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Abstract: The accurate prediction of molecular properties such as lipophilicity and aqueous1

solubility are of great importance and pose challenges in several stages of the drug discovery2

pipeline. Machine learning methods like graph-based neural networks (GNNs) have shown3

exceptionally good performance in predicting these properties. In this work, we introduce a novel4

GNN architecture, called directed edge graph isomorphism network (D-GIN). It is composed5

of two distinct sub-architectures (D-MPNN, GIN) and achieves an improvement in accuracy6

over its sub-architectures employing various learning, and featurization strategies. We argue7

that combining models with different key aspects help make graph neural networks deeper and8

simultaneously increase their predictive power. Furthermore, we address current limitations9

in assessment of deep-learning models, namely, comparison of single training run performance10

metrics, and offer a more robust solution.11

Keywords: AI, deep-learning, neural-networks, graph neural-networks, cheminformatics, molec-12

ular property, machine-learning, computational chemistry, lipophilicity, solubility13

1. Introduction14

Oral bio-availability, drug uptake, and ADME-related properties of small molecules15

are key properties in pharmacokinetics. For drugs to reach their intended target, they16

need to pass through several barriers either by passive diffusion or carrier-mediated17

uptake typically mediated by lipophilicity and aqueous solubility. Compounds with18

poor solubility are unable to achieve that and therefore pose a higher risk in attrition19

and overall cost during development [1].20

Methods based on deep-learning have proven successful in predicting molecular21

properties [2] and are becoming more and more a routine part of the modern computer-22

aided drug design toolbox for molecular design and med chem decision support. Since23

molecules can be represented as graphs, an obvious approach is to employ a graph-based24

architecture for deep-learning, which leads to the utilization of graph-based neural25

networks (GNNs). These kinds of networks are capable of learning representations26

for a specific task in an automated way and therefore, can eliminate the complicated27

feature engineering process where domain specialists have to select the list of descriptors28

themselves [3]. They became increasingly popular in the last few years [4][5][6] especially29

due to their success in chemical property prediction [7–12].30

One of the first GNN models used for physicochemical property prediction was31

introduced by Micheli [13] in 2009. It predicted the boiling point of alkanes with a32

recursive architecture for structured data input and achieved improved state-of-the-art33

performance. Lusci et al. [14] were the first to apply an undirected cyclic graph recurrent34

neural network on predicting aqueous solubility successfully. In the following years,35
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several recurrent, spatial, and spectral graph-based neural networks were introduced36

[15] [16][17][3]. One of them was the message passing framework, which was extended37

to include directed edges [3]. This network, called directed-edge message passing38

network (D-MPNN), is one of the most successful GNNs to predict chemical properties39

[1].40

Despite the success, one important limitation with message passing networks is41

the graph isomorphism problem, meaning that they are unaware of the structural role42

of each node or edge [18]. Most standard GNNs such as the D-MPNN are incapable of43

distinguishing between different types of graph structures to determine whether they are44

topologically identical [19]. Compounds such as naphthalene and 1,1-bi(cyclopentane)45

are perceived as the same structure by these networks. This can be problematic because46

they have vastly different chemical properties. To address this issue, graph isomophism47

networks (GIN), another group of GNNs, have recently received attention [19][19][20].48

They are capable of distinguishing between these compounds by reformulating the49

message passing framework to incorporate the Weisfeiler-Lehman (WL) hierarchy. They50

try to be at least as expressive as the Weisfeiler-Lehman graph isomorphism test (WL-test)51

[21] and have shown good results in chemical property prediction [19],[20] despite often52

falling short with respect to speed and accuracy to other frameworks like the D-MPNN53

[22]. Inspired by the key property of the GIN and the success of the D-MPNN framework,54

we combined the key characteristics of both architectures. By doing so we not only55

address the isomorphism problem but also incorporate one of the most successful and56

powerful GNN frameworks to improve lipophilicity and aqueous solubility prediction.57

When comparing new machine learning architectures with previously published58

methods, the standard approach is to compare single performance metrics like root59

mean squared error (RMSE) values on a test set to show model performance [23][22].60

This can lead to reproducibility issues as stochastic algorithms like neural networks61

can vary greatly in their prediction, even without changing their hyperparameters, sim-62

ply by using different training/validation/test set splits or non-deterministic weight63

initializations [24][25]. One of the reasons for this is the complex landscape that opti-64

mizers have to navigate through in modern machine learning models. In real world65

applications these landscapes can have multiple local minima and it is especially hard66

for non-deterministic optimization algorithms like stochastic gradient descent to find67

the global minimum, therefore often retrieving different results when repeated [26]. This68

problem can be intensified by using small data sets with different random splits for69

training and evaluation. Such an approach can lead the optimization algorithm into70

different local minima and makes it almost impossible for the model to generalize [2]. It71

is therefore difficult to compare different deep-learning model architectures with each72

other even when using the same data [24]. Another challenge is especially prominent73

in the GNN domain, where the optimal features for node or edge representation are74

unknown. Deep-learning benchmark studies often use the same data but different75

representations for their input data which makes it difficult to make a fair comparison76

between the models [2][3].77

To mitigate these problems, we use the exact same data split to train, evaluate,78

and test each of the used models with different node and edge features as well as79

learning strategies to obtain an average performance independent of the used features80

and training approaches. Such a procedure is time consuming as multiple models have81

to be evaluated several times. Nevertheless, obtaining a better overview of the behaviour82

of GNNs under these different constraints will facilitate the understanding of these83

architectures and ultimately help advance GNNs beyond the current hype to more84

explainable and robust models.85

Our contribution is a novel graph neural network architecture called directed edge86

graph isomorphism network (D-GIN). It extends the directed edge message passing87

(D-MPNN) framework [1] by the graph isomorphism network (GIN) [19]. An overview88

of the D-GIN model is shown in Figure 1. Our novel architecture shows improved89
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performance compared to its individual, less complex networks and we demonstrate90

that combining models with different key aspects help make graph neural networks91

deeper while simultaneously increasing their predictive power. We evaluated our models92

by applying different learning and featurization strategies and compared their average93

performance under different constraints.94
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Figure 1. High level representation of the directed-edge graph isomorphism network (D-GIN)
architecture for physicochemical prediction (logD, logS, or logP). (a) High level workflow depicting
how a graph and its nodes and edges are featurized, then fed into the D-GIN to generate a
molecular graph embedding. (b) The D-GIN architecture at a low level. Steps involved in
generating input to make predictions: 1) Initial hidden directed-edge features (h0

uv) are initialized
by concatenating the corresponding node (xv) and directed edge (xuv) features. (2) Directed edge
messages (muv) are used to update the hidden directed-edge features (ht

uv). (3) Directed messages
are combined with their corresponding hidden node features (hv) and (4) iteratively updated by
an additional trainable identifier (epsilon). (5) Hidden node features are aggregated to generate
the molecular embedding (hG) which is used as input for (6), the feed-forward neural network.
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2. Materials and methods95

This section gives a detailed overview of the used data, molecular representation,96

and the different machine learning methods used throughout this work. The most97

common notations are shown in Table 1.98

Table 1: Common notations used throughout this publication.

Notation Definition
τ A non-linear function (e.g. sigmoid or relu)
cat(, ) Vector concatenation
t Iterator of t steps
G A graph
V Set of nodes
E Set of edges
v Node v ∈ V
euv Edge euv ∈ E between node u and v
N(u) Neighbors of node u
N(u)/w Neighbors of node u except w
n The number of nodes
m The number of edges
d The dimension of a node feature vector
b The dimension of a edge feature vector
X ∈n×d Feature matrix of a graph
xv ∈d Feature vector of node v
xe

uv ∈ b Feature vector of edge euv
hv ∈c Hidden feature vector of node v
mv ∈c Message feature vector to node v
hG ∈c Feature vector of the graph G
huv ∈d Hidden feature vector of edge euv
muv ∈d Message feature vector to edge euv
W Weight matrix of a neural network
A ∈ {1, 0}|n|x|n| Adjacency matrix
RMSE Root mean squared error
GNN Graph neural network
GIN Graph isomorphic network as in [19]
ε Epsilon as described in [19]
D-MPNN directed-edge message passing network as in [1]
D-GIN directed-edge graph isomorphic network
CI 95% confidence interval calculated via bootstrapping
f (·) Feed forward neural network

2.1. Experimental data99

A total of 10,617 molecules annotated with experimentally derived logD and logP100

values or logS and logP values were used for model training and predictions. The101

selected molecules were derived from the Delaney lipophilicity data set containing102

experimentally evaluated logD and logP values at pH 7.4 [27] and an aqueous solubility103

set with logS and logP values [28]. Each data set was evaluated and molecules were104

neutralized in both sets. For the aqueous solubility data, salts were stripped off and105

molecules with logS values lower than -10.0 or higher than 0.0 were removed. The106

original preprocessed and postprocessed data can be found in the GitHub repository107

[29]. The splitting of each data set into three subsets for training, evaluation, and testing108

was done randomly in a ratio of 81:9:10 for the (training, evaluation, and testing). The109

data splitting was performed with the same seed for each of the models to be able to110

compare them using the exact same training, evaluation, and test data. The minimum111

value of each of the logD, logP, and logS properties was used as an offset to ensure112
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only positive property values. The resulting lipophilicity data set consisted of 4174113

compounds. 3380 were used for training, 376 for evaluating and model selection, and114

418 for testing. The post processed solubility data set contained 6,443 molecules. 5,219115

compounds were allocated for training, 579 for evaluation, and model selection, and 645116

for testing117

2.2. Training approaches118

The training strategies differ in the used data set and the training target (logD, logP,119

or logS). Under these constraints, seven different types of strategies were used. The first120

multi-task learning strategy used a combined approach of logD, logP, and logS values121

referred to as “logD/P/S”. Three additional multi-task strategies utilized a combination122

of two physicochemical properties and are notated as either “logD/P”, “logD/S”, or123

“logS/P”. Three other single task strategies are only learned on a single physicochemical124

property and are referred to as either “single task logD”, “logP”, or “logS”. When125

physicochemical properties from different data sets were used, the individual data sets126

were first split into training, evaluation, and test sets. Afterward each physicochemical127

property was evaluated and tested individually so that the evaluation and test results of128

the multi-task learning approaches can be compared to those with a single-task learning129

strategy.130

When testing either single-, or multi-task models, the combined root mean squared131

error (RMSE) for all properties was calculated as the measure for the best model. For132

logP, we only used the results from either the first multi-task approach (“multi-task133

logS/D/P”) or the single-task approach with logP values. The reasoning behind this134

was to use the same test and evaluation data for all models while trying to avoid an135

unbalanced data bias in favor of logP values. When training with two physicochemical136

properties where one was logP, we only used the data that had both properties. E.g.137

when training on the lipophilicity data set which hat logP and logD values, we did not138

include logP compounds from the aqueous solubility dataset and vice versa.139

2.3. Molecular graphs140

A graph is defined as G = (V, E), where V is a set of nodes and E denotes a set of141

edges. Let v ∈ V be a node with feature vector xv and euv ∈ E be an edge pointing from142

u to v with feature vector xe
uv. The adjacency matrix A shows the connectivity of the143

nodes and in our case it was binary as we did not weigh any connections. It is defined144

as a n× n matrix with Auv = 1 if euv ∈ E and Auv = 0 if euv /∈ E. We use directed,145

heterogeneous graphs where euv 6= evu. Heterogeneous graphs contain different types146

of nodes and edges with their corresponding featurizations.147

2.4. Molecular featurization148

Five different types of edge and vertex featurizations X were being used for the149

