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Abstract: The accurate prediction of molecular properties such as lipophilicity and aqueous
solubility are of great importance and pose challenges in several stages of the drug discovery
pipeline. Machine learning methods like graph-based neural networks (GNNs) have shown
exceptionally good performance in predicting these properties. In this work, we introduce a novel
GNN architecture, called directed edge graph isomorphism network (D-GIN). It is composed
of two distinct sub-architectures (D-MPNN, GIN) and achieves an improvement in accuracy
over its sub-architectures employing various learning, and featurization strategies. We argue
that combining models with different key aspects help make graph neural networks deeper and
simultaneously increase their predictive power. Furthermore, we address current limitations
in assessment of deep-learning models, namely, comparison of single training run performance
metrics, and offer a more robust solution.

Keywords: Al, deep-learning, neural-networks, graph neural-networks, cheminformatics, molec-
ular property, machine-learning, computational chemistry, lipophilicity, solubility

1. Introduction

Oral bio-availability, drug uptake, and ADME-related properties of small molecules
are key properties in pharmacokinetics. For drugs to reach their intended target, they
need to pass through several barriers either by passive diffusion or carrier-mediated
uptake typically mediated by lipophilicity and aqueous solubility. Compounds with
poor solubility are unable to achieve that and therefore pose a higher risk in attrition
and overall cost during development [1].

Methods based on deep-learning have proven successful in predicting molecular
properties [2] and are becoming more and more a routine part of the modern computer-
aided drug design toolbox for molecular design and med chem decision support. Since
molecules can be represented as graphs, an obvious approach is to employ a graph-based
architecture for deep-learning, which leads to the utilization of graph-based neural
networks (GNNSs). These kinds of networks are capable of learning representations
for a specific task in an automated way and therefore, can eliminate the complicated
feature engineering process where domain specialists have to select the list of descriptors
themselves [3]. They became increasingly popular in the last few years [4][5][6] especially
due to their success in chemical property prediction [7-12].

One of the first GNN models used for physicochemical property prediction was
introduced by Micheli [13] in 2009. It predicted the boiling point of alkanes with a
recursive architecture for structured data input and achieved improved state-of-the-art
performance. Lusci et al. [14] were the first to apply an undirected cyclic graph recurrent
neural network on predicting aqueous solubility successfully. In the following years,
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several recurrent, spatial, and spectral graph-based neural networks were introduced
[15] [16][17][3]. One of them was the message passing framework, which was extended
to include directed edges [3]. This network, called directed-edge message passing
network (D-MPNN), is one of the most successful GNNs to predict chemical properties
[1].

Despite the success, one important limitation with message passing networks is
the graph isomorphism problem, meaning that they are unaware of the structural role
of each node or edge [18]. Most standard GNNs such as the D-MPNN are incapable of
distinguishing between different types of graph structures to determine whether they are
topologically identical [19]. Compounds such as naphthalene and 1,1-bi(cyclopentane)
are perceived as the same structure by these networks. This can be problematic because
they have vastly different chemical properties. To address this issue, graph isomophism
networks (GIN), another group of GNNSs, have recently received attention [19][19][20].
They are capable of distinguishing between these compounds by reformulating the
message passing framework to incorporate the Weisfeiler-Lehman (WL) hierarchy. They
try to be at least as expressive as the Weisfeiler-Lehman graph isomorphism test (WL-test)
[21] and have shown good results in chemical property prediction [19],[20] despite often
falling short with respect to speed and accuracy to other frameworks like the D-MPNN
[22]. Inspired by the key property of the GIN and the success of the D-MPNN framework,
we combined the key characteristics of both architectures. By doing so we not only
address the isomorphism problem but also incorporate one of the most successful and
powerful GNN frameworks to improve lipophilicity and aqueous solubility prediction.

When comparing new machine learning architectures with previously published
methods, the standard approach is to compare single performance metrics like root
mean squared error (RMSE) values on a test set to show model performance [23][22].
This can lead to reproducibility issues as stochastic algorithms like neural networks
can vary greatly in their prediction, even without changing their hyperparameters, sim-
ply by using different training/validation/test set splits or non-deterministic weight
initializations [24][25]. One of the reasons for this is the complex landscape that opti-
mizers have to navigate through in modern machine learning models. In real world
applications these landscapes can have multiple local minima and it is especially hard
for non-deterministic optimization algorithms like stochastic gradient descent to find
the global minimum, therefore often retrieving different results when repeated [26]. This
problem can be intensified by using small data sets with different random splits for
training and evaluation. Such an approach can lead the optimization algorithm into
different local minima and makes it almost impossible for the model to generalize [2]. It
is therefore difficult to compare different deep-learning model architectures with each
other even when using the same data [24]. Another challenge is especially prominent
in the GNN domain, where the optimal features for node or edge representation are
unknown. Deep-learning benchmark studies often use the same data but different
representations for their input data which makes it difficult to make a fair comparison
between the models [2][3].

To mitigate these problems, we use the exact same data split to train, evaluate,
and test each of the used models with different node and edge features as well as
learning strategies to obtain an average performance independent of the used features
and training approaches. Such a procedure is time consuming as multiple models have
to be evaluated several times. Nevertheless, obtaining a better overview of the behaviour
of GNNs under these different constraints will facilitate the understanding of these
architectures and ultimately help advance GNNs beyond the current hype to more
explainable and robust models.

Our contribution is a novel graph neural network architecture called directed edge
graph isomorphism network (D-GIN). It extends the directed edge message passing
(D-MPNN) framework [1] by the graph isomorphism network (GIN) [19]. An overview
of the D-GIN model is shown in Figure 1. Our novel architecture shows improved
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performance compared to its individual, less complex networks and we demonstrate
that combining models with different key aspects help make graph neural networks
deeper while simultaneously increasing their predictive power. We evaluated our models
by applying different learning and featurization strategies and compared their average
performance under different constraints.
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Figure 1. High level representation of the directed-edge graph isomorphism network (D-GIN)
architecture for physicochemical prediction (logD, logS, or logP). (a) High level workflow depicting
how a graph and its nodes and edges are featurized, then fed into the D-GIN to generate a
molecular graph embedding. (b) The D-GIN architecture at a low level. Steps involved in
generating input to make predictions: 1) Initial hidden directed-edge features (1) are initialized
by concatenating the corresponding node (x,) and directed edge (x;v) features. (2) Directed edge
messages (11,) are used to update the hidden directed-edge features (I!,;,). (3) Directed messages
are combined with their corresponding hidden node features (h,) and (4) iteratively updated by
an additional trainable identifier (epsilon). (5) Hidden node features are aggregated to generate
the molecular embedding (/) which is used as input for (6), the feed-forward neural network.
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2. Materials and methods

This section gives a detailed overview of the used data, molecular representation,
and the different machine learning methods used throughout this work. The most
common notations are shown in Table 1.

Table 1: Common notations used throughout this publication.

