part of the figure, thus, 

 

� = ∫ ��� + �� – ���

�
��     (2) 
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Which yields: 

 

� =
�

�
����� + �� – �� + (�� + ��)������

�

������ 
�

�

�

                (3) 

 

Substituting the limits of integration, we would obtain, 

 

� =
�

�
��� + (�� + ��)������

�

√�� + �� 
�                        (4) 

 

If R=L, the total area is, 

 

A=8(1/2(�� + ���������
�

�√� 
))=4R2(1+π/2)   (5) 

 

Remembering that for the Antisphera, R=L=1, 

 

A=4((1+π/2)=10.2832 

 

With the previous formula, 

A=π^2=9.8696 

 

Both seem coincidental around 10, so it appears to be a good estimate of calculation. 

However, more developments are required for this procedure. 

Annex 4. Radiative exchanges inside the new figures. 

Introduction to the problem of surface factors 

In previous researches [6], some of which were published in the Buldings and Sus-

tainability journals [7], Cabeza-Lainez defined that the radiative exchange factor for any 

manifold surface is dependent on the equation: 

F�� =
�

��
�∫ ∫

��� �� ��� ��

�������
dA�dA��,      (40) 

 

Figure 1. The magnitudes involved in the expression for radiative exchanges due to manifold sur-

face sources. 
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In a volume composed of only two surfaces, the same author established its second 

principle of radiation [8], which states that in the said situation, the rate of exchange is 

proportional to the areas of the intervening surfaces. For example, in a hemisphere (see 

Figure 4.), the respective areas are A1 =2πR2 and A2= πR2.  

As such, the corresponding form-factor from the half sphere to its base disc is [8], 

 

Figure 2. The second radiation principle of Cabeza-Lainez form-factors applied to a hemisphere. 

F�� =
��

��
=

�

�
 , and the amount of energy from the hemisphere to itself, F11 is also ½ 

[8].                     

By the principle of conservation of energy all interchanges must add to 100% or the 

unity [6]. 

However, if the disc were topped by a double symmetric conoid, since previous to 

our finding, we ignored the value of its lateral area, the question remained unbeknownst. 

We are finally in the position to respond to this issue with perfect ease. It is opportune 

to outline that the above integral equation (Eq. 41) is deemed unsolvable for the conoidal 

geometry. [7] 

 

Figure 3. The second radiation principle of Cabeza-Lainez applied to the form-factor of a double 

conoid. 

The area of this double conoid is, 

� =
����

�

(��√�)

�
    (1) 

Example 1 

In all the cases where θ=π/4, the relationship between the area of the base circle πR2 

and the double conoid is precisely, 

��� =
��

��
=

�

�(��√�)
= 0.527393     (2) 
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This is the factor from the conoidal top to the circular base and since F11+ F12 =1, the 

self-factor F11 is then, 

 

F11 = 1-  F12 = 1- 0.527393= 0.4726.         (3) 

 

For this particular disposition, the values are not dissimilar from those of the hemi-

sphere, 0.5, but they will need to be included in a standard comparison among radiative 

shapes described in reference [8].  

Let us now discuss a new and more difficult situation for a conoid with radius 2 and 

length 4. (Fig. 4) 

 

Figure 4. The single conoid limited by a rectangular plane and semicircle. 

Example 2 

In reference [9], Cabeza-Lainez has partly solved Eq. 1 for some circular fragments. 

For any vertical circular sector with a center situated in the middle of the edge x of a 

horizontal rectangle of dimensions, x and y; by virtue of the Cabeza-Lainez seventh prin-

ciple, [10] the configuration factor from the sector of radius r to a point in the perpendic-

ular rectangle, will be: 

Bearing in mind that the sector is comprised between the angles θ2 and θ1 and being 

its radius r as mentioned. 