GNNs. The detailed description of x and xe can be found in Tables 6 to 11 in the SI. The150

feature vectors for the non-GNN models consist of 8 different settings - fingerprints151

(ECFP or MACCSKeys - shown in Table 12 in the SI) used either in combination with152

standardized RDKit[30] descriptors or without the descriptors. The descriptors were a153

combination of all possible and standardized RDKit descriptors, which had a total length154

of 208. The parametrization of the ECFP was either 1024, 1536, or 2048 bits with a radius155

of 4. Featurization 3 (Table 6 in the SI) and 4 (Table 7 in the SI) only differ in the way the156

size of ring systems are being represented. Either as a float value calculated by 1 divided157

by the size of the ring or as a one-hot encoding with 10 possibilities. The node and edge158

featurization in 5 (Table 8 in the SI) includes two node features (chemical element and159

formal charge) and one edge feature (bond order). Featurization 6 (Table 9 in the SI)160

includes the same node description as 5 and the edge featurization of 3. Featurization 7161

(Table 10 in the SI) has the same node featurization as 3 and the same edge featurization162

as 5. Featurization 8 (Table 11 in the SI) includes a set of optimized node and edge163
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features. This was done by using a trained D-GIN model and then removing one node or164

edge feature at a time and observing the RMSE of the prediction. The five node features165

and the three edge features that had the biggest impact on the RMSE were then taken as166

the featurization. The graphs and their featurization were implemented using python167

version 3.7.8 and the toolkit CDPKit[31].168

2.5. Directed-edge GIN (D-GIN) and reference models169

D-GIN is an extension of the directed-edge message passing neural network of
Yang et al. [1] without the additional feature engineering in combination with the graph
isomorphic network (GIN) of Xu et al. [19]. Its high level representation can be seen in
Figure 1. The principle construction of the network can be seen in the Equations 1 to 8.
First, the directed edges were initialized as

h0
uw = τ(Winit(cat(xu, xe

uw))) (1)

followed by a t ∈ 1, ..., T iteration of

m(t+1)
uw =


∑

k∈N(u)/w
h0

ku, if t == 0.

∑
k∈N(u)/w

ht
ku, otherwise.

(2)

h(t+1)
uw = τ(h0

uw + Wmmt+1
uw ) (3)

after which the messages for each directed-edge was being summed as

mu = ∑
w∈N(u)

hT
uw (4)

then the message mu was being concatenated as

hu =

{
cat(mu, xu), if D-GIN.
(Wagg(cat(mu, xu)), if D-MPNN.

(5)

and another message passing over l ∈ 1, ..., T2 was performed by

h(l)u =

 ∑
w∈N(u)

hw, if D-GIN.

xu, if GIN.
(6)

h(l+1)
u = (Wagg(1 + ε)h0

u + h(l)u ) (7)

afterwards the updated feature vectors hT
node of each node were aggregated over the

whole molecule as
hG = ∑

h∈(H(T))

h. (8)

The readout phase was then defined as ŷ = f (hG) where f (·) was a feed-forward neural170

network. The D-MPNN consisted of Equations 1 to 5 but then used the hidden feature171

vectors for each node directly by applying Equation (5) and then immediately Equation172

(7) to encode the whole graph as hG.173

GIN on the other hand was initialized and trained as shown in Equation (6) in order174

to update the hidden feature vectors of each node. Afterwards l update steps, the hidden175

feature vector of each node served as the input of Equation (7) to get the aggregated176

representation hG for the whole graph. D-GIN used all of these functions in a combined177

way described above (Equations 1 to 8). The main principle behind this approach was to178

first use the key aspect of directed-edge message passing to propagate information via179
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directed-edges to form messages (Equations 1 - 4), which then updated the hidden node180

features (Equations 5). These updated hidden node features were then used in the GIN181

message passing to further propagate information (Equations 6 and Equations 7) while182

also learning ε. These two information propagation phases are the key aspects of the183

two different sub-architectures.184

185

2.6. Graph neural network implementation, training and hyper-parameter search186

All GNNs have been implemented and trained using python version 3.7.8 and
TensorFlow 2.3.0 [32]. We used TensorFlow’s keras models as our super-class and then
transferred Equation 1 - 8 into the "fit" method of the keras model. A hyper-parameter
search was conducted to find the best parameters which were further used to train all
models. Further details on the hyper-parameters are given in the corresponding model’s
configuration files accessible via the graphnetworksGithubrepository[29].

Each GNN model type was trained twice with either 24 different settings when187

training on the logD or logS property or 12 on the logP property - in total 48 or 24 training188

runs per model type were performed. Each non-GNN model type was trained with 8189

different settings. For training, evaluation, and testing we split each of the data sets as190

described in section Experimental data. Each of the GNNs were trained for 1600 epochs191

and the model with the best performance was identified using RMSE as the evaluation192

metric on the validation set. . To evaluate the model type performance, we used the193

model with the best RMSE of the two runs performed for each model setting. When194

evaluating the average model type performance, the average RMSE of the different195

model settings was used for the calculation. To evaluate models with several properties,196

we summed all RMSEs. E.g. when using logD and logP for training, we summed the197

RMSE of the logD and logP prediction on the evaluation set to receive a combined RMSE.198

When the combined RMSE was below the last best combined RMSE, the model weights199

were saved. We used these models to test the model on the test set. Each model was run200

two times and the results with the best test set performance were taken.201

Additionally, the 95% confidence interval range was calculated by applying boot-202

strapping 100 times while leaving out 10% of the test data set.203

To generate consensus models between GNN and non-GNN models, we combined204

the best GNN model for each physicochemical property with the best non-GNN model.205

We did this by adding the predicted log values of one model with the other and then206

divided it by two. These hybrid models are then called according to their GNN model207

type plus consensus (e.g. D-GIN cons.).208

2.7. Other machine learning approaches209

We used the random forest (RF), support vector machine (SVM), and k-nearest210

neighbor (K-NN) implementations of scikit-learn (Version 0.23.2 [33]). Default hyperpa-211

rameters were used. The featurization is described in Table 12. When using descriptors212

as input, we standardized them with the scikit-learn StandardScaler. For the fingerprints213

and descriptors we used version 2020.09.2 of the RDKit [30] python package. Each of214

the models were trained in a single-task manner for each of the property values.215

2.8. Hardware and run-time216

Calculations were performed on machines within the Department of Pharmaceutical217

Sciences at the University of Vienna, Austria. We ran each model on a single CPU (Intel(R)218

Core(TM) i7-8700K CPU @ 3.70GHz). The run-time to fit the used RF, SVM, and KNN219

models with 3380 compounds on logD property values is approximately 50 seconds220

(RF), 25 seconds (SVM), and 0.5 seconds (KNN). When training the GNN model types221

on the 3380 logD compounds it takes for each epoch approximately 56 seconds (D-GIN),222

35 seconds (D-MPNN), and 28 seconds (GIN).223
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3. Results and discussion224

For clarity, we define certain terms used throughout this publication that might225

have ambiguous meanings. The term “model type” refers to different kinds of machine226

learning algorithms. E.g., a model type can be RF, SVM, KNN, D-GIN, GIN, or D-227

MPNN. The term “model” refers to a trained model instance with particular training228

and featurization strategies. The term “training strategy” is used to distinguish between229

different single- and multi-task training approaches trained with a combination of230

molecular properties. E.g., logD/S/P is used to show that logD, logS, and logP values231

were used during training. The term “featurization strategy” is used to describe the232

different node and edge features utilized for the models to train on (Tables tables233

6 to 11 in the SI). In addition, we distinguish between consensus (cons.) and non-234

consensus models. These hybrid models are a combination of the best GNN and best235

non-GNN models (SVM D-GIN for logD and logS and RF D-GIN for logP). To obtain236

consensus predictions, the predicted property values of the two models were combined237

and averaged. The averaged values were used as “new” predictions for the RMSE238

calculation and referred to their GNN model type plus cons (e.g., D-GIN cons).239

Overall 6 different machine learning model types were used in this study. The240

three GNN model types were D-MPNN, GIN, and D-GIN. The three non-GNN model241

types were random forest (RF) regression, support vector machines (SVM), and the242

k-nearest-neighbor (KNN) algorithm. Each model type was trained with the same hyper-243

parameters, but 7 different learning strategies and 6 different node/edge featurization244

strategies. We trained each GNN model type for each physico-chemical property with245

all possible strategies twice. Subsequently, the best performing model from each of the246

two runs (measured on the evaluation set) was selected resulting in 24 models for the247

logD and logS property and 12 for the logP property, which were then used on the test248

set and their performance was reported.249

The results of this approach are reported and discussed in two parts. First, we250

discuss different GNNs and non-GNN methods used in this work to identify the best251

performing model type according to its average performance across all used strategies252

(discussed in section General model performance). Subsequently, we investigate the253

impact of the 6 different training strategies (i.e., multi-task vs. single task learning)254

as well as different featurizations on the performance (discussed in sections Impact of255

molecular featurization and Impact of training strategies).256

A data set of 10,617 molecular structures with annotations for one of the three257

physico-chemical properties was assembled for model training, evaluation, and testing.258

It included 4,174 logD, 6,443 logS, and 10,617 logP experimentally measured values. The259

same training/evaluation/test set was used for all GNN and non-GNN model types.260

3.1. General model performance261

In the following, the reported results vary by the used model type. Each combi-262

nation of featurization and training strategy was used to calculate a total of 24 RMSE263

values for the logD and logS property, and 12 for the logP property per model type.264

This resulted in a RMSE distribution shown in Table 2 and Figure 2. For each of these265

distributions, the average, minimum, and maximum RMSE was calculated and will be266

reported and discussed subsequently.267
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Table 2: Overview of the best performing machine learning model types independent of
training and featurization strategy for prediction of logD, logS and logP. The performance
was calculated as the distribution average over all used model RMSE (root mean squared
error) values. In total 24 models were used for the loD and logS property, and 12 for
the logP property. RMSE values highlighted in dark and light gray show the best and
next best models. Red asterisks mark the lowest RMSE for the non-consensus models
for each property prediction.

molecular model type mean min max
property RMSE RMSE RMSE

logD

D-GIN 0.615 ± 0.039* 0.553 0.704
D-MPNN 0.762 ± 0.065 0.686 0.911
GIN 0.804 ± 0.061 0.738 0.911

RF 0.780 ± 0.084 0.699 0.890
SVM 0.740 ± 0.068 0.639 0.814
KNN 0.951 ± 0.067 0.801 1.003

D-GIN cons. 0.575 ± 0.019 0.548 0.622
D-MPNN cons. 0.647 ± 0.028 0.613 0.710
GIN cons. 0.666 ± 0.029 0.627 0.719

logS

D-GIN 0.867 ± 0.070* 0.795 1.061
D-MPNN 0.896 ± 0.030 0.857 0.961
GIN 1.210 ± 0.102 1.088 1.400

RF 0.997 ± 0.253 0.760 1.284
SVM 1.006 ± 0.154 0.729 1.162
KNN 1.500 ± 0.217 1.057 1.676

D-GIN cons. 0.738 ± 0.028 0.705 0.820
D-MPNN cons. 0.762 ± 0.012 0.743 0.785
GIN cons. 0.881 ± 0.045 0.825 0.969

logP

D-GIN 0.529 ± 0.064* 0.472 0.662
D-MPNN 0.600 ± 0.063 0.540 0.734
GIN 0.784 ± 0.077 0.716 0.901

RF 0.681 ± 0.224 0.470 0.928
SVM 0.693 ± 0.134 0.493 0.833
KNN 1.014 ± 0.123 0.743 1.102

D-GIN cons. 0.455 ± 0.028 0.428 0.515
D-MPNN cons. 0.475 ± 0.027 0.443 0.532
GIN cons. 0.566 ± 0.034 0.533 0.618
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Figure 2. LogD, logS and logP property prediction results for GNN and non-GNN model types
with different featurization and training strategies. The different GNN architectures are colored
in blue (D-GIN), orange (D MPNN) and green (GIN), the non-GNN architectures in gray (SVM),
salmon pink (RF) and red (KNN) For logD and logS„ 24 individual RMSE values were calculated
for each model type. For logP 12 individual RMSE values were calculated. The individual boxplots
show the average value of each model type as white dot and the median as a dark gray line. The
values are listed in Table tables 13 to 16, tables 17 to 20, and tables 21 to 24 in the SI.