Notation Definition
T A non-linear function (e.g. sigmoid or relu)
cat(,) Vector concatenation
Iterator of t steps
G A graph
Vv Set of nodes
E Set of edges
v Nodev € V
eyw Edge ¢,, € E between node u and v
N(u) Neighbors of node u
N(u)/w Neighbors of node u except w
n The number of nodes
m The number of edges
d The dimension of a node feature vector
b The dimension of a edge feature vector
X gnxd Feature matrix of a graph
Xy €4 Feature vector of node v
X%y €7 Feature vector of edge e,
hy €° Hidden feature vector of node v
my €° Message feature vector to node v
hg €° Feature vector of the graph G
hyp €9 Hidden feature vector of edge ¢,
My €4 Message feature vector to edge e,
W Weight matrix of a neural network
A € {1,03"FI" " Adjacency matrix
RMSE Root mean squared error
GNN Graph neural network
GIN Graph isomorphic network as in [19]
€ Epsilon as described in [19]
D-MPNN directed-edge message passing network as in [1]
D-GIN directed-edge graph isomorphic network
CI 95% confidence interval calculated via bootstrapping
f() Feed forward neural network

2.1. Experimental data

A total of 10,617 molecules annotated with experimentally derived logD and logP
values or logS and logP values were used for model training and predictions. The
selected molecules were derived from the Delaney lipophilicity data set containing
experimentally evaluated logD and logP values at pH 7.4 [27] and an aqueous solubility
set with logS and logP values [28]. Each data set was evaluated and molecules were
neutralized in both sets. For the aqueous solubility data, salts were stripped off and
molecules with logS values lower than -10.0 or higher than 0.0 were removed. The
original preprocessed and postprocessed data can be found in the GitHub repository
[29]. The splitting of each data set into three subsets for training, evaluation, and testing
was done randomly in a ratio of 81:9:10 for the (training, evaluation, and testing). The
data splitting was performed with the same seed for each of the models to be able to
compare them using the exact same training, evaluation, and test data. The minimum
value of each of the logD, logP, and logS properties was used as an offset to ensure
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only positive property values. The resulting lipophilicity data set consisted of 4174
compounds. 3380 were used for training, 376 for evaluating and model selection, and
418 for testing. The post processed solubility data set contained 6,443 molecules. 5,219
compounds were allocated for training, 579 for evaluation, and model selection, and 645
for testing

2.2. Training approaches

The training strategies differ in the used data set and the training target (logD, logP,
or logS). Under these constraints, seven different types of strategies were used. The first
multi-task learning strategy used a combined approach of logD, logP, and logS values
referred to as “logD/P/S”. Three additional multi-task strategies utilized a combination
of two physicochemical properties and are notated as either “logD/P”, “logD/S”, or
“logS/P”. Three other single task strategies are only learned on a single physicochemical
property and are referred to as either “single task logD”, “logP”, or “logS”. When
physicochemical properties from different data sets were used, the individual data sets
were first split into training, evaluation, and test sets. Afterward each physicochemical
property was evaluated and tested individually so that the evaluation and test results of
the multi-task learning approaches can be compared to those with a single-task learning
strategy.

When testing either single-, or multi-task models, the combined root mean squared
error (RMSE) for all properties was calculated as the measure for the best model. For
logP, we only used the results from either the first multi-task approach (“multi-task
logS/D/P”) or the single-task approach with logP values. The reasoning behind this
was to use the same test and evaluation data for all models while trying to avoid an
unbalanced data bias in favor of logP values. When training with two physicochemical
properties where one was logP, we only used the data that had both properties. E.g.
when training on the lipophilicity data set which hat logP and logD values, we did not
include logP compounds from the aqueous solubility dataset and vice versa.

2.3. Molecular graphs

A graph is defined as G = (V, E), where V is a set of nodes and E denotes a set of
edges. Let v € V be a node with feature vector x, and e, € E be an edge pointing from
u to v with feature vector x¢,,. The adjacency matrix A shows the connectivity of the
nodes and in our case it was binary as we did not weigh any connections. It is defined
as a n X n matrix with A,, = 1ife,, € Eand A,, = 0if e, ¢ E. We use directed,
heterogeneous graphs where e,, # ¢,,,. Heterogeneous graphs contain different types
of nodes and edges with their corresponding featurizations.

2.4. Molecular featurization

Five different types of edge and vertex featurizations X were being used for the
GNNs. The detailed description of x and x¢ can be found in Tables 6 to 11 in the SI. The
feature vectors for the non-GNN models consist of 8 different settings - fingerprints
(ECFP or MACCSKeys - shown in Table 12 in the SI) used either in combination with
standardized RDKit[30] descriptors or without the descriptors. The descriptors were a
combination of all possible and standardized RDKit descriptors, which had a total length
of 208. The parametrization of the ECFP was either 1024, 1536, or 2048 bits with a radius
of 4. Featurization 3 (Table 6 in the SI) and 4 (Table 7 in the SI) only differ in the way the
size of ring systems are being represented. Either as a float value calculated by 1 divided
by the size of the ring or as a one-hot encoding with 10 possibilities. The node and edge
featurization in 5 (Table 8 in the SI) includes two node features (chemical element and
formal charge) and one edge feature (bond order). Featurization 6 (Table 9 in the SI)
includes the same node description as 5 and the edge featurization of 3. Featurization 7
(Table 10 in the SI) has the same node featurization as 3 and the same edge featurization
as 5. Featurization 8 (Table 11 in the SI) includes a set of optimized node and edge



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 October 2021

7 of 43

features. This was done by using a trained D-GIN model and then removing one node or
edge feature at a time and observing the RMSE of the prediction. The five node features
and the three edge features that had the biggest impact on the RMSE were then taken as
the featurization. The graphs and their featurization were implemented using python
version 3.7.8 and the toolkit CDPKit[31].

2.5. Directed-edge GIN (D-GIN) and reference models

D-GIN is an extension of the directed-edge message passing neural network of
Yang et al. [1] without the additional feature engineering in combination with the graph
isomorphic network (GIN) of Xu et al. [19]. Its high level representation can be seen in
Figure 1. The principle construction of the network can be seen in the Equations 1 to 8.
First, the directed edges were initialized as

h(l)lw = T(Winit(cat(xu/ xeuw))) 1

followed by at €1, ..., T iteration of

Y K, ift==0.

(t+1) keN(u)/w
m = 2
" Y hi, otherwise. @)
keN(u)/w
M = T (o + Wontll) ©

after which the messages for each directed-edge was being summed as

my =Y hl, @)

weN (u)

then the message m, was being concatenated as

. cat(my, xy), if D-GIN. 5)
“ | (Wagg(cat(my, x,)),  if D-MPNN.
and another message passing over I € 1, ..., T, was performed by
Y. hw, if D-GIN.
hD = weNw) ®)
Xu, if GIN.

afterwards the updated feature vectors hZo 4 of each node were aggregated over the
whole molecule as
he= Y, h ®)

he(HM)

The readout phase was then defined as = f(hg) where f(-) was a feed-forward neural
network. The D-MPNN consisted of Equations 1 to 5 but then used the hidden feature
vectors for each node directly by applying Equation (5) and then immediately Equation
(7) to encode the whole graph as hg.

GIN on the other hand was initialized and trained as shown in Equation (6) in order
to update the hidden feature vectors of each node. Afterwards 1 update steps, the hidden
feature vector of each node served as the input of Equation (7) to get the aggregated
representation /i for the whole graph. D-GIN used all of these functions in a combined
way described above (Equations 1 to 8). The main principle behind this approach was to
first use the key aspect of directed-edge message passing to propagate information via
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directed-edges to form messages (Equations 1 - 4), which then updated the hidden node
features (Equations 5). These updated hidden node features were then used in the GIN
message passing to further propagate information (Equations 6 and Equations 7) while
also learning €. These two information propagation phases are the key aspects of the
two different sub-architectures.

2.6. Graph neural network implementation, training and hyper-parameter search

All GNNs have been implemented and trained using python version 3.7.8 and
TensorFlow 2.3.0 [32]. We used TensorFlow’s keras models as our super-class and then
transferred Equation 1 - 8 into the "fit" method of the keras model. A hyper-parameter
search was conducted to find the best parameters which were further used to train all
models. Further details on the hyper-parameters are given in the corresponding model’s
configuration files accessible via the graphyetworksGithubrepository[29].

Each GNN model type was trained twice with either 24 different settings when
training on the logD or logS property or 12 on the logP property - in total 48 or 24 training
runs per model type were performed. Each non-GNN model type was trained with 8
different settings. For training, evaluation, and testing we split each of the data sets as
described in section Experimental data. Each of the GNNs were trained for 1600 epochs
and the model with the best performance was identified using RMSE as the evaluation
metric on the validation set. . To evaluate the model type performance, we used the
model with the best RMSE of the two runs performed for each model setting. When
evaluating the average model type performance, the average RMSE of the different
model settings was used for the calculation. To evaluate models with several properties,
we summed all RMSEs. E.g. when using logD and logP for training, we summed the
RMSE of the logD and logP prediction on the evaluation set to receive a combined RMSE.
When the combined RMSE was below the last best combined RMSE, the model weights
were saved. We used these models to test the model on the test set. Each model was run
two times and the results with the best test set performance were taken.