 

For t = r� + y� + x� ; m = ���sin�θ� + y� ; n = ���sin�θ� + y�   

 

��� =
�

2�
× �

�����

�
������

�

� +
������

�
(������ − �)

−
�����

�
������

�

� +
������

�
(������ − �)

� 

+
�

���
�� �

(��� �������)

(��� �������)
�       (4) 

 

In the usual situation of a semicircle the above expression is reduced to, 

��� =
�

��
�������

���

�
+ ������

���

�
� +

�

���
[ln(�� + �� + �� − 2��) − ��(�� + �� + �� + 2��)]  (5) 

 

By numerical procedures detailed in [7], we extend the above expression to the whole 

rectangle to find the form factor, whose value is of F12 = 0.1272. It represents fraction of 

exchange of radiative energy from the horizontal rectangle under the conoid (A1) to the 

semi-circular side of the figure (A2).  

The previously unknown area of the conoidA3, following the above stated formulas 

(Eq.7) is 20.9042 
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From the reciprocity principle [6], A1 F12 = A2 F21, whence,  

 

F21=(16/2π)0.1272= 0.3239        (6) 

 

Being A1 and A2 planar, it is mandatory that [6], 

 

F12+ F13=1                                    (7) 

F21+ F23=1                                    (8) 

 

And this implies, 

 

F13 =1- 0.1272 = 0.8728               (9) 

F23 =1- 0.3239 = 0.6761               (10) 

 

Applying reciprocity again [6], A3 F31 = A1 F13 and A3 F32 = A2 F23, which yields, 

 

F31= (A1/ A3) F13 = (16/20.9042) 0.8728= 0.6680   (11) 

F32= (A2/ A3) F23 = (2π/20.9042) 0.6761= 0.2032  (12) 

 

By virtue of the principle of conservation of energy [6], 

  

F31+ F32+ F33=1       (13) 

F33=1- F31- F32              (14) 

 

Being non planar, the fraction of energy that the radiating conoid exchanges with 

itself is, 

  

F33 = 1-0.6680-0.2032= 0.1288    (15) 

 

Not merely radiative heat transfer in the figure under study has been solved by this 

procedure, but also light transmission when it originates at conoidal skylights like those 

constructed by Ilja Doganoff [11] in 1957 in Bulgaria. 

Example 3 

If we, as in a sort of check, would double the conoid presented in Ex. 2 and compare 

in it the factor between a circle (A2) and (A1) the enclosing figure, (Fig. 5) we would obtain 

that, since the relation of areas is now 0.3006, the factor from the conoid to the circle is 

precisely this value, following Cabeza-Lainez’ second principle [8]. 

Accordingly, the complex self-factor of the conoid to itself yields nothing but, 

 

F11=1-0.3006 = 0.6994    (16) 
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Figure 5. The same conoid of figure 4 but closed to obtain the form factor. 

In the original half Antisphera, if we remember 3.2, and Ex.1, the same quantity 

amounted to,  

 

F11 = 1-0.527393= 0.4726   (17) 

 

Such difference can be explained because the area of this new conoid is larger than 

the previous one since the angle θ is less pronounced (in this case, the length doubles the 

radius), or in other words more energy is retained under the new configuration. 

In the second example discussed of a half-conoid (3.3), involving three surfaces (rec-

tangle, semicircle and conoid), the self-factor was smaller, 0.1288, but a noticeable fact is 

that even so, it does not reach a fraction of one half of the self-factor for the whole conoid 

(0.6994/2= 0.3497) of the same dimensions (Ex. 3), as logic would perhaps induce to think 

(Fig.6). This exemplifies the complexity of the solutions because they often appear to rule 

out common sense [12]. 

It is important to stress the utmost difficulty of obtaining these entities by any other 

method, including quadruple integration [7]. 

 

Figure 6. The three surfaces intervening in Example 2 whose area is calculated by computer graphic 

interpolation. 

Annex 5 

Obtaining the mathematical normal to the conoid surface. 
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The procedure to extract the normal is first order differentiation of the equation of 

the surface defined as F(x,y,z). The normal vector is obtained as a differential N = (Fx, Fy, 

Fz) and in this case, has the value of: 

 

� =  �
����

(���)� , �,
���

(���)��       (1) 

We can trace a vector field with the reflected sound-rays from an emission point to 

check that they are effectively dispersed in the air and not concentrated [6]. 
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