Table 2 shows the RMSE distribution average of the different machine learning268

model types regardless of their training and featurization strategy on the hold-out test269

set. For each value the standard error of the mean was calculated and added.270

For logD property prediction, the D-GIN model type performed with mean, mini-271

mum, and maximum logD RMSE of 0.615 ± 0.039, 0.553, and 0.7048, and the correspond-272

ing consensus model with 0.575 ± 0.0192, 0.548 and 0.622, making it the best performing273

model type (results shown in Table 2, and Figure 2). The consensus GIN performed on274

average (distribution mean of logD RMSE values of 0.666 ± 0.029) better than the best275

non-GNN method (distribution mean logD RMSE of 0.740 ± 0.068).276

For the logS prediction, the best model type was the D-GIN consensus model with277

a average RMSE value of 0.738 ± 0.028 (shown in Table 2 and Figure 2). It performed on278

average better than the best performing non-GNN model type (SVM), which performed279
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with an average RMSE value of 1.006 ± 0.154 (but it also had a single run with a RMSE280

value of 0.729 making it the model type with the best single run performance and high-281

lighting the importance of multiple repetitions for reporting model type performances).282

The consensus D-MPNN also outperformed the D-GIN.283

The consensus D-GIN (average RMSE value of 0.455 ± 0.028) and consensus D-284

MPNN (average RMSE value of 0.475 ± 0.027) showed the best average performance for285

logP prediction (Table 2, and Figure 2). The RF and SVM model types also performed286

with low minimum RMSE values of 0.470 and 0.493, respectively. However, their average287

RMSE values (RF: 0.681 ± 0.224 and SVM: 0.693 ± 0.134) were higher than the D-GIN288

and D-MPNN model types.289

Consensus models are often used in deep learning applications typically combining290

either different models that were trained on slightly different training data or multiple291

model architectures with different strengths and weaknesses. Nevertheless, further292

investigations are required to give a rationale of why in all our invested cases, the293

consensus models performed better than their individual counterparts. Furthermore,294

it should be noted that a direct comparison between the average performance of the295

GNNs and non-GNN models (RF, SVM and KNN) can be difficult since the amount of296

information about a single molecule fed to each of the different model classes is quite297

different. E.g. the non-GNN methods used a wide range of different descriptors and298

fingerprints shown in Tale 12.299

Figures 3 to 5 show the best performing model architectures for prediction of300

each physicochemical property. Each plot shows the RMSE values for each GNN model301

applying all training and featurization strategies. It should be noted that the performance302

of many model types with different training/features do not significantly differ from303

each other and their CI overlap. Some trends are still visible: in Figures 3 to 5, regardless304

of the physicochemical property, the D-GIN model type (shown in blue) performs overall305

better than the D-MPNN (shown in orange) or the GIN (shown in green).306

The reason why the D-GIN outperforms the GIN and D-MPNN could be its higher307

complexity and network depth. It uses the key aspects of both sub-models and might308

be able to better abstract higher-order features. This could be facilitated by including309

skip connections between edge feature extraction mainly done in the first (D-MPNN)310

and node feature extraction while learning ε in the second (GIN) part. This increased311

complexity could have helped to perform better than its individual parts.312
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Figure 3. LogD prediction results for each GNN model instance. The left y-axis specifies the logD
RMSE and the right, secondary x-axis the corresponding r2 values for each GNN model. D-GIN
is colored blue, D-MPNN orange and GIN green. Each of the bars represent a different trained
model - a detailed description can be found in Figure A1 in the SI. The accumulated kernel density
for each model type is shown on the very left side. The red lines correspond to the 95% confidence
intervals. The model names are a combination of model type (D-GIN, GIN, D-MPNN), training
approach and featurization type - a detailed description of each model name can be found in
Tables tables 13 to 24 in the SI.

Figure 4. LogS prediction results for each GNN model instance. The left y-axis specifies the logS
RMSE and the right, secondary x-axis the corresponding r2 values for each GNN model. D-GIN
is colored blue, D-MPNN orange and GIN green. Each of the bars represent a different trained
model - a detailed description can be found in Figure A3 in the SI. The accumulated kernel density
for each model type is shown on the very left side. The red lines correspond to the 95% confidence
intervals. The model names are a combination of model type (D-GIN, GIN, D-MPNN), training
approach and featurization type - a detailed description of each model name can be found in
Tables tables 13 to 24 in the SI.
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Figure 5. LogP prediction results for each GNN model instance. The left y-axis specifies the logP
RMSE and the right, secondary x-axis the corresponding r2 values for each GNN model. D-GIN
is colored blue, D-MPNN orange and GIN green. Each of the bars represent a different trained
model - a detailed description can be found in Figure A2 in the SI. The accumulated kernel density
for each model type is shown on the very left side. The red lines correspond to the 95% confidence
intervals. The model names are a combination of model type (D-GIN, GIN, D-MPNN), training
approach and featurization type - a detailed description of each model name can be found in
Tables tables 13 to 24 in the SI.

3.2. Impact of molecular featurization313

The average performance of each featurization strategy across all model types and314

training strategies is shown in Table 3. Considering the performance for all physicochem-315

ical properties, featurization strategy 5 showed the highest RMSE (mean logD/logS/logP316

RMSE of 0.813 ± 0.099, 1.099 ± 0.180, and 0.760 ± 0.110). This trend was also observed317

when separating according to the model type (shown in Table 4 and Figure 6). The reason318

for the relatively bad performance of featurization 5 might be that it only included two319

node properties (chemical element and formal charge) as well as only a single edge320

feature (bond order - Table 8 in the SI).321

Featurization 6 (Table 9 in the SI) also displayed considerably worse performance322

than other strategies when used in combination with the GIN architecture, for which323

the mean RMSE performance for logD and logS properties were worse than using324

featurization strategy 5. One explanation could be that the GIN utilizes node features325

quite extensively and featurization 6 only included two node feature types similar to326

featurization 5. The additional edge features in strategy 6 without the appropriate327

architecture to deal with them could push the optimizer of the GIN network into the328

wrong direction rather than help with the property prediction.329
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Figure 6. LogD, logS and logP prediction results for all GNN model types depending on the
featurization used (see section Molecular featurization for a detailed description). The mean is
shown as a white dot whereas the median is shown as a dark gray line. Exact values are listed in
Tables tables 13 to 16, tables 17 to 20, and tables 21 to 24 in the SI.

While it is easy to identify bad featurization strategies, it is difficult to come up330

with an unambiguous recommendation for the best performing featurization strategy.331

The mean RMSE across all training strategies and model types in Table 3 show that332

featurization 3 and 4 (Tables 6 and 7 in the SI) achieved very good results for logD with333

a RMSE value of 0.689 ± 0.079 and 0.694 ± 0.072, for logS with a RMSE 0.954 ± 0.146 and334

0.948 ± 0.142 and for logP with a RMSE 0.596 ± 0.120 and 0.591 ± 0.105 respectively. Both335

featurization strategies utilize the maximum number of node and edge features used in336

this work. They only differ in the way molecular ring sizes are described. Featurization337

3 used a float value calculated by 1 divided by the size of the ring system whereas338

featurization 4 used a one-hot encoding of ten instances (0,3,4,5,6,7,8,9,10,11).339

Table 4 shows the mean RMSE values concerning featurization and model type.340

As performance criteria for featurization strategies we used the sum of model ranks341

in Table 4. Apllying this approach, featurization 3 with two models as best and three342

models as second-best performers achieved a better ranking than featurization 4 with343

one model ranked best and two models as second best. Both strategies perform similarly344

well. Featurization 8 (shown in Table 11 in the SI) used a set of optimized node and edge345

features. Node/Edge features were optimized by masking single edge/node features at346

a time and evaluating their impact on the test set RMSE. The five node features and the347
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three edge features that had the biggest impact on the RMSE were subsequently used.348

This approach also revealed that the size of ring systems for the node features appears to349

be of importance and was therefore included in 8. Using featurization 8 we were able to350

achieve two times the second-best performance. It shows an average good performance,351

but not as good as featurizations 3 or 4 even though its edge/node features were selected352

for maximum impact on the final prediction. The mean RMSE of featurization 6 and 7353

(Table 10 in the SI) in Table 3 show diminished results compared to featurization 3 and 4.354

When evaluating the rank score, the featurization strategy that performs either355

best or second-best for each physicochemical property, the best featurization strategy356

was number 6. It was used in four of the best performing runs and once in a second-357

best run. But it only performed well in combination with two GNN architectures358

(D-GIN and D-MPNN) and strongly underperformed with the GIN. The D-GIN and D-359

MPNN architecture types use primarily edge features for their information propagation360

and featurization strategy 6 provided these. It utilized only two-node feature types,361

potentially reducing the noise for the feature extraction to a minimum in this setting.362

On average, featurization strategies 6 and 7 performed similarly well. However,363

when separating the results at a model type level, it became evident that there was a364

strong model architecture dependency, so it seems important to choose the features365

according to the architecture at hand (Figures 3 to 5). Furthermore, featurization 3 might366

perform worse than featurization 6 or 7. Nevertheless, when unsure which features to367

use, simply adding more features could be the safer option rather than using less. This368

observation is also supported by comparing featurization 3 or 4 to e.g., 6,7 or 8.369

When analyzing the results for the non-GNN models and their different featuriza-370

tions, the mean RMSE variance was large in comparison to the GNN models. Moreover,371

in similar deep-learning benchmark studies that predicted molecular properties, pre-372

dominantly fingerprints have been used. From Table tables 18 to 20 in the SI, one can see373

that especially featurizations that include descriptors in addition to fingerprints perform374

exceptionally well. We think that when comparing GNN with non-GNN models, differ-375

ences in used features should be taken into consideration when trying to identify and376

understand (deep-learning) method performance.377

3.3. Impact of training strategies378

The impact of different training strategies are shown in Table 3. The lowest mean379

logD RMSE can be obtained by a multi-task strategy that involves learning on both380

logD and logP values. This is similar to the best training strategy for the logS property,381

which is a multi-task approach including logS and logP properties. As for the logP382

property, the best approach is a single-task strategy including logP values, however the383

multi-task approach which combines all physicochemical properties achieves similarly384

good performance.385

When analyzing the logD/S/P RMSE predictions with respect to training strategy386

and model type, Table 5 and Figures figs. 7 to 9 show that there is no particularly387

favorable learning strategy for any of the model types. The data sets used in this study388

are specific for one particular physicochemical property. When comparing different389

learning strategies we thus focused on one particular physicochemical property for each390

model type. Starting with the results for the prediction of the logD property in Table391