Additionally, the 95% confidence interval range was calculated by applying boot-
strapping 100 times while leaving out 10% of the test data set.

To generate consensus models between GNN and non-GNN models, we combined
the best GNN model for each physicochemical property with the best non-GNN model.
We did this by adding the predicted log values of one model with the other and then
divided it by two. These hybrid models are then called according to their GNN model
type plus consensus (e.g. D-GIN cons.).

2.7. Other machine learning approaches

We used the random forest (RF), support vector machine (SVM), and k-nearest
neighbor (K-NN) implementations of scikit-learn (Version 0.23.2 [33]). Default hyperpa-
rameters were used. The featurization is described in Table 12. When using descriptors
as input, we standardized them with the scikit-learn StandardScaler. For the fingerprints
and descriptors we used version 2020.09.2 of the RDKit [30] python package. Each of
the models were trained in a single-task manner for each of the property values.

2.8. Hardware and run-time

Calculations were performed on machines within the Department of Pharmaceutical
Sciences at the University of Vienna, Austria. We ran each model on a single CPU (Intel(R)
Core(TM) i7-8700K CPU @ 3.70GHz). The run-time to fit the used RF, SVM, and KNN
models with 3380 compounds on logD property values is approximately 50 seconds
(RF), 25 seconds (SVM), and 0.5 seconds (KNN). When training the GNN model types
on the 3380 logD compounds it takes for each epoch approximately 56 seconds (D-GIN),
35 seconds (D-MPNN), and 28 seconds (GIN).
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3. Results and discussion

For clarity, we define certain terms used throughout this publication that might
have ambiguous meanings. The term “model type” refers to different kinds of machine
learning algorithms. E.g., a model type can be RF, SVM, KNN, D-GIN, GIN, or D-
MPNN. The term “model” refers to a trained model instance with particular training
and featurization strategies. The term “training strategy” is used to distinguish between
different single- and multi-task training approaches trained with a combination of
molecular properties. E.g., logD/S/P is used to show that logD, logS, and logP values
were used during training. The term “featurization strategy” is used to describe the
different node and edge features utilized for the models to train on (Tables tables
6 to 11 in the SI). In addition, we distinguish between consensus (cons.) and non-
consensus models. These hybrid models are a combination of the best GNN and best
non-GNN models (SVM D-GIN for logD and logS and RF D-GIN for logP). To obtain
consensus predictions, the predicted property values of the two models were combined
and averaged. The averaged values were used as “new” predictions for the RMSE
calculation and referred to their GNN model type plus cons (e.g., D-GIN cons).

Overall 6 different machine learning model types were used in this study. The
three GNN model types were D-MPNN, GIN, and D-GIN. The three non-GNN model
types were random forest (RF) regression, support vector machines (SVM), and the
k-nearest-neighbor (KNN) algorithm. Each model type was trained with the same hyper-
parameters, but 7 different learning strategies and 6 different node/edge featurization
strategies. We trained each GNN model type for each physico-chemical property with
all possible strategies twice. Subsequently, the best performing model from each of the
two runs (measured on the evaluation set) was selected resulting in 24 models for the
logD and logS property and 12 for the logP property, which were then used on the test
set and their performance was reported.

The results of this approach are reported and discussed in two parts. First, we
discuss different GNNs and non-GNN methods used in this work to identify the best
performing model type according to its average performance across all used strategies
(discussed in section General model performance). Subsequently, we investigate the
impact of the 6 different training strategies (i.e., multi-task vs. single task learning)
as well as different featurizations on the performance (discussed in sections Impact of
molecular featurization and Impact of training strategies).

A data set of 10,617 molecular structures with annotations for one of the three
physico-chemical properties was assembled for model training, evaluation, and testing.
It included 4,174 logD, 6,443 logS, and 10,617 logP experimentally measured values. The
same training/evaluation/test set was used for all GNN and non-GNN model types.

3.1. General model performance

In the following, the reported results vary by the used model type. Each combi-
nation of featurization and training strategy was used to calculate a total of 24 RMSE
values for the logD and logS property, and 12 for the logP property per model type.
This resulted in a RMSE distribution shown in Table 2 and Figure 2. For each of these
distributions, the average, minimum, and maximum RMSE was calculated and will be
reported and discussed subsequently.
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Table 2: Overview of the best performing machine learning model types independent of
training and featurization strategy for prediction of logD, logS and logP. The performance
was calculated as the distribution average over all used model RMSE (root mean squared
error) values. In total 24 models were used for the loD and logS property, and 12 for
the logP property. RMSE values highlighted in dark and light gray show the best and
next best models. Red asterisks mark the lowest RMSE for the non-consensus models

for each property prediction.

molecular model tvpe mean min max
property yP RMSE RMSE RMSE
D-GIN 0.615 + 0.039* 0553 0.704
D-MPNN 0.762 +0.065 0.686 0911
GIN 0.804 +0.061 0738 0911
lowD RF 0.780 + 0.084  0.699  0.890
08 SVM 0.740 + 0.068  0.639 0.814
KNN 0.951 +0.067 0.801  1.003
D-GIN cons. 0575990019 0548  0.622
D-MPNN cons.  0.647 +0.028  0.613  0.710
GIN cons. 0.666 + 0.029  0.627  0.719
D-GIN 0.867 = 0.070*  0.795  1.061
D-MPNN 0.896 + 0.030 0.857  0.961
GIN 1.210 £ 0.102  1.088  1.400
losS RF 0997 + 0253 0.760 1.284
08 SVM 1.006 £ 0.154  0.729  1.162
KNN 1500 £ 0217 1.057 1.676
D-GIN cons. 0.738 £0.028 " 0.705 0.820
D-MPNN cons.  0.762 +0.012  0.743  0.785
GIN cons. 0.881 +0.045 0.825  0.969
D-GIN 0529 + 0.064* 0472 0.662
D-MPNN 0.600 + 0.063 0540 0.734
GIN 0.784 +0.077 0716  0.901
oo RF 0.681 0224 0470 0.928
08 SVM 0.693 +0.134 0.493  0.833
KNN 1.014 +£0.123 0743  1.102
D-GIN cons. 04550028 0428 0515
D-MPNN cons.  0.475 + 0.027 0.443  0.532
GIN cons. 0566 +0.034 0533 0.618
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Figure 2. LogD, logS and logP property prediction results for GNN and non-GNN model types
with different featurization and training strategies. The different GNN architectures are colored
in blue (D-GIN), orange (D MPNN) and green (GIN), the non-GNN architectures in gray (SVM),
salmon pink (RF) and red (KNN) For logD and logS,, 24 individual RMSE values were calculated
for each model type. For logP 12 individual RMSE values were calculated. The individual boxplots
show the average value of each model type as white dot and the median as a dark gray line. The
values are listed in Table tables 13 to 16, tables 17 to 20, and tables 21 to 24 in the SL.
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Table 2 shows the RMSE distribution average of the different machine learning
model types regardless of their training and featurization strategy on the hold-out test
set. For each value the standard error of the mean was calculated and added.

For logD property prediction, the D-GIN model type performed with mean, mini-
mum, and maximum logD RMSE of 0.615 + 0.039, 0.553, and 0.7048, and the correspond-
ing consensus model with 0.575 + 0.0192, 0.548 and 0.622, making it the best performing
model type (results shown in Table 2, and Figure 2). The consensus GIN performed on
average (distribution mean of logD RMSE values of 0.666 + 0.029) better than the best
non-GNN method (distribution mean logD RMSE of 0.740 + 0.068).

For the logS prediction, the best model type was the D-GIN consensus model with
a average RMSE value of 0.738 + 0.028 (shown in Table 2 and Figure 2). It performed on
average better than the best performing non-GNN model type (SVM), which performed
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with an average RMSE value of 1.006 + 0.154 (but it also had a single run with a RMSE
value of 0.729 making it the model type with the best single run performance and high-
lighting the importance of multiple repetitions for reporting model type performances).
The consensus D-MPNN also outperformed the D-GIN.

The consensus D-GIN (average RMSE value of 0.455 + 0.028) and consensus D-
MPNN (average RMSE value of 0.475 + 0.027) showed the best average performance for
logP prediction (Table 2, and Figure 2). The RF and SVM model types also performed
with low minimum RMSE values of 0.470 and 0.493, respectively. However, their average
RMSE values (RF: 0.681 + 0.224 and SVM: 0.693 + 0.134) were higher than the D-GIN
and D-MPNN model types.

Consensus models are often used in deep learning applications typically combining
either different models that were trained on slightly different training data or multiple
model architectures with different strengths and weaknesses. Nevertheless, further
investigations are required to give a rationale of why in all our invested cases, the
consensus models performed better than their individual counterparts. Furthermore,
it should be noted that a direct comparison between the average performance of the
GNNs and non-GNN models (RF, SVM and KNN) can be difficult since the amount of
information about a single molecule fed to each of the different model classes is quite
different. E.g. the non-GNN methods used a wide range of different descriptors and
fingerprints shown in Tale 12.

Figures 3 to 5 show the best performing model architectures for prediction of
each physicochemical property. Each plot shows the RMSE values for each GNN model
applying all training and featurization strategies. It should be noted that the performance
of many model types with different training/features do not significantly differ from
each other and their CI overlap. Some trends are still visible: in Figures 3 to 5, regardless
of the physicochemical property, the D-GIN model type (shown in blue) performs overall
better than the D-MPNN (shown in orange) or the GIN (shown in green).

The reason why the D-GIN outperforms the GIN and D-MPNN could be its higher
complexity and network depth. It uses the key aspects of both sub-models and might
be able to better abstract higher-order features. This could be facilitated by including
skip connections between edge feature extraction mainly done in the first (D-MPNN)
and node feature extraction while learning € in the second (GIN) part. This increased
complexity could have helped to perform better than its individual parts.
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Figure 3. LogD prediction results for each GNN model instance. The left y-axis specifies the logD
RMSE and the right, secondary x-axis the corresponding r? values for each GNN model. D-GIN
is colored blue, D-MPNN orange and GIN green. Each of the bars represent a different trained
model - a detailed description can be found in Figure Al in the SI. The accumulated kernel density
for each model type is shown on the very left side. The red lines correspond to the 95% confidence
intervals. The model names are a combination of model type (D-GIN, GIN, D-MPNN)), training
approach and featurization type - a detailed description of each model name can be found in
Tables tables 13 to 24 in the SL.
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Figure 4. LogS prediction results for each GNN model instance. The left y-axis specifies the logS
RMSE and the right, secondary x-axis the corresponding r? values for each GNN model. D-GIN
is colored blue, D-MPNN orange and GIN green. Each of the bars represent a different trained
model - a detailed description can be found in Figure A3 in the SI. The accumulated kernel density
for each model type is shown on the very left side. The red lines correspond to the 95% confidence
intervals. The model names are a combination of model type (D-GIN, GIN, D-MPNN), training
approach and featurization type - a detailed description of each model name can be found in
Tables tables 13 to 24 in the SL
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Figure 5. LogP prediction results for each GNN model instance. The left y-axis specifies the logP
RMSE and the right, secondary x-axis the corresponding r? values for each GNN model. D-GIN
is colored blue, D-MPNN orange and GIN green. Each of the bars represent a different trained
model - a detailed description can be found in Figure A2 in the SI. The accumulated kernel density
for each model type is shown on the very left side. The red lines correspond to the 95% confidence
intervals. The model names are a combination of model type (D-GIN, GIN, D-MPNN)), training
approach and featurization type - a detailed description of each model name can be found in
Tables tables 13 to 24 in the SI.
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3.2. Impact of molecular featurization

The average performance of each featurization strategy across all model types and
training strategies is shown in Table 3. Considering the performance for all physicochem-
ical properties, featurization strategy 5 showed the highest RMSE (mean logD/logS/logP
RMSE of 0.813 + 0.099, 1.099 + 0.180, and 0.760 + 0.110). This trend was also observed
when separating according to the model type (shown in Table 4 and Figure 6). The reason
for the relatively bad performance of featurization 5 might be that it only included two
node properties (chemical element and formal charge) as well as only a single edge
feature (bond order - Table 8 in the SI).

Featurization 6 (Table 9 in the SI) also displayed considerably worse performance
than other strategies when used in combination with the GIN architecture, for which
the mean RMSE performance for logD and logS properties were worse than using
featurization strategy 5. One explanation could be that the GIN utilizes node features
quite extensively and featurization 6 only included two node feature types similar to
featurization 5. The additional edge features in strategy 6 without the appropriate
architecture to deal with them could push the optimizer of the GIN network into the
wrong direction rather than help with the property prediction.
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Figure 6. LogD, logS and logP prediction results for all GNN model types depending on the
featurization used (see section Molecular featurization for a detailed description). The mean is
shown as a white dot whereas the median is shown as a dark gray line. Exact values are listed in
Tables tables 13 to 16, tables 17 to 20, and tables 21 to 24 in the SI.
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While it is easy to identify bad featurization strategies, it is difficult to come up
with an unambiguous recommendation for the best performing featurization strategy.
The mean RMSE across all training strategies and model types in Table 3 show that
featurization 3 and 4 (Tables 6 and 7 in the SI) achieved very good results for logD with
a RMSE value of 0.689 + 0.079 and 0.694 + 0.072, for logS with a RMSE 0.954 + 0.146 and
0.948 + 0.142 and for logP with a RMSE 0.596 + 0.120 and 0.591 + 0.105 respectively. Both
featurization strategies utilize the maximum number of node and edge features used in
this work. They only differ in the way molecular ring sizes are described. Featurization
3 used a float value calculated by 1 divided by the size of the ring system whereas
featurization 4 used a one-hot encoding of ten instances (0,3,4,5,6,7,8,9,10,11).

Table 4 shows the mean RMSE values concerning featurization and model type.
As performance criteria for featurization strategies we used the sum of model ranks
in Table 4. Apllying this approach, featurization 3 with two models as best and three
models as second-best performers achieved a better ranking than featurization 4 with
one model ranked best and two models as second best. Both strategies perform similarly
well. Featurization 8 (shown in Table 11 in the SI) used a set of optimized node and edge
features. Node/Edge features were optimized by masking single edge/node features at
a time and evaluating their impact on the test set RMSE. The five node features and the
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three edge features that had the biggest impact on the RMSE were subsequently used.
This approach also revealed that the size of ring systems for the node features appears to
be of importance and was therefore included in 8. Using featurization 8 we were able to
achieve two times the second-best performance. It shows an average good performance,
but not as good as featurizations 3 or 4 even though its edge /node features were selected
for maximum impact on the final prediction. The mean RMSE of featurization 6 and 7
(Table 10 in the SI) in Table 3 show diminished results compared to featurization 3 and 4.

When evaluating the rank score, the featurization strategy that performs either
best or second-best for each physicochemical property, the best featurization strategy
was number 6. It was used in four of the best performing runs and once in a second-
best run. But it only performed well in combination with two GNN architectures
(D-GIN and D-MPNN) and strongly underperformed with the GIN. The D-GIN and D-
MPNN architecture types use primarily edge features for their information propagation
and featurization strategy 6 provided these. It utilized only two-node feature types,
potentially reducing the noise for the feature extraction to a minimum in this setting.