5, we can see that the overall best model (red asterisk), as well as the two best models392

for each model type (dark gray), are multi-task models. In particular, the models with a393

combination of logD and logP properties perform well.394

Considering all combinations of training and featurizations strategies for each395

model, the learning strategy with the best average, as well as the best minimum logD396

RMSE was obtained using the logD/P multi-task training approach resulting in RMSE397

values of 0.719 ± 0.105 and 0.553, respectively (Table 3. Yet, using this multi-task learning398

strategy we also obtained single run performance worse than using a single-task learning399

strategy with only logD values, showcasing once more the importance of validating400
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multiple learning and featurization strategies. The results are similar for the prediction401

of logS values: again, the multi-task learning strategy performs better than its single task402

counterpart. The best model for logS prediction was obtained by training on logD, logS,403

and logP values. Considering all combinations of training and featurization strategies for404

each model , the best average, minimum and maximum logS RMSE of 0.979 ± 0.166, 0.795405

and 1.325 respectively was observed during the multi-task training with all properties.406

We should note here that while it seems that the average performance is improved by407

multi-task learning, the variance of model performance is also increased.408

Figure 7. LogD prediction results for all GNN model types according to the used training strategy.
Blue box shows the performance of the multi-task training strategy using logD, logS and logP. The
green and orange box show the results utilizing a combination of logD and logP and logD and
logS for training. The salmon pink box shows the results using logD for training. The mean is
shown as a white dot whereas the median is shown as a dark gray line. Exact values are listed in
Table tables 13 to 16 in the SI.
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Figure 8. LogS prediction results for all GNN model types according to the used training strategy.
Blue box shows the performance of the multi-task training strategy using logD, logS and logP. The
gray and orange box show the results utilizing a combination of logS and logP and logD and logS
properties respectively. The red box shows the results using logS for training. The mean is shown
as a white dot whereas the median is shown as a dark gray line. Exact values are listed in Table
tables 17 to 20 in the SI.

Figure 9. LogP prediction results for all GNN model types according to the used training strategy.
Blue box shows the performance of the multi-task training strategy using logD, logS and logP.
The dark orange box shows the results using logP for training. The mean is shown as a white dot
whereas the median is shown as a dark gray line. Exact values are listed in Table tables 21 to 24 in
the SI.
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4. Conclusions409

We introduced the directed-edge graph isomorphism network (D-GIN), a novel410

graph neural network that showed improved average performance for aqueous solu-411

bility and lipophilicity prediction compared with other baseline models. We showed412

that by combining different models with distinct key characteristics, we can increase the413

depth of the model while also improving its predictive power. Furthermore, applying414

different training strategies and featurizations constraints enables to obtain more infor-415

mation regarding general, average model performance. This strategy showed that the416

D-GIN model outperforms other machine-learning models on average and argued that417

comparing the mean performance rather than single metric values of the best performing418

model type gives more insight into the general behavior and ultimately facilitates a419

better understanding and higher robustness of deep-learning models.420

In concurrence to previous publications, ([34],[35],[36]) we showed that there is a421

tendency towards multi-task learning approaches for the GNNs utilized in this survey.422

On average they performed better than their single-task counterpart for the correspond-423

ing physicochemical property. We could not find clear evidence that more than two424

properties increase the model’s performance.425

Furthermore, we highlighted that the usage of additional features did not improve426

the GNN model performance. But also conclude that very little featurization lead to the427

worst performance. In general it is necessary to be aware of the type of GNN that is428

used and whether its architecture focuses more on edge or node features. When trying429

to obtain the best performing model it can be advisable to do feature engineering, but430

when in doubt which features to use, it can be safer to use more than less. We showed431

that this awareness can help improve the GNNs predictive power at hand.432

For the non-GNN models, we could conclude that by excessively adding descriptors433

to the molecular fingerprint the performance of these models increases substantially.434

We further argued that for future comparisons it would be advisable to include not435

only fingerprints but also descriptors to the non-GNN baseline models to be more436

competitive.437

By combining the best GNN model with the best non-GNN model we could see438

a slight improvement in the overall performance in all cases. Consensus models have439

often shown to improve performance. However in this case, further investigations are440

needed to get to a conclusion on why this is the case.441

We showed that advanced deep-learning methods such as GNNs do have great442

potential in the physicochemical property prediction area and, when applied properly,443

can serve as a promising and robust method for any computer-aided drug discovery444

pipeline, especially for chemical property prediction.445
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Appendix A461

The appendix includes informational materials that show the featurization of the462

GNN and non-GNN baseline models in Table 12, in Figures A1, A3 and A2 the individual463

models and their corresponding names can be seen. These are the same Figures as in the464

main body but include the unique identifiers. These identifiers show what kind of model465

type, featurization and training approch was used when looked up in Tables tables 13466

to 24. The run-time to fit the used RF, SVM and KNN models with 3380 compounds467

on logD is approximately 50 seconds (RF), 25 seconds (SVM), and 0.5 seconds (KNN).468

When training the GNN model types on the 3380 logD compounds it takes for each469

epoch approximately 56 seconds (D-GIN), 35 seconds (D-MPNN), and 28 seconds (GIN).470

Table 6: Node and edge featurization of type 3. Each node or edge featurization vector
consited of a concatenation of the different one-hot encoded or floating point feature
vectors according to their possible states (if present) and corresponding size - 36 for
nodes and 20 for edges.

Feature Possible states Size
chemical element H,C,N,O,S,F,P,Cl,Br,I 10
calculated formal charge -2,-1,0,1,2 5
CIP configuration R,S,None,either 4
hybridization state sp,sp2,sp3,sp3d,sp3d2,none 6
amide center yes,no 2
present in aromatic ring yes,no 2
ring size 1/size 1
nr. of hydrogens 0,1,2,3,4,5 6
bond order 1,2,3 3
conjugated yes,no 2
rotate-able yes,no 2
amide bond yes,no 2
present in aromatic ring yes,no 2
present in ring yes,no 2
ring size 1/size 1
CIP configuration none,E,Z,trans,cis,either 6
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Table 7: Node and edge featurization of type 4. Each node or edge featurization vector
consited of a concatenation of the different one-hot encoded or floating point feature
vectors according to their possible states (if present) and corresponding size - 45 for
nodes and 29 for edges.

Feature Possible states Size
chemical element H,C,N,O,S,F,P,Cl,Br,I 10
calculated formal charge -2,-1,0,1,2 5
CIP configuration R,S,None,either 4
hybridization state sp,sp2,sp3,sp3d,sp3d2,none 6
amide center yes,no 2
present in aromatic ring yes,no 2
ring size 0,3,4,5,6,7,8,9,10,11 1
nr. of hydrogens 0,1,2,3,4,5 6
bond order 1,2,3 3
conjugated yes,no 2
rotate-able yes,no 2
amide bond yes,no 2
present in aromatic ring yes,no 2
present in ring yes,no 2
ring size 0,3,4,5,6,7,8,9,10,11 1
CIP configuration none,E,Z,trans,cis,either 6

Table 8: Node and edge featurization of type 5. Each node or edge featurization vector
consited of a concatenation of the different one-hot encoded or floating point feature
vectors according to their possible states (if present) and corresponding size - 15 for
nodes and 3 for edges.

Feature Possible states Size
chemical element H,C,N,O,S,F,P,Cl,Br,I 10
calculated formal charge -2,-1,0,1,2 5
CIP configuration - -
hybridization state - -
amide center - -
present in aromatic ring - -
ring size - -
nr. of hydrogens - -
bond order 1,2,3 3
conjugated - -
rotate-able - -
amide bond - -
present in aromatic ring - -
present in ring - -
ring size - -
CIP configuration - -

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2021                   



Version October 1, 2021 submitted to Molecules 26 of 43

Table 9: Node and edge featurization of type 6. Each node or edge featurization vector
consited of a concatenation of the different one-hot encoded or floating point feature
vectors according to their possible states (if present) and corresponding size - 15 for
nodes and 20 for edges.

Feature Possible states Size
chemical element H,C,N,O,S,F,P,Cl,Br,I 10
calculated formal charge -2,-1,0,1,2 5
CIP configuration - -
hybridization state - -
amide center - -
present in aromatic ring - -
present in ring - -
nr. of hydrogens - -
bond order 1,2,3 3
conjugated yes,no 2
rotate-able yes,no 2
amide bond yes,no 2
present in aromatic ring yes,no 2
present in ring yes,no 2
ring size 1/size 1
CIP configuration none,E,Z,trans,cis,either 6

Table 10: Node and edge featurization of type 7. Each node or edge featurization vector
consited of a concatenation of the different one-hot encoded or floating point feature
vectors according to their possible states (if present) and corresponding size - 36 for
nodes and 3 for edges.

Feature Possible states Size
chemical element H,C,N,O,S,F,P,Cl,Br,I 10
calculated formal charge -2,-1,0,1,2 5
CIP configuration R,S,None,either 4
hybridization state sp,sp2,sp3,sp3d,sp3d2,none 6
amide center yes,no 2
present in aromatic ring yes,no 2
ring size 0,3,4,5,6,7,8,9,10,11 1
nr. of hydrogens 0,1,2,3,4,5 6
bond order 1,2,3 3
conjugated - -
rotate-able - -
amide bond - -
present in aromatic ring - -
present in ring - -
ring size - -
CIP configuration - -
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Table 11: Node and edge featurization of type 8. Each node or edge featurization vector
consited of a concatenation of the different one-hot encoded or floating point feature
vectors according to their possible states (if present) and corresponding size - 26 for
nodes and 7 for edges.