On average, featurization strategies 6 and 7 performed similarly well. However,
when separating the results at a model type level, it became evident that there was a
strong model architecture dependency, so it seems important to choose the features
according to the architecture at hand (Figures 3 to 5). Furthermore, featurization 3 might
perform worse than featurization 6 or 7. Nevertheless, when unsure which features to
use, simply adding more features could be the safer option rather than using less. This
observation is also supported by comparing featurization 3 or 4 to e.g., 6,7 or 8.

When analyzing the results for the non-GNN models and their different featuriza-
tions, the mean RMSE variance was large in comparison to the GNN models. Moreover,
in similar deep-learning benchmark studies that predicted molecular properties, pre-
dominantly fingerprints have been used. From Table tables 18 to 20 in the SI, one can see
that especially featurizations that include descriptors in addition to fingerprints perform
exceptionally well. We think that when comparing GNN with non-GNN models, differ-
ences in used features should be taken into consideration when trying to identify and
understand (deep-learning) method performance.

3.3. Impact of training strategies

The impact of different training strategies are shown in Table 3. The lowest mean
logD RMSE can be obtained by a multi-task strategy that involves learning on both
logD and logP values. This is similar to the best training strategy for the logS property,
which is a multi-task approach including logS and logP properties. As for the logP
property, the best approach is a single-task strategy including logP values, however the
multi-task approach which combines all physicochemical properties achieves similarly
good performance.

When analyzing the logD/S/P RMSE predictions with respect to training strategy
and model type, Table 5 and Figures figs. 7 to 9 show that there is no particularly
favorable learning strategy for any of the model types. The data sets used in this study
are specific for one particular physicochemical property. When comparing different
learning strategies we thus focused on one particular physicochemical property for each
model type. Starting with the results for the prediction of the logD property in Table
5, we can see that the overall best model (red asterisk), as well as the two best models
for each model type (dark gray), are multi-task models. In particular, the models with a
combination of logD and logP properties perform well.

Considering all combinations of training and featurizations strategies for each
model, the learning strategy with the best average, as well as the best minimum logD
RMSE was obtained using the logD /P multi-task training approach resulting in RMSE
values of 0.719 + 0.105 and 0.553, respectively (Table 3. Yet, using this multi-task learning
strategy we also obtained single run performance worse than using a single-task learning
strategy with only logD values, showcasing once more the importance of validating
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multiple learning and featurization strategies. The results are similar for the prediction
of logS values: again, the multi-task learning strategy performs better than its single task
counterpart. The best model for logS prediction was obtained by training on logD, logS,
and logP values. Considering all combinations of training and featurization strategies for
each model, the best average, minimum and maximum logS RMSE of 0.979 + 0.166, 0.795
and 1.325 respectively was observed during the multi-task training with all properties.
We should note here that while it seems that the average performance is improved by
multi-task learning, the variance of model performance is also increased.

Figure 7. LogD prediction results for all GNN model types according to the used training strategy.
Blue box shows the performance of the multi-task training strategy using logD, logS and logP. The
green and orange box show the results utilizing a combination of logD and logP and logD and
logS for training. The salmon pink box shows the results using logD for training. The mean is
shown as a white dot whereas the median is shown as a dark gray line. Exact values are listed in
Table tables 13 to 16 in the SI.
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Figure 8. LogS prediction results for all GNN model types according to the used training strategy.
Blue box shows the performance of the multi-task training strategy using logD, logS and logP. The
gray and orange box show the results utilizing a combination of logS and logP and logD and logS
properties respectively. The red box shows the results using logS for training. The mean is shown
as a white dot whereas the median is shown as a dark gray line. Exact values are listed in Table
tables 17 to 20 in the SL
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Figure 9. LogP prediction results for all GNN model types according to the used training strategy.
Blue box shows the performance of the multi-task training strategy using logD, logS and logP.
The dark orange box shows the results using logP for training. The mean is shown as a white dot
whereas the median is shown as a dark gray line. Exact values are listed in Table tables 21 to 24 in

the SI.
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4. Conclusions

We introduced the directed-edge graph isomorphism network (D-GIN), a novel
graph neural network that showed improved average performance for aqueous solu-
bility and lipophilicity prediction compared with other baseline models. We showed
that by combining different models with distinct key characteristics, we can increase the
depth of the model while also improving its predictive power. Furthermore, applying
different training strategies and featurizations constraints enables to obtain more infor-
mation regarding general, average model performance. This strategy showed that the
D-GIN model outperforms other machine-learning models on average and argued that
comparing the mean performance rather than single metric values of the best performing
model type gives more insight into the general behavior and ultimately facilitates a
better understanding and higher robustness of deep-learning models.

In concurrence to previous publications, ([34],[35],[36]) we showed that there is a
tendency towards multi-task learning approaches for the GNNs utilized in this survey.
On average they performed better than their single-task counterpart for the correspond-
ing physicochemical property. We could not find clear evidence that more than two
properties increase the model’s performance.

Furthermore, we highlighted that the usage of additional features did not improve
the GNN model performance. But also conclude that very little featurization lead to the
worst performance. In general it is necessary to be aware of the type of GNN that is
used and whether its architecture focuses more on edge or node features. When trying
to obtain the best performing model it can be advisable to do feature engineering, but
when in doubt which features to use, it can be safer to use more than less. We showed
that this awareness can help improve the GNNs predictive power at hand.

For the non-GNN models, we could conclude that by excessively adding descriptors
to the molecular fingerprint the performance of these models increases substantially.
We further argued that for future comparisons it would be advisable to include not
only fingerprints but also descriptors to the non-GNN baseline models to be more
competitive.

By combining the best GNN model with the best non-GNN model we could see
a slight improvement in the overall performance in all cases. Consensus models have
often shown to improve performance. However in this case, further investigations are
needed to get to a conclusion on why this is the case.

We showed that advanced deep-learning methods such as GNNs do have great
potential in the physicochemical property prediction area and, when applied properly,
can serve as a promising and robust method for any computer-aided drug discovery
pipeline, especially for chemical property prediction.
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Appendix A

The appendix includes informational materials that show the featurization of the
GNN and non-GNN baseline models in Table 12, in Figures A1, A3 and A2 the individual
models and their corresponding names can be seen. These are the same Figures as in the
main body but include the unique identifiers. These identifiers show what kind of model
type, featurization and training approch was used when looked up in Tables tables 13
to 24. The run-time to fit the used RF, SVM and KNN models with 3380 compounds
on logD is approximately 50 seconds (RF), 25 seconds (SVM), and 0.5 seconds (KNN).
When training the GNN model types on the 3380 logD compounds it takes for each
epoch approximately 56 seconds (D-GIN), 35 seconds (D-MPNN), and 28 seconds (GIN).

Table 6: Node and edge featurization of type 3. Each node or edge featurization vector
consited of a concatenation of the different one-hot encoded or floating point feature
vectors according to their possible states (if present) and corresponding size - 36 for
nodes and 20 for edges.

Feature Possible states Size
chemical element H,C,N,O,S,FEP.Cl,BrlI 10
calculated formal charge -2,-1,0,1,2 5
CIP configuration R,S,None,either 4
hybridization state sp,sp2,sp3,sp3d,sp3d2,none 6
amide center yes,no 2
present in aromatic ring  yes,no 2
ring size 1/size 1
nr. of hydrogens 0,1,2,3,4,5 6
bond order 1,2,3 3
conjugated yes,no 2
rotate-able yes,no 2
amide bond yes,no 2
present in aromatic ring  yes,no 2
present in ring yes,no 2
ring size 1/size 1
CIP configuration none,E,Z trans,cis,either 6
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Table 7: Node and edge featurization of type 4. Each node or edge featurization vector
consited of a concatenation of the different one-hot encoded or floating point feature
vectors according to their possible states (if present) and corresponding size - 45 for

nodes and 29 for edges.
Feature Possible states Size
chemical element H,C,N,O,S,FP.Cl,Br,I 10
calculated formal charge -2,-1,0,1,2 5
CIP configuration R,S,None,either 4
hybridization state sp,sp2,sp3,sp3d,sp3d2,none 6
amide center yes,no 2
present in aromatic ring  yes,no 2
ring size 0,3,4,5,6,7,8,9,10,11 1
nr. of hydrogens 0,1,2,3,4,5 6
bond order 12,3 3
conjugated yes,no 2
rotate-able yes,no 2
amide bond yes,no 2
present in aromatic ring  yes,no 2
present in ring yesno 2
ring size 0,3,4,5,6,7,8,9,10,11 1
CIP configuration none,E,Z trans,cis,either 6

Table 8: Node and edge featurization of type 5. Each node or edge featurization vector
consited of a concatenation of the different one-hot encoded or floating point feature
vectors according to their possible states (if present) and corresponding size - 15 for
nodes and 3 for edges.

Feature Possible states Size
chemical element H,CN,OSFEPCLBrI 10
calculated formal charge -2,-1,0,1,2 5
CIP configuration - -
hybridization state - -

amide center - -
present in aromatic ring - -
ring size - -
nr. of hydrogens -

bond order 1,2,3 3
conjugated - -
rotate-able - -
amide bond - -
present in aromatic ring - -
present in ring - -
ring size - -
CIP configuration - -
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Table 9: Node and edge featurization of type 6. Each node or edge featurization vector
consited of a concatenation of the different one-hot encoded or floating point feature
vectors according to their possible states (if present) and corresponding size - 15 for

nodes and 20 for edges.
Feature Possible states Size
chemical element H,C,N,O,S,FPCl,Brl 10
calculated formal charge -2,-1,0,1,2 5
CIP configuration - -
hybridization state - -

amide center - -
present in aromatic ring - -
present in ring - -
nr. of hydrogens -

bond order 12,3 3
conjugated yes,no 2
rotate-able yes,no 2
amide bond yes,no 2
present in aromatic ring  yes,no 2
present in ring yes,no 2
ring size 1/size 1
CIP configuration none,E,Z trans,cis,either 6

Table 10: Node and edge featurization of type 7. Each node or edge featurization vector
consited of a concatenation of the different one-hot encoded or floating point feature
vectors according to their possible states (if present) and corresponding size - 36 for
nodes and 3 for edges.

Feature Possible states Size
chemical element H,C,N,O,S,FP.Cl,BrI 10
calculated formal charge -2,-1,0,1,2 5
CIP configuration R,S,None,either 4
hybridization state sp,sp2,sp3,sp3d,sp3d2,none 6
amide center yes,no 2
present in aromatic ring  yes,no 2
ring size 0,3,4,5,6,7,8,9,10,11 1
nr. of hydrogens 0,1,2,3,4,5 6
bond order 12,3 3
conjugated - -

rotate-able - -
amide bond - -
present in aromatic ring - -
present in ring - -
ring size - -
CIP configuration - -
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Table 11: Node and edge featurization of type 8. Each node or edge featurization vector
consited of a concatenation of the different one-hot encoded or floating point feature
vectors according to their possible states (if present) and corresponding size - 26 for
nodes and 7 for edges.

Feature Possible states Size
chemical element H,C,N,O,S,F,PCl,Brl 10
formal charge -2,-1,0,1,2 5
CIP priority rule R,S,None,either 4
hybridization state  sp,sp2,sp3,sp3d,sp3d2,none 6
amide center - -
aromaticity - -
ring size float (1/size) 1
nr. of hydrogens - -
bond order 1,23 3
conjugated - -
rotate-able yes, no 2
amide bond - -
aromaticity - -
present in ring yes, no 2
ring size - -
CIP priority rule - -

Table 12: Non-GNN featurization. The identifier is used as reference.

identifier | fingerprint radius nr. bits descriptor
10 ECFP 4 1024 No
11 ECFP 4 1536 No
12 ECFP 4 2048 No
13 MACCSKeys - - No
14 ECFP 4 1024 Yes
15 ECFP 4 1536 Yes
16 ECFP 4 2048 Yes
17 MACCSKeys - - Yes
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Figure A1. The left y-axis specifies the logD RMSE and the right, secondary x-axis the correspond-
ing 2 values for each GNN model. The D-GIN is colored blue, the D-MPNN orange and the GIN
green. Each of the boxes represents one different model run. The kernel density of each model
is shown on the very left side. The red lines correspond to the 95% confidence intervals. The
model names are a combination of model type (D-GIN, GIN, D-MPNN), training approach and
featurization type - a detailed description of each model name can be found in Tables tables 13

to 24 in the SI.
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Figure A2. The left y-axis specifies the logP RMSE and the right, secondary x-axis the correspond-
ing 2 values for each GNN model. The D-GIN is colored blue, the D-MPNN orange and the GIN
green. Each of the boxes represents one different model run. The kernel density of each model
is shown on the very left side. The red lines correspond to the 95% confidence intervals. The
model names are a combination of model type (D-GIN, GIN, D-MPNN), training approach and
featurization type - a detailed description of each model name can be found in Tables tables 13

to 24 in the SI.
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Figure A3. The left y-axis specifies the logS RMSE and the right, secondary x-axis the correspond-
ing 2 values for each GNN model. The D-GIN is colored blue, the D-MPNN orange and the GIN
green. Each of the boxes represents one different model run. The kernel density of each model
is shown on the very left side. The red lines correspond to the 95% confidence intervals. The
model names are a combination of model type (D-GIN, GIN, D-MPNN), training approach and
featurization type - a detailed description of each model name can be found in Tables tables 13
to 24 in the SI.
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Table 13: Shows the log D RMSE and r? results for the D-GIN model type used during
this survey. The last column consist of the unique identify. Training strategy 0 represents
a training strategy combining logD, logS and logP, 1 represents a strategy combining
logD and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using
logS and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and

6 represents a strategy using logP.