Feature Possible states Size
chemical element H,C,N,O,S,F,P,Cl,Br,I 10
formal charge -2,-1,0,1,2 5
CIP priority rule R,S,None,either 4
hybridization state sp,sp2,sp3,sp3d,sp3d2,none 6
amide center - -
aromaticity - -
ring size float (1/size) 1
nr. of hydrogens - -
bond order 1,2,3 3
conjugated - -
rotate-able yes, no 2
amide bond - -
aromaticity - -
present in ring yes, no 2
ring size - -
CIP priority rule - -

Table 12: Non-GNN featurization. The identifier is used as reference.

identifier fingerprint radius nr. bits descriptor
10 ECFP 4 1024 No
11 ECFP 4 1536 No
12 ECFP 4 2048 No
13 MACCSKeys - - No
14 ECFP 4 1024 Yes
15 ECFP 4 1536 Yes
16 ECFP 4 2048 Yes
17 MACCSKeys - - Yes

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2021                   



Version October 1, 2021 submitted to Molecules 28 of 43

Figure A1. The left y-axis specifies the logD RMSE and the right, secondary x-axis the correspond-
ing r2 values for each GNN model. The D-GIN is colored blue, the D-MPNN orange and the GIN
green. Each of the boxes represents one different model run. The kernel density of each model
is shown on the very left side. The red lines correspond to the 95% confidence intervals. The
model names are a combination of model type (D-GIN, GIN, D-MPNN), training approach and
featurization type - a detailed description of each model name can be found in Tables tables 13
to 24 in the SI.
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Figure A2. The left y-axis specifies the logP RMSE and the right, secondary x-axis the correspond-
ing r2 values for each GNN model. The D-GIN is colored blue, the D-MPNN orange and the GIN
green. Each of the boxes represents one different model run. The kernel density of each model
is shown on the very left side. The red lines correspond to the 95% confidence intervals. The
model names are a combination of model type (D-GIN, GIN, D-MPNN), training approach and
featurization type - a detailed description of each model name can be found in Tables tables 13
to 24 in the SI.
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Figure A3. The left y-axis specifies the logS RMSE and the right, secondary x-axis the correspond-
ing r2 values for each GNN model. The D-GIN is colored blue, the D-MPNN orange and the GIN
green. Each of the boxes represents one different model run. The kernel density of each model
is shown on the very left side. The red lines correspond to the 95% confidence intervals. The
model names are a combination of model type (D-GIN, GIN, D-MPNN), training approach and
featurization type - a detailed description of each model name can be found in Tables tables 13
to 24 in the SI.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2021                   



Version October 1, 2021 submitted to Molecules 31 of 43

Table 13: Shows the log D RMSE and r2 results for the D-GIN model type used during
this survey. The last column consist of the unique identify. Training strategy 0 represents
a training strategy combining logD, logS and logP, 1 represents a strategy combining
logD and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using
logS and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and
6 represents a strategy using logP.

model training featurization logD r2 unique
type strategy strategy RMSE ID

D-GIN 2 5 0.679 ± 0.034 0.652 ± 0.035 dg522
D-GIN 2 8 0.596 ± 0.026 0.728 ± 0.021 dg822
D-GIN 2 4 0.587 ± 0.029 0.736 ± 0.020 dg422
D-GIN 2 3 0.582 ± 0.035 0.746 ± 0.027 dg322
D-GIN 0 3 0.582 ± 0.038 0.744 ± 0.031 dg302
D-GIN 0 6 0.581 ± 0.028 0.755 ± 0.021 dg602
D-GIN 0 4 0.598 ± 0.029 0.728 ± 0.027 dg402
D-GIN 4 3 0.601 ± 0.057 0.731 ± 0.052 dg341
D-GIN 0 8 0.579 ± 0.043 0.745 ± 0.033 dg801
D-GIN 1 3 0.575 ± 0.044 0.749 ± 0.035 dg312
D-GIN 1 8 0.605 ± 0.053 0.722 ± 0.046 dg811
D-GIN 4 6 0.596 ± 0.058 0.729 ± 0.062 dg642
D-GIN 1 4 0.606 ± 0.052 0.725 ± 0.053 dg411
D-GIN 1 7 0.615 ± 0.051 0.713 ± 0.045 dg712
D-GIN 4 4 0.622 ± 0.065 0.707 ± 0.065 dg442
D-GIN 2 7 0.626 ± 0.023 0.704 ± 0.022 dg721
D-GIN 4 8 0.629 ± 0.068 0.700 ± 0.068 dg841
D-GIN 4 7 0.645 ± 0.043 0.685 ± 0.048 dg741
D-GIN 4 5 0.660 ± 0.067 0.669 ± 0.071 dg542
D-GIN 0 7 0.661 ± 0.039 0.666 ± 0.034 dg701
D-GIN 1 5 0.685 ± 0.052 0.643 ± 0.074 dg512
D-GIN 1 6 0.553 ± 0.049 0.767 ± 0.053 dg612
D-GIN 0 5 0.704 ± 0.027 0.632 ± 0.024 dg502
D-GIN 2 6 0.592 ± 0.030 0.734 ± 0.024 dg622
D-GIN cons. 2 5 0.605 ± 0.032 0.719 ± 0.031 dg522_cons
D-GIN cons. 0 5 0.622 ± 0.030 0.704 ± 0.027 dg502_cons
D-GIN cons. 0 7 0.603 ± 0.030 0.722 ± 0.025 dg701_cons
D-GIN cons. 1 5 0.609 ± 0.056 0.714 ± 0.062 dg512_cons
D-GIN cons. 1 6 0.548 ± 0.051 0.769 ± 0.049 dg612_cons
D-GIN cons. 4 7 0.589 ± 0.045 0.734 ± 0.043 dg741_cons
D-GIN cons. 1 3 0.561 ± 0.047 0.758 ± 0.039 dg312_cons
D-GIN cons. 2 4 0.557 ±0.029 0.762 ± 0.023 dg422_cons
D-GIN cons. 4 3 0.557 ± 0.052 0.762 ± 0.044 dg341_cons
D-GIN cons. 2 3 0.549 ± 0.034 0.769 ± 0.026 dg322_cons
D-GIN cons. 4 5 0.590 ± 0.059 0.733 ± 0.055 dg542_cons
D-GIN cons. 0 8 0.562 ± 0.032 0.758 ± 0.025 dg801_cons
D-GIN cons. 0 4 0.563 ± 0.031 0.757 ± 0.027 dg402_cons
D-GIN cons. 1 7 0.566 ± 0.055 0.754 ± 0.044 dg712_cons
D-GIN cons. 1 4 0.567 ± 0.051 0.754 ± 0.041 dg411_cons
D-GIN cons. 0 3 0.562 ± 0.033 0.758 ± 0.024 dg302_cons
D-GIN cons. 4 8 0.575 ± 0.052 0.746 ± 0.053 dg841_cons
D-GIN cons. 2 8 0.568 ± 0.030 0.753 ± 0.026 dg821_cons
D-GIN cons. 2 7 0.580 ± 0.027 0.742 ± 0.023 dg721_cons
D-GIN cons. 1 8 0.580 ± 0.053 0.742 ± 0.047 dg811_cons
D-GIN cons. 4 4 0.577 ± 0.052 0.744 ± 0.041 dg442_cons
D-GIN cons. 4 6 0.568 ± 0.054 0.751 ± 0.051 dg642_cons
D-GIN cons. 0 6 0.569 ± 0.029 0.751 ± 0.024 dg602_cons
D-GIN cons. 2 6 0.571 ± 0.031 0.750 ± 0.024 dg622_cons
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Table 14: Shows the logD RMSE and r2 results for the D-MPNN model type used during
this survey. The last column consist of the unique identify. Training strategy 0 represents
a training strategy combining logD, logS and logP, 1 represents a strategy combining
logD and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using
logS and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and
6 represents a strategy using logP.

model training featurization logD r2 unique
type strategy strategy RMSE ID

D-MPNN 1 7 0.7836 ± 0.065 0.532 ± 0.087 dmp711
D-MPNN 1 6 0.686 ± 0.054 0.645 ± 0.071 dmp612
D-MPNN 1 5 0.857 ± 0.060 0.442 ± 0.089 dmp511
D-MPNN 2 3 0.759 ± 0.037 0.563 ± 0.039 dmp322
D-MPNN 1 4 0.692 ± 0.069 0.634 ± 0.080 dmp411
D-MPNN 2 5 0.911 ± 0.029 0.371 ± 0.035 dmp521
D-MPNN 2 6 0.721 ± 0.029 0.606 ± 0.037 dmp621
D-MPNN 0 4 0.721 ± 0.036 0.608 ± 0.034 dmp401
D-MPNN 0 8 0.712 ± 0.039 0.613 ± 0.037 dmp802
D-MPNN 4 8 0.713 ± 0.043 0.614 ± 0.057 dmp842
D-MPNN 1 8 0.724 ± 0.044 0.607 ± 0.062 dmp811
D-MPNN 4 4 0.719 ± 0.057 0.614 ± 0.067 dmp441
D-MPNN 4 6 0.719 ± 0.056 0.610 ± 0.076 dmp642
D-MPNN 4 3 0.731 ± 0.044 0.594 ± 0.062 dmp342
D-MPNN 0 6 0.724 ± 0.030 0.601 ± 0.040 dmp602
D-MPNN 1 3 0.703 ± 0.084 0.625 ± 0.069 dmp311
D-MPNN 0 3 0.719 ± 0.040 0.618 ± 0.034 dmp302
D-MPNN 2 8 0.788 ± 0.027 0.532 ± 0.033 dmp822
D-MPNN 2 4 0.728 ± 0.041 0.600 ± 0.039 dmp422
D-MPNN 2 7 0.823 ± 0.027 0.493 ± 0.039 dmp721
D-MPNN 4 7 0.804 ± 0.058 0.517 ± 0.089 dmp742
D-MPNN 4 5 0.881 ± 0.051 0.417 ± 0.077 dmp542
D-MPNN 0 7 0.812 ± 0.035 0.512 ± 0.037 dmp702
D-MPNN 0 5 0.864 ± 0.026 0.432 ± 0.035 dmp502
D-MPNN cons. 0 4 0.633 ± 0.031 0.693 ± 0.025 dmp402_cons
D-MPNN cons. 4 5 0.699 ± 0.047 0.625 ± 0.056 dmp542_cons
D-MPNN cons. 2 4 0.632 ± 0.031 0.694 ± 0.028 dmp422_cons
D-MPNN cons. 2 6 0.632 ± 0.029 0.694 ± 0.028 dmp621_cons
D-MPNN cons. 2 5 0.710 ± 0.027 0.614 ± 0.024 dmp521_cons
D-MPNN cons. 1 8 0.632 ± 0.050 0.693 ± 0.058 dmp811_cons
D-MPNN cons. 0 3 0.625 ± 0.030 0.701 ± 0.026 dmp302_cons
D-MPNN cons. 4 4 0.625 ± 0.054 0.700 ± 0.052 dmp441_cons
D-MPNN cons. 1 3 0.625 ± 0.057 0.700 ± 0.050 dmp311_cons
D-MPNN cons. 0 8 0.624 ± 0.029 0.701 ± 0.023 dmp802_cons
D-MPNN cons. 4 8 0.622 ± 0.045 0.703 ± 0.050 dmp842_cons
D-MPNN cons. 1 6 0.618 ± 0.045 0.706 ± 0.051 dmp612_cons
D-MPNN cons. 1 4 0.613 ± 0.055 0.711 ± 0.057 dmp411_cons
D-MPNN cons. 4 6 0.634 ± 0.055 0.691 ± 0.066 dmp642_cons
D-MPNN cons. 0 6 0.636 ± 0.030 0.690 ± 0.029 dmp602_cons
D-MPNN cons. 2 3 0.646 ± 0.032 0.680 ± 0.028 dmp322_cons
D-MPNN cons. 1 5 0.688 ± 0.059 0.637 ± 0.057 dmp512_cons
D-MPNN cons. 2 8 0.652 ± 0.030 0.674 ± 0.025 dmp822_cons
D-MPNN cons. 1 7 0.654 ± 0.060 0.671 ± 0.069 dmp711_cons
D-MPNN cons. 4 7 0.663 ± 0.045 0.662 ± 0.058 dmp742_cons
D-MPNN cons. 0 7 0.670 ± 0.028 0.656 ± 0.026 dmp701_cons
D-MPNN cons. 2 7 0.674 ± 0.026 0.652 ± 0.029 dmp721_cons
D-MPNN cons. 0 5 0.697 ± 0.026 0.628 ± 0.024 dmp502_cons
D-MPNN cons. 4 3 0.636 ± 0.042 0.689 ± 0.055 dmp342_cons
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Table 15: Shows the logD RMSE and r2 results for the GIN model type used during this
survey. The last column consist of the unique identify. Training strategy 0 represents a
training strategy combining logD, logS and logP, 1 represents a strategy combining logD
and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using logS
and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and 6
represents a strategy using logP.

model training featurization logD r2 unique
type strategy strategy RMSE ID

GIN 2 5 0.860 ± 0.035 0.440 ± 0.047 g522
GIN 2 6 0.896 ± 0.031 0.387 ± 0.039 g621
GIN 0 4 0.791 ± 0.051 0.539 ± 0.050 g401
GIN 0 8 0.789 ± 0.031 0.526 ± 0.036 g802
GIN 2 8 0.814 ± 0.036 0.496 ± 0.040 g822
GIN 1 8 0.786 ± 0.068 0.538 ± 0.081 g812
GIN 1 6 0.899 ± 0.061 0.384 ± 0.104 g612
GIN 4 8 0.734 ± 0.058 0.589 ± 0.079 g842
GIN 4 5 0.856 ± 0.073 0.442 ± 0.112 g542
GIN 0 5 0.892 ± 0.035 0.400 ± 0.047 g502
GIN 4 3 0.741 ± 0.063 0.584 ± 0.080 g342
GIN 1 7 0.756 ± 0.060 0.567 ± 0.057 g711
GIN 1 4 0.761 ± 0.076 0.561 ± 0.071 g412
GIN 4 4 0.743 ± 0.066 0.581 ± 0.061 g441
GIN 4 7 0.747 ± 0.082 0.576 ± 0.087 g742
GIN 2 7 0.751 ± 0.041 0.581 ± 0.040 g722
GIN 2 3 0.781 ± 0.035 0.557 ± 0.041 g321
GIN 2 4 0.766 ± 0.042 0.557 ± 0.044 g421
GIN 0 7 0.765 ± 0.040 0.558 ± 0.041 g702
GIN 0 3 0.756 ± 0.030 0.570 ± 0.033 g302
GIN 1 3 0.742 ± 0.065 0.580 ± 0.062 g311
GIN 4 6 0.860 ± 0.063 0.437 ± 0.085 g642
GIN 0 6 0.900 ± 0.033 0.381 ± 0.041 g601
GIN 1 5 0.911 ± 0.056 0.371 ± 0.062 g512
GINcons. 0 6 0.715 ± 0.020 0.609 ± 0.025 g602_cons
GINcons. 4 3 0.627 ± 0.054 0.698 ± 0.059 g342_cons
GINcons. 4 8 0.632 ± 0.050 0.693 ± 0.057 g842_cons
GINcons. 4 7 0.633 ± 0.061 0.692 ± 0.056 g742_cons
GINcons. 4 4 0.637 ± 0.058 0.688 ± 0.060 g441_cons
GINcons. 1 3 0.640 ± 0.056 0.685 ± 0.051 g311_cons
GINcons. 2 7 0.642 ± 0.033 0.685 ± 0.028 g722_cons
GINcons. 1 7 0.644 ± 0.047 0.682 ± 0.053 g711_cons
GINcons. 2 4 0.645 ± 0.034 0.681 ± 0.031 g421_cons
GINcons. 0 3 0.647 ± 0.029 0.679 ± 0.025 g302_cons
GINcons. 1 4 0.648 ± 0.059 0.678 ± 0.056 g412_cons
GINcons. 0 4 0.652 ± 0.033 0.674 ± 0.030 g401_cons
GINcons. 0 7 0.654 ± 0.029 0.673 ± 0.024 g701_cons
GINcons. 2 3 0.656 ± 0.028 0.670 ± 0.030 g321_cons
GINcons. 1 8 0.657 ± 0.055 0.669 ± 0.068 g812_cons
GINcons. 0 8 0.661 ± 0.034 0.665 ± 0.031 g801_cons
GINcons. 2 8 0.673 ± 0.032 0.653 ± 0.029 g822_cons
GINcons. 4 5 0.689 ± 0.056 0.636 ± 0.064 g542_cons
GINcons. 4 6 0.692 ± 0.052 0.633 ± 0.057 g642_cons
GINcons. 1 6 0.707 ± 0.057 0.616 ± 0.061 g612_cons
GINcons. 2 6 0.707 ± 0.025 0.617 ± 0.025 g622_cons
GINcons. 0 5 0.712 ± 0.033 0.612 ± 0.030 g502_cons
GINcons. 1 5 0.719 ± 0.046 0.603 ± 0.052 g512_cons
GINcons. 2 5 0.692 ± 0.026 0.634 ± 0.022 g522_cons
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Table 16: Shows the logD RMSE and r2 results for the non-GNN model types used
during this survey. The last column consist of the unique identify. Training strategy 0
represents a training strategy combining logD, logS and logP, 1 represents a strategy
combining logD and logP, 2 stands for a combination of logD and logS, 3 represents a
strategy using logS and logP, 4 represents a strategy using logD, 5 represents a strategy
using logS and 6 represents a strategy using logP.

model training featurization logD r2 unique
type strategy strategy RMSE ID

KNN logD 10 0.979 ± 0.072 0.261 ± 0.094 KNN10
KNN logD 16 0.970 ± 0.056 0.275 ± 0.097 KNN16
KNN logD 12 0.959 ± 0.066 0.293 ± 0.080 KNN12
KNN logD 11 0.993 ± 0.072 0.240 ± 0.096 KNN11
KNN logD 13 0.909 ± 0.067 0.363 ± 0.069 KNN13
KNN logD 15 1.003 ± 0.057 0.226 ± 0.096 KNN15
KNN logD 14 0.996 ± 0.065 0.236 ± 0.110 KNN14
KNN logD 17 0.801 ± 0.060 0.506 ± 0.058 KNN17
RF logD 17 0.708 ± 0.060 0.614 ± 0.055 rf17
RF logD 15 0.699 ± 0.062 0.623 ± 0.059 rf15
RF logD 16 0.703 ± 0.061 0.620 ± 0.057 rf16
RF logD 11 0.859 ± 0.062 0.433 ± 0.062 rf11
RF logD 14 0.706 ± 0.062 0.616 ± 0.058 rf14
RF logD 10 0.890 ± 0.060 0.390 ± 0.062 rf10
RF logD 13 0.813 ± 0.060 0.491 ± 0.059 rf13
RF logD 12 0.863 ± 0.068 0.427 ± 0.068 rf12
SVM logD 12 0.782 ± 0.061 0.529 ± 0.055 svm12
SVM logD 16 0.707 ± 0.056 0.615 ± 0.047 svm16
SVM logD 10 0.810 ± 0.062 0.495 ± 0.057 svm10
SVM logD 15 0.698 ± 0.055 0.625 ± 0.045 svm15
SVM logD 14 0.674 ± 0.054 0.650 ± 0.043 svm14
SVM logD 17 0.639 ± 0.051 0.686 ± 0.046 svm17
SVM logD 11 0.793 ± 0.060 0.516 ± 0.060 svm11
SVM logD 13 0.814 ± 0.059 0.490 ± 0.055 svm13
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Table 17: Shows the logS RMSE and r2 results for the D-GIN model type used during
this survey. The last column consist of the unique identify. Training strategy 0 represents
a training strategy combining logD, logS and logP, 1 represents a strategy combining
logD and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using
logS and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and
6 represents a strategy using logP.

model training featurization logS r2 unique
type strategy strategy RMSE ID

D-GIN 5 7 0.897 ± 0.041 0.757 ± 0.025 dg752
D-GIN 0 7 0.866 ± 0.034 0.771 ± 0.016 dg701
D-GIN 5 5 0.969 ± 0.048 0.717 ± 0.030 dg552
D-GIN 0 5 0.988 ± 0.042 0.705 ± 0.021 dg502
D-GIN 2 5 1.010 ± 0.040 0.694 ± 0.020 dg522
D-GIN 0 8 0.795 ± 0.038 0.807 ± 0.019 dg801
D-GIN 0 4 0.807 ± 0.032 0.803 ± 0.016 dg401
D-GIN 3 8 0.813 ± 0.044 0.813 ± 0.021 dg832
D-GIN 5 6 0.818 ± 0.044 0.798 ± 0.025 dg651
D-GIN 5 3 0.848 ± 0.047 0.783 ± 0.023 dg352
D-GIN 0 6 0.821 ± 0.042 0.796 ± 0.020 dg601
D-GIN 2 7 0.906 ± 0.045 0.755 ± 0.017 dg721
D-GIN 2 4 0.822 ± 0.028 0.794 ± 0.014 dg422
D-GIN 3 6 0.827 ± 0.063 0.794 ± 0.036 dg632
D-GIN 5 8 0.854 ± 0.056 0.781 ± 0.027 dg852
D-GIN 3 4 0.829 ± 0.044 0.791 ± 0.025 dg432
D-GIN 3 3 0.831 ± 0.050 0.790 ± 0.026 dg332
D-GIN 0 3 0.832 ± 0.039 0.798 ± 0.016 dg302
D-GIN 2 3 0.833 ± 0.037 0.789 ± 0.016 dg321
D-GIN 5 4 0.852 ± 0.050 0.789 ± 0.026 dg451
D-GIN 3 7 0.851 ± 0.049 0.782 ± 0.027 dg732
D-GIN 2 6 0.837 ± 0.042 0.788 ± 0.020 dg622
D-GIN 3 5 1.061 ± 0.061 0.662 ± 0.034 dg532
D-GIN cons. 2 5 0.794 ± 0.039 0.807 ± 0.014 dg522_cons
D-GIN cons. 0 5 0.779 ± 0.040 0.814 ± 0.014 dg502_cons
D-GIN cons. 5 5 0.778 ± 0.049 0.816 ± 0.020 dg552_cons
D-GIN cons. 3 5 0.820 ± 0.054 0.795 ± 0.024 dg532_cons
D-GIN cons. 0 8 0.705 ± 0.039 0.848 ± 0.014 dg801_cons
D-GIN cons. 2 7 0.757 ± 0.044 0.825 ± 0.015 dg721_cons
D-GIN cons. 2 8 0.734 ± 0.033 0.835 ± 0.012 dg822_cons
D-GIN cons. 3 7 0.733 ± 0.046 0.836 ± 0.021 dg732_cons
D-GIN cons. 0 3 0.733 ± 0.040 0.836 ± 0.015 dg301_cons
D-GIN cons. 0 7 0.731 ± 0.035 0.836 ± 0.010 dg701_cons
D-GIN cons. 5 3 0.730 ± 0.047 0.838 ± 0.019 dg352_cons
D-GIN cons. 3 3 0.727 ± 0.048 0.839 ± 0.021 dg332_cons
D-GIN cons. 5 4 0.739 ± 0.052 0.834 ± 0.023 dg451_cons
D-GIN cons. 5 7 0.748 ± 0.045 0.830 ± 0.018 dg752_cons
D-GIN cons. 2 3 0.725 ± 0.041 0.839 ± 0.014 dg321_cons
D-GIN cons. 3 8 0.724 ± 0.046 0.840 ± 0.018 dg832_cons
D-GIN cons. 3 4 0.722 ± 0.047 0.841 ± 0.020 dg432_cons
D-GIN cons. 2 4 0.718 ± 0.031 0.842 ± 0.011 dg422_cons
D-GIN cons. 3 6 0.718 ± 0.047 0.843 ± 0.021 dg631_cons
D-GIN cons. 2 6 0.716 ± 0.038 0.843 ± 0.014 dg622_cons
D-GIN cons. 0 4 0.715 ± 0.035 0.843 ± 0.011 dg401_cons
D-GIN cons. 5 6 0.711 ± 0.046 0.846 ± 0.021 dg651_cons
D-GIN cons. 0 6 0.724 ± 0.038 0.839 ± 0.016 dg601_cons
D-GIN cons. 5 8 0.735 ± 0.053 0.835 ± 0.021 dg852_cons
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Table 18: Shows the logS RMSE and r2 results for the D-MPNN model type used during
this survey. The last column consist of the unique identify. Training strategy 0 represents
a training strategy combining logD, logS and logP, 1 represents a strategy combining
logD and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using
logS and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and
6 represents a strategy using logP.