model training featurization logD r? unique
type strategy strategy RMSE ID

D-GIN 2 5 0.679 +0.034 0.652 +0.035 dg522
D-GIN 2 8 0.596 + 0.026 0.728 +0.021 dg822
D-GIN 2 4 0.587 £ 0.029 0.736 & 0.020 dg422
D-GIN 2 3 0.582 £0.035 0.746 +0.027 dg322
D-GIN 0 3 0.582 £0.038 0.744 +0.031 dg302
D-GIN 0 6 0.581 +0.028 0.755 +£0.021 dg602
D-GIN 0 4 0.598 +0.029 0.728 +0.027 dg402
D-GIN 4 3 0.601 +0.057 0.731 £0.052 dg341
D-GIN 0 8 0.579 +0.043 0.745+0.033 dg801
D-GIN 1 3 0.575+£0.044 0.749 +£0.035 dg312
D-GIN 1 8 0.605 £ 0.053 0.722 +0.046 dg811
D-GIN 4 6 0.596 +0.058 0.729 +0.062 dg642
D-GIN 1 4 0.606 = 0.052 0.725+0.053 dg411
D-GIN 1 7 0.615+0.051 0.713 £0.045 dg712
D-GIN 4 4 0.622 £0.065 0.707 +0.065 dg442
D-GIN 2 7 0.626 +0.023 0.704 £ 0.022 dg721
D-GIN 4 8 0.629 +0.068 0.700 + 0.068 dg841
D-GIN 4 7 0.645 +0.043 0.685 + 0.048 dg741
D-GIN 4 5 0.660 & 0.067 0.669 = 0.071 dgb42
D-GIN 0 7 0.661 £0.039 0.666 +0.034 dg701
D-GIN 1 5 0.685 £0.052 0.643 £0.074 dg512
D-GIN 1 6 0.553 £ 0.049 0.767 +0.053 dg612
D-GIN 0 5 0.704 £ 0.027 0.632 +0.024 dg502
D-GIN 2 6 0.592 +0.030 0.734 +0.024 dg622
D-GIN cons. 2 5 0.605 +0.032 0.719 +0.031 dg522_cons
D-GIN cons. 0 5 0.622 £0.030 0.704 + 0.027 dg502_cons
D-GIN cons. 0 7 0.603 £ 0.030 0.722 +0.025 dg701_cons
D-GIN cons. 1 5 0.609 +0.056 0.714 +0.062 dg512_cons
D-GIN cons. 1 6 0.548 +0.051 0.769 +0.049 dg612_cons
D-GIN cons. 4 7 0.589 4+ 0.045 0.734 +0.043 dg741_cons
D-GIN cons. 1 3 0.561 £0.047 0.758 £0.039 dg312_cons
D-GIN cons. 2 4 0.557 £0.029  0.762 +0.023 dg422_cons
D-GIN cons. 4 3 0.557 £0.052 0.762 +0.044 dg341_cons
D-GIN cons. 2 3 0.549 +0.034 0.769 +0.026 dg322_cons
D-GIN cons. 4 5 0.590 £ 0.059 0.733 = 0.055 dg542_cons
D-GIN cons. 0 8 0.562 £0.032 0.758 +0.025 dg801_cons
D-GIN cons. 0 4 0.563 £ 0.031 0.757 +0.027 dg402_cons
D-GIN cons. 1 7 0.566 + 0.055 0.754 +0.044 dg712_cons
D-GIN cons. 1 4 0.567 £ 0.051 0.754 +0.041 dg411_cons
D-GIN cons. 0 3 0.562 +0.033 0.758 +0.024 dg302_cons
D-GIN cons. 4 8 0.575 +£0.052 0.746 - 0.053 dg841_cons
D-GIN cons. 2 8 0.568 £0.030 0.753 +0.026 dg821_cons
D-GIN cons. 2 7 0.580 &+ 0.027 0.742 +0.023 dg721_cons
D-GIN cons. 1 8 0.580 4+ 0.053 0.742 +0.047 dg811_cons
D-GIN cons. 4 4 0.577 £0.052 0.744 +0.041 dg442_cons
D-GIN cons. 4 6 0.568 = 0.054 0.751 +0.051 dg642_cons
D-GIN cons. 0 6 0.569 £0.029 0.751 +0.024 dg602_cons
D-GIN cons. 2 6 0.571 £0.031 0.750 +0.024 dg622_cons
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Table 14: Shows the logD RMSE and 7? results for the D-MPNN model type used during
this survey. The last column consist of the unique identify. Training strategy 0 represents
a training strategy combining logD, logS and logP, 1 represents a strategy combining
logD and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using
logS and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and
6 represents a strategy using logP.

model training featurization logD r? unique

type strategy strategy RMSE ID

D-MPNN 1 7 0.7836 £ 0.065 0.532 +0.087 dmp711
D-MPNN 1 6 0.686 £0.054  0.645 4+ 0.071 dmp612
D-MPNN 1 5 0.857 £0.060  0.442 4 0.089 dmp511
D-MPNN 2 3 0.759 £0.037  0.563 +0.039 dmp322
D-MPNN 1 4 0.692 £0.069 0.634 = 0.080 dmp411
D-MPNN 2 5 0.911 £0.029 0.371+0.035 dmp521
D-MPNN 2 6 0.721 £0.029  0.606 + 0.037 dmp621
D-MPNN 0 4 0.721 £0.036  0.608 +- 0.034 dmp401
D-MPNN 0 8 0.712£0.039  0.613 +£0.037 dmp802
D-MPNN 4 8 0713 £0.043  0.614 +0.057 dmp842
D-MPNN 1 8 0.724 £0.044  0.607 £ 0.062 dmp811
D-MPNN 4 4 0.719 £0.057  0.614 £ 0.067 dmp441
D-MPNN 4 6 0.719 £0.056  0.610 & 0.076 dmp642
D-MPNN 4 3 0.731 £0.044 0594 +0.062 dmp342
D-MPNN 0 6 0.724 £0.030  0.601 £ 0.040 dmp602
D-MPNN 1 3 0.703 £0.084  0.625+0.069 dmp311
D-MPNN 0 3 0.719 £0.040 0.618 £0.034 dmp302
D-MPNN 2 8 0.788 £0.027  0.532 4+ 0.033 dmp822
D-MPNN 2 4 0.728 £0.041  0.600 & 0.039 dmp422
D-MPNN 2 7 0.823 £0.027  0.493 +£0.039 dmp721
D-MPNN 4 7 0.804 £0.058  0.517 +0.089 dmp742
D-MPNN 4 5 0.881 £0.051  0.417 £ 0.077 dmp542
D-MPNN 0 7 0.812 £0.035  0.5124+0.037 dmp702
D-MPNN 0 5 0.864 £0.026  0.43240.035 dmp502
D-MPNN cons. 0 4 0.633 £0.031  0.693 +0.025 dmp402_cons
D-MPNN cons. 4 5 0.699 £0.047  0.625+0.056 dmp542_cons
D-MPNN cons. 2 4 0.632 £ 0.031  0.694 +0.028 dmp422_cons
D-MPNN cons. 2 6 0.632 £0.029  0.694 +0.028 dmp621_cons
D-MPNN cons. 2 5 0.710 £0.027  0.614 +0.024 dmp521_cons
D-MPNN cons. 1 8 0.632 £0.050 0.693 +0.058 dmp811_cons
D-MPNN cons. 0 3 0.625 £0.030  0.701 + 0.026  dmp302_cons
D-MPNN cons. 4 4 0.625 £0.054  0.700 &+ 0.052 dmp441_cons
D-MPNN cons. 1 3 0.625 £0.057  0.700 & 0.050 dmp311_cons
D-MPNN cons. 0 8 0.624 £0.029  0.701 £ 0.023 dmp802_cons
D-MPNN cons. 4 8 0.622 £0.045 0.703 £ 0.050 dmp842_cons
D-MPNN cons. 1 6 0.618 £0.045 0.706 + 0.051 dmp612_cons
D-MPNN cons. 1 4 0.613 £0.055  0.711 £ 0.057 dmp411_cons
D-MPNN cons. 4 6 0.634 £0.055 0.691 £ 0.066 dmp642_cons
D-MPNN cons. 0 6 0.636 £0.030  0.690 & 0.029 dmp602_cons
D-MPNN cons. 2 3 0.646 £0.032  0.680 & 0.028 dmp322_cons
D-MPNN cons. 1 5 0.688 £0.059  0.637 +0.057 dmp512_cons
D-MPNN cons. 2 8 0.652 £0.030  0.674 +0.025 dmp822_cons
D-MPNN cons. 1 7 0.654 £0.060 0.671 +0.069 dmp711_cons
D-MPNN cons. 4 7 0.663 £0.045  0.662 + 0.058 dmp742_cons
D-MPNN cons. 0 7 0.670 £0.028  0.656 = 0.026 dmp701_cons
D-MPNN cons. 2 7 0.674 £0.026  0.652 +0.029 dmp721_cons
D-MPNN cons. 0 5 0.697 £0.026  0.628 +0.024 dmp502_cons
D-MPNN cons. 4 3 0.636 £0.042  0.689 +0.055 dmp342_cons
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Table 15: Shows the logD RMSE and r? results for the GIN model type used during this
survey. The last column consist of the unique identify. Training strategy 0 represents a
training strategy combining logD, logS and logP, 1 represents a strategy combining logD
and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using logS
and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and 6

represents a strategy using logP.