model training featurization logS r2 unique
type strategy strategy RMSE ID

D-MPNN 3 8 0.913 ± 0.052 0.756 ± 0.026 dmp832
D-MPNN 2 6 0.857 ± 0.035 0.782 ± 0.015 dmp621
D-MPNN 2 3 0.865 ± 0.038 0.784 ± 0.016 dmp322
D-MPNN 0 5 0.962 ± 0.038 0.718 ± 0.018 dmp501
D-MPNN 0 8 0.907 ± 0.049 0.757 ± 0.021 dmp802
D-MPNN 5 8 0.921 ± 0.046 0.751 ± 0.025 dmp851
D-MPNN 2 8 0.906 ± 0.041 0.763 ± 0.020 dmp821
D-MPNN 0 7 0.906 ± 0.049 0.764 ± 0.027 dmp701
D-MPNN 2 7 0.902 ± 0.040 0.772 ± 0.021 dmp722
D-MPNN 3 5 0.938 ± 0.044 0.733 ± 0.029 dmp532
D-MPNN 5 5 0.945 ± 0.041 0.734 ± 0.030 dmp552
D-MPNN 3 4 0.896 ± 0.062 0.782 ± 0.028 dmp432
D-MPNN 0 4 0.893 ± 0.040 0.762 ± 0.022 dmp401
D-MPNN 3 3 0.893 ± 0.054 0.775 ± 0.026 dmp332
D-MPNN 5 6 0.879 ± 0.046 0.777 ± 0.021 dmp651
D-MPNN 5 3 0.878 ± 0.053 0.772 ± 0.027 dmp351
D-MPNN 0 6 0.877 ± 0.039 0.780 ± 0.021 dmp601
D-MPNN 0 3 0.874 ± 0.046 0.779 ± 0.024 dmp302
D-MPNN 2 5 0.961 ± 0.036 0.721 ± 0.021 dmp521
D-MPNN 5 4 0.866 ± 0.054 0.778 ± 0.022 dmp452
D-MPNN 3 7 0.865 ± 0.049 0.773 ± 0.027 dmp731
D-MPNN 2 4 0.863 ± 0.046 0.800 ± 0.020 dmp422
D-MPNN 5 7 0.897 ± 0.050 0.763 ± 0.024 dmp751
D-MPNN 3 6 0.861 ± 0.047 0.780 ± 0.024 dmp632
D-MPNN cons. 5 4 0.748 ± 0.055 0.830 ± 0.020 dmp452_cons
D-MPNN cons. 0 4 0.768 ± 0.040 0.819 ± 0.015 dmp401_cons
D-MPNN cons. 2 8 0.769 ± 0.039 0.819 ± 0.014 dmp821_cons
D-MPNN cons. 3 8 0.762 ± 0.052 0.823 ± 0.022 dmp832_cons
D-MPNN cons. 5 6 0.749 ± 0.053 0.829 ± 0.021 dmp652_cons
D-MPNN cons. 0 8 0.770 ± 0.044 0.818 ± 0.016 dmp802_cons
D-MPNN cons. 3 3 0.762 ± 0.052 0.823 ± 0.021 dmp332_cons
D-MPNN cons. 0 7 0.771 ± 0.044 0.818 ± 0.016 dmp701_cons
D-MPNN cons. 2 7 0.771 ± 0.040 0.818 ± 0.016 dmp722_cons
D-MPNN cons. 5 7 0.761 ± 0.051 0.824 ± 0.021 dmp751_cons
D-MPNN cons. 5 8 0.774 ± 0.048 0.817 ± 0.022 dmp851_cons
D-MPNN cons. 3 5 0.777 ± 0.048 0.816 ± 0.021 dmp532_cons
D-MPNN cons. 5 5 0.779 ± 0.045 0.815 ± 0.021 dmp552_cons
D-MPNN cons. 3 4 0.765 ± 0.056 0.822 ± 0.021 dmp431_cons
D-MPNN cons. 2 5 0.784 ± 0.038 0.811 ± 0.016 dmp521_cons
D-MPNN cons. 0 3 0.760 ± 0.042 0.823 ± 0.016 dmp302_cons
D-MPNN cons. 0 6 0.759 ± 0.039 0.823 ± 0.014 dmp601_cons
D-MPNN cons. 2 3 0.756 ± 0.039 0.825 ± 0.014 dmp322_cons
D-MPNN cons. 2 6 0.744 ± 0.038 0.831 ± 0.013 dmp621_cons
D-MPNN cons. 5 3 0.752 ± 0.055 0.828 ± 0.021 dmp351_cons
D-MPNN cons. 3 7 0.744 ± 0.053 0.831 ± 0.021 dmp731_cons
D-MPNN cons. 2 4 0.750 ± 0.044 0.828 ± 0.016 dmp422_cons
D-MPNN cons. 3 6 0.748 ± 0.055 0.830 ± 0.021 dmp632_cons
D-MPNN cons. 0 5 0.785 ± 0.040 0.811 ± 0.015 dmp501_cons
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Table 19: Shows the logS RMSE and r2 results for the GIN model type used during this
survey. The last column consist of the unique identify. Training strategy 0 represents a
training strategy combining logD, logS and logP, 1 represents a strategy combining logD
and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using logS
and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and 6
represents a strategy using logP.

model training featurization logS r2 unique
type strategy strategy RMSE ID

GIN 2 4 1.126 ± 0.047 0.612 ± 0.029 g421
GIN 0 3 1.122 ± 0.049 0.615 ± 0.028 g301
GIN 0 4 1.116 ± 0.053 0.624 ± 0.037 g402
GIN 0 7 1.089 ± 0.044 0.650 ± 0.031 g701
GIN 3 7 1.088 ± 0.066 0.643 ± 0.036 g731
GIN 2 7 1.127 ± 0.049 0.613 ± 0.028 g721
GIN 3 4 1.147 ± 0.084 0.602 ± 0.052 g431
GIN 5 7 1.145 ± 0.060 0.602 ± 0.038 g752
GIN 5 6 1.400 ± 0.064 0.407 ± 0.045 g652
GIN 5 5 1.362 ± 0.061 0.437 ± 0.043 g552
GIN 2 6 1.359 ± 0.045 0.441 ± 0.036 g621
GIN 2 5 1.345 ± 0.044 0.447 ± 0.030 g522
GIN 3 6 1.334 ± 0.058 0.463 ± 0.047 g631
GIN 0 5 1.326 ± 0.049 0.474 ± 0.031 g502
GIN 0 8 1.136 ± 0.058 0.605 ± 0.034 g801
GIN 3 5 1.326 ± 0.066 0.472 ± 0.049 g532
GIN 5 8 1.217 ± 0.062 0.554 ± 0.040 g851
GIN 5 3 1.178 ± 0.070 0.579 ± 0.042 g352
GIN 2 8 1.173 ± 0.050 0.580 ± 0.027 g821
GIN 3 8 1.166 ± 0.059 0.603 ± 0.036 g832
GIN 5 4 1.161 ± 0.089 0.598 ± 0.057 g452
GIN 2 3 1.151 ± 0.047 0.595 ± 0.025 g321
GIN 3 3 1.148 ± 0.064 0.610 ± 0.036 g331
GIN 0 6 1.314 ± 0.053 0.474 ± 0.034 g602
GINcons. 5 6 0.969 ± 0.057 0.714 ± 0.029 g652_cons
GINcons. 2 7 0.840 ± 0.036 0.784 ± 0.014 g721_cons
GINcons. 5 5 0.945 ± 0.045 0.728 ± 0.023 g552_cons
GINcons. 0 3 0.842 ± 0.041 0.783 ± 0.016 g301_cons
GINcons. 5 4 0.861 ± 0.065 0.774 ± 0.031 g452_cons
GINcons. 2 8 0.867 ± 0.043 0.770 ± 0.017 g821_cons
GINcons. 5 3 0.872 ± 0.056 0.769 ± 0.026 g352_cons
GINcons. 3 3 0.857 ± 0.054 0.776 ± 0.024 g331_cons
GINcons. 0 7 0.825 ± 0.038 0.791 ± 0.016 g701_cons
GINcons. 5 8 0.887 ± 0.056 0.760 ± 0.026 g851_cons
GINcons. 2 3 0.855 ± 0.043 0.776 ± 0.015 g321_cons
GINcons. 5 7 0.854 ± 0.055 0.778 ± 0.026 g752_cons
GINcons. 3 7 0.828 ± 0.052 0.791 ± 0.023 g731_cons
GINcons. 0 4 0.835 ± 0.040 0.786 ± 0.016 g402_cons
GINcons. 3 4 0.860 ± 0.061 0.775 ± 0.029 g431_cons
GINcons. 2 4 0.835 ± 0.041 0.786 ± 0.014 g421_cons
GINcons. 0 6 0.926 ± 0.045 0.737 ± 0.017 g602_cons
GINcons. 0 5 0.933 ± 0.038 0.733 ± 0.015 g502_cons
GINcons. 3 5 0.934 ± 0.053 0.734 ± 0.025 g532_cons
GINcons. 2 5 0.938 ± 0.040 0.730 ± 0.015 g522_cons
GINcons. 3 6 0.940 ± 0.048 0.731 ± 0.025 g631_cons
GINcons. 2 6 0.945 ± 0.041 0.726 ± 0.017 g621_cons
GINcons. 0 8 0.850 ± 0.042 0.779 ± 0.014 g802_cons
GINcons. 3 8 0.861 ± 0.053 0.774 ± 0.018 g832_cons
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Table 20: Shows the logS RMSE and r2 results for the non-GNN model types used during
this survey. The last column consist of the unique identify. Training strategy 0 represents
a training strategy combining logD, logS and logP, 1 represents a strategy combining
logD and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using
logS and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and
6 represents a strategy using logP.

model training featurization logS r2 unique
type strategy strategy RMSE ID

KNN logS 14 1.547 ± 0.063 0.268 ± 0.054 KNN14
KNN logS 11 1.587 ± 0.063 0.230 ± 0.054 KNN11
KNN logS 10 1.587 ± 0.064 0.229 ± 0.056 KNN10
KNN logS 12 1.600 ± 0.066 0.217 ± 0.055 KNN12
KNN logS 13 1.280 ± 0.066 0.499 ± 0.036 KNN13
KNN logS 15 1.676 ± 0.066 0.140 ± 0.068 KNN15
KNN logS 17 1.058 ± 0.055 0.658 ± 0.032 KNN17
KNN logS 16 1.670 ± 0.065 0.147 ± 0.061 KNN16
RF logS 12 1.239 ± 0.056 0.530 ± 0.032 rf12
RF logS 14 0.760 ± 0.043 0.823 ± 0.020 rf14
RF logS 15 0.764 ± 0.044 0.821 ± 0.022 rf15
RF logS 13 1.128 ± 0.061 0.611 ± 0.039 rf13
RF logS 16 0.765 ± 0.045 0.821 ± 0.024 rf16
RF logS 17 0.770 ± 0.049 0.818 ± 0.025 rf17
RF logS 10 1.284 ± 0.055 0.495 ± 0.033 rf10
RF logS 11 1.271 ± 0.057 0.506 ± 0.035 rf11
SVM logS 12 1.142 ± 0.055 0.601 ± 0.035 svm12
SVM logS 11 1.149 ± 0.057 0.596 ± 0.035 svm11
SVM logS 16 0.966 ± 0.049 0.715 ± 0.024 svm16
SVM logS 15 0.930 ± 0.046 0.735 ± 0.023 svm15
SVM logS 13 1.086 ± 0.060 0.639 ± 0.034 svm13
SVM logS 17 0.730 ± 0.041 0.837 ± 0.020 svm17
SVM logS 14 0.891 ± 0.046 0.757 ± 0.023 svm14
SVM logS 10 1.162 ± 0.056 0.587 ± 0.036 svm10
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Table 21: Shows the logP RMSE and r2 results for the D-GIN model type used during
this survey. The last column consist of the unique identify. Training strategy 0 represents
a training strategy combining logD, logS and logP, 1 represents a strategy combining
logD and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using
logS and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and
6 represents a strategy using logP.

model training featurization logP r2 unique
type strategy strategy RMSE ID

D-GIN 0 8 0.510 ± 0.026 0.878 ± 0.012 dg801
D-GIN 0 3 0.496 ± 0.025 0.885 ± 0.012 dg302
D-GIN 0 6 0.493 ± 0.024 0.889 ± 0.010 dg601
D-GIN 6 4 0.493 ± 0.021 0.886 ± 0.011 dg461
D-GIN 6 7 0.541 ± 0.028 0.862 ± 0.014 dg761
D-GIN 0 4 0.487 ± 0.023 0.891 ± 0.012 dg401
D-GIN 6 8 0.477 ± 0.025 0.893 ± 0.011 dg862
D-GIN 0 7 0.560 ± 0.029 0.852 ± 0.015 dg701
D-GIN 0 5 0.663 ± 0.034 0.793 ± 0.021 dg501
D-GIN 6 5 0.653 ± 0.029 0.802 ± 0.018 dg561
D-GIN 6 3 0.472 ± 0.020 0.896 ± 0.009 dg362
D-GIN 6 6 0.511 ± 0.027 0.878 ± 0.013 dg662
D-GIN cons. 6 3 0.428 ± 0.026 0.914 ± 0.010 dg362 cons.
D-GIN cons. 6 5 0.502 ± 0.027 0.881 ± 0.013 dg561 cons.
D-GIN cons. 0 7 0.473 ± 0.032 0.894 ± 0.013 dg701 cons.
D-GIN cons. 0 5 0.515 ± 0.033 0.875 ± 0.014 dg501 cons.
D-GIN cons. 0 3 0.447 ± 0.030 0.906 ± 0.012 dg302 cons.
D-GIN cons. 6 8 0.433 ± 0.030 0.912 ± 0.012 dg862 cons.
D-GIN cons. 0 6 0.434 ± 0.029 0.911 ± 0.011 dg601 cons.
D-GIN cons. 0 4 0.439 ± 0.026 0.909 ± 0.011 dg401 cons.
D-GIN cons. 6 7 0.461 ± 0.027 0.900 ± 0.012 dg761 cons.
D-GIN cons. 0 8 0.452 ± 0.030 0.904 ± 0.014 dg801 cons.
D-GIN cons. 6 4 0.440 ± 0.030 0.909 ± 0.012 dg461 cons.
D-GIN cons. 6 6 0.442 ± 0.026 0.908 ± 0.011 dg661 cons.
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Table 22: Shows the logP RMSE and r2 results for the D-MPNN model type used during
this survey. The last column consist of the unique identify. Training strategy 0 represents
a training strategy combining logD, logS and logP, 1 represents a strategy combining
logD and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using
logS and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and
6 represents a strategy using logP.

model training featurization logP r2 unique
type strategy strategy RMSE ID

D-MPNN 6 6 0.540 ± 0.019 0.863 ± 0.012 dmp661
D-MPNN 6 5 0.735 ± 0.026 0.746 ± 0.019 dmp561
D-MPNN 0 8 0.583 ± 0.020 0.845 ± 0.012 dmp802
D-MPNN 0 6 0.551 ± 0.022 0.861 ± 0.012 dmp601
D-MPNN 6 4 0.556 ± 0.019 0.856 ± 0.011 dmp461
D-MPNN 0 5 0.717 ± 0.027 0.758 ± 0.021 dmp501
D-MPNN 6 3 0.570 ± 0.019 0.847 ± 0.012 dmp362
D-MPNN 6 7 0.629 ± 0.023 0.815 ± 0.014 dmp762
D-MPNN 0 7 0.605 ± 0.020 0.828 ± 0.012 dmp702
D-MPNN 6 8 0.593 ± 0.021 0.834 ± 0.014 dmp862
D-MPNN 0 4 0.571 ± 0.022 0.851 ± 0.012 dmp401
D-MPNN 0 3 0.552 ± 0.018 0.857 ± 0.011 dmp301
D-MPNN cons. 6 5 0.533 ± 0.031 0.866 ± 0.015 dmp562 cons.
D-MPNN cons. 0 6 0.444 ± 0.024 0.907 ± 0.010 dmp601 cons.
D-MPNN cons. 6 6 0.452 ± 0.026 0.904 ± 0.011 dmp661 cons.
D-MPNN cons. 0 5 0.524 ± 0.031 0.870 ± 0.015 dmp501 cons.
D-MPNN cons. 0 3 0.461 ± 0.027 0.900 ± 0.011 dmp301 cons.
D-MPNN cons. 0 4 0.463 ± 0.027 0.899 ± 0.011 dmp401 cons.
D-MPNN cons. 6 3 0.464 ± 0.026 0.899 ± 0.012 dmp362 cons.
D-MPNN cons. 6 8 0.471 ± 0.028 0.895 ± 0.012 dmp862 cons.
D-MPNN cons. 0 8 0.475 ± 0.027 0.894 ± 0.011 dmp802 cons.
D-MPNN cons. 0 7 0.484 ± 0.028 0.890 ± 0.012 dmp701 cons.
D-MPNN cons. 6 4 0.454 ± 0.026 0.903 ± 0.012 dmp462 cons.
D-MPNN cons. 6 7 0.488 ± 0.027 0.888 ± 0.012 dmp761 cons.
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Table 23: Shows the logP RMSE and r2 results for the GIN model type used during this
survey. The last column consist of the unique identify. Training strategy 0 represents a
training strategy combining logD, logS and logP, 1 represents a strategy combining logD
and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using logS
and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and 6
represents a strategy using logP.

model training featurization logP r2 unique
type strategy strategy RMSE ID

GIN 0 3 0.752 ± 0.040 0.742 ± 0.025 g302
GIN 0 8 0.750 ± 0.029 0.738 ± 0.018 g802
GIN 0 4 0.716 ± 0.032 0.758 ± 0.019 g402
GIN 0 5 0.902 ± 0.033 0.624 ± 0.026 g502
GIN 6 5 0.894 ± 0.036 0.626 ± 0.026 g561
GIN 0 7 0.717 ± 0.033 0.758 ± 0.019 g701
GIN 6 7 0.727 ± 0.032 0.753 ± 0.022 g761
GIN 6 3 0.739 ± 0.030 0.744 ± 0.019 g361
GIN 6 8 0.741 ± 0.027 0.743 ± 0.018 g862
GIN 6 6 0.871 ± 0.033 0.643 ± 0.024 g662
GIN 6 4 0.725 ± 0.037 0.753 ± 0.025 g462
GIN 0 6 0.883 ± 0.036 0.640 ± 0.026 g601
GINcons. 6 7 0.537 ± 0.035 0.864 ± 0.016 g761 cons.
GINcons. 6 8 0.548 ± 0.034 0.858 ± 0.016 g861 cons.
GINcons. 0 4 0.539 ± 0.035 0.863 ± 0.015 g402 cons.
GINcons. 0 7 0.539 ± 0.034 0.863 ± 0.015 g701 cons.
GINcons. 6 4 0.534 ± 0.039 0.865 ± 0.018 g462 cons.
GINcons. 0 6 0.612 ± 0.038 0.823 ± 0.019 g601 cons.
GINcons. 6 6 0.606 ± 0.037 0.827 ± 0.019 g662 cons.
GINcons. 6 3 0.544 ± 0.035 0.860 ± 0.015 g362 cons.
GINcons. 0 3 0.547 ± 0.036 0.859 ± 0.015 g302 cons.
GINcons. 0 8 0.555 ± 0.033 0.855 ± 0.014 g802 cons.
GINcons. 6 5 0.614 ± 0.038 0.822 ± 0.019 g561 cons.
GINcons. 0 5 0.618 ± 0.037 0.820 ± 0.018 g502 cons.
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Table 24: Shows the logP RMSE and r2 results for the non-GNN model types used during
this survey. The last column consist of the unique identify. Training strategy 0 represents
a training strategy combining logD, logS and logP, 1 represents a strategy combining
logD and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using
logS and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and
6 represents a strategy using logP.

model training featurization logP r2 unique
type strategy strategy RMSE ID

KNN logP 13 0.939 ± 0.029 0.586 ± 0.024 KNN13
KNN logP 14 0.995 ± 0.029 0.534 ± 0.025 KNN14
KNN logP 15 1.065 ± 0.032 0.467 ± 0.027 KNN15
KNN logP 10 1.082 ± 0.035 0.450 ± 0.023 KNN10
KNN logP 12 1.087 ± 0.033 0.445 ± 0.023 KNN12
KNN logP 16 1.100 ± 0.034 0.431 ± 0.026 KNN16
KNN logP 11 1.103 ± 0.035 0.428 ± 0.026 KNN11
KNN logP 17 0.744 ± 0.019 0.740 ± 0.014 KNN17
RF logP 13 0.814 ± 0.029 0.688 ± 0.023 RF13
RF logP 15 0.479 ± 0.022 0.892 ± 0.010 RF15
RF logP 17 0.472 ± 0.023 0.895 ± 0.010 RF17
RF logP 14 0.472 ± 0.024 0.895 ± 0.011 RF14
RF logP 12 0.893 ± 0.030 0.625 ± 0.021 RF12
RF logP 16 0.470 ± 0.024 0.896 ± 0.011 RF16
RF logP 10 0.921 ± 0.031 0.601 ± 0.022 RF10
RF logP 11 0.928 ± 0.029 0.595 ± 0.022 RF11
SVM logP 14 0.572 ± 0.021 0.846 ± 0.012 SVM14
SVM logP 12 0.809 ± 0.027 0.692 ± 0.018 SVM12
SVM logP 16 0.628 ± 0.020 0.815 ± 0.012 SVM16
SVM logP 17 0.493 ± 0.030 0.886 ± 0.013 SVM17
SVM logP 10 0.833 ± 0.029 0.673 ± 0.020 SVM10
SVM logP 11 0.827 ± 0.028 0.678 ± 0.020 SVM11
SVM logP 13 0.782 ± 0.029 0.713 ± 0.020 SVM13
SVM logP 15 0.602 ± 0.021 0.830 ± 0.013 SVM15
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