model training featurization logD r? unique
type strategy strategy RMSE ID

GIN 2 5 0.860 £ 0.035 0.440 4 0.047 g522

GIN 2 6 0.896 £0.031 0.387 +£0.039 g621

GIN 0 4 0.791 £0.051 0.539+:0.050 g401

GIN 0 8 0.789 £0.031 0.526 +0.036  g802

GIN 2 8 0.814 £ 0.036 0.496 +0.040 g822

GIN 1 8 0.786 £ 0.068 0.538 +0.081 g812

GIN 1 6 0.899 £0.061 0.384 +0.104 g612

GIN 4 8 0.734 £0.058 0.589 +0.079 g842

GIN 4 5 0.856 £0.073 0.442 +0.112 g542

GIN 0 5 0.892 £0.035 0.400 & 0.047 g502

GIN 4 3 0.741 £0.063 0.584 +0.080 g342

GIN 1 7 0.756 £ 0.060 0.567 +0.057 g711

GIN 1 4 0.761 £0.076 0.561 +0.071 g412

GIN 4 4 0.743 £0.066 0.581 +0.061 g441

GIN 4 7 0.747 £0.082 0.576 +0.087 g742

GIN 2 7 0.751 £0.041 0.581 +£0.040 g722

GIN 2 3 0.781 £0.035 0.557 +£0.041 g321

GIN 2 4 0.766 = 0.042 0.557 +0.044 g421

GIN 0 7 0.765 £ 0.040 0.558 - 0.041 g702

GIN 0 3 0.756 £0.030 0.570 +0.033 g302

GIN 1 3 0.742 £0.065 0.580 +0.062 g311

GIN 4 6 0.860 £ 0.063 0.437 +0.085 g642

GIN 0 6 0.900 £0.033 0.381 +0.041 g601

GIN 1 5 0.911 £0.056 0.371+0.062 g512
GINcons. 0 6 0.715+£0.020 0.609 +0.025 g602_cons
GINcons. 4 3 0.627 £0.054 0.698 +0.059 g342_cons
GINcons. 4 8 0.632 +-0.050 0.693 4= 0.057 g842_cons
GINcons. 4 7 0.633 £0.061 0.692 +0.056 g742_cons
GINcons. 4 4 0.637 £0.058 0.688 & 0.060 g441_cons
GINcons. 1 3 0.640 £0.056 0.685+0.051 g311_cons
GINcons. 2 7 0.642 £0.033 0.685+0.028 g722_cons
GINcons. 1 7 0.644 £0.047 0.682 +0.053 g711_cons
GINcons. 2 4 0.645 £0.034 0.681 +0.031 g421_cons
GINcons. 0 3 0.647 £0.029 0.679 +£0.025 g302_cons
GINcons. 1 4 0.648 £0.059 0.678 & 0.056 g412_cons
GINcons. 0 4 0.652 £0.033 0.674 +0.030 g401_cons
GINcons. 0 7 0.654 £0.029 0.673 +0.024 g701_cons
GINcons. 2 3 0.656 £0.028 0.670 +0.030 g321_cons
GINcons. 1 8 0.657 £0.055 0.669 + 0.068 g812_cons
GINcons. 0 8 0.661 £0.034 0.665+0.031 g801_cons
GINcons. 2 8 0.673 £0.032 0.653 +0.029 g822_cons
GINcons. 4 5 0.689 £0.056 0.636 +0.064 g542_cons
GINcons. 4 6 0.692 +-0.052 0.633 = 0.057 g642_cons
GINcons. 1 6 0.707 £0.057 0.616 +0.061 g612_cons
GINcons. 2 6 0.707 £0.025 0.617 +0.025 g622_cons
GINcons. 0 5 0.712 £ 0.033 0.612 +0.030 g502_cons
GINcons. 1 5 0.719 £0.046 0.603 +0.052 g512_cons
GINcons. 2 5 0.692 £0.026 0.634 +0.022 g522_cons
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Table 16: Shows the logD RMSE and 72 results for the non-GNN model types used
during this survey. The last column consist of the unique identify. Training strategy 0
represents a training strategy combining logD, logS and logP, 1 represents a strategy
combining logD and logP, 2 stands for a combination of logD and logS, 3 represents a
strategy using logS and logP, 4 represents a strategy using logD, 5 represents a strategy
using logS and 6 represents a strategy using logP.

model training featurization logD r? unique
type strategy strategy RMSE ID
KNN  logD 10 0.979 £0.072 0.261 £0.094 KNN10
KNN  logD 16 0.970 £0.056 0.275 4+ 0.097 KNN16
KNN  logD 12 0.959 £0.066 0.293 +0.080 KNN12
KNN  logD 11 0.993 £0.072 0.240 £0.096 KNN11
KNN  logD 13 0.909 £0.067 0.363 +0.069 KNN13
KNN  logD 15 1.003 £0.057 0.226 +0.096 KNN15
KNN  logD 14 0.996 £ 0.065 0.236 +0.110 KNN14
KNN  logD 17 0.801 £ 0.060 0.506 = 0.058 KNN17
RF logD 17 0.708 £0.060 0.614 +0.055 rfl7

RF logD 15 0.699 £0.062 0.623 +0.059 1fl5

RF logD 16 0.703 £0.061 0.620 + 0.057 rfl6

RF logD 11 0.859 £0.062 0.433 +£0.062 rfll

RF logD 14 0.706 £0.062 0.616 +0.058 rfl4

RF logD 10 0.890 £0.060 0.390 +0.062 rf10

RF logD 13 0.813 £0.060 0.491 +0.059 1f13

RF logD 12 0.863 £ 0.068 0.427 +0.068 rfl12
SVM  logD 12 0.782 £0.061 0.529 +0.055 svml2
SVM  logD 16 0.707 £0.056 0.615 +0.047 svml6
SVM  logD 10 0.810 £0.062 0.495 + 0.057 svm10
SVM  logD 15 0.698 £0.055 0.625+0.045 svml5
SVM  logD 14 0.674 +0.054 0.650 +0.043 svml4
SVM  logD 17 0.639 £ 0.051 0.686 + 0.046 svml17
SVM  logD 11 0.793 £0.060 0.516 +0.060 svm1l
SVM  logD 13 0.814 £0.059 0.490 + 0.055 svm13
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Table 17: Shows the logS RMSE and 72 results for the D-GIN model type used during
this survey. The last column consist of the unique identify. Training strategy 0 represents
a training strategy combining logD, logS and logP, 1 represents a strategy combining
logD and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using
logS and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and

6 represents a strategy using logP.

model training featurization logS r? unique
type strategy strategy RMSE ID

D-GIN 5 7 0.897 £ 0.041 0.757 £0.025 dg752
D-GIN 0 7 0.866 + 0.034 0.771 +£0.016 dg701
D-GIN 5 5 0.969 £+ 0.048 0.717 = 0.030 dgb52
D-GIN 0 5 0.988 £0.042 0.705+0.021 dg502
D-GIN 2 5 1.010 £ 0.040 0.694 £ 0.020 dg522
D-GIN 0 8 0.795 £0.038 0.807 +0.019 dg801
D-GIN 0 4 0.807 £0.032 0.803 £ 0.016 dg401
D-GIN 3 8 0.813 £ 0.044 0.813 £0.021 dg832
D-GIN 5 6 0.818 £0.044 0.798 £0.025 dgo651
D-GIN 5 3 0.848 £0.047 0.783 +£0.023 dg352
D-GIN 0 6 0.821 £0.042 0.796 +0.020 dg601
D-GIN 2 7 0.906 +0.045 0.755+0.017 dg721
D-GIN 2 4 0.822 +0.028 0.794 +0.014 dg422
D-GIN 3 6 0.827 £0.063 0.794 +0.036 dg632
D-GIN 5 8 0.854 £0.056 0.781 +0.027 dg852
D-GIN 3 4 0.829 £ 0.044 0.791 £0.025 dg432
D-GIN 3 3 0.831 £0.050 0.790 +0.026 dg332
D-GIN 0 3 0.832 £0.039 0.798 £ 0.016 dg302
D-GIN 2 3 0.833 £ 0.037 0.789 +0.016 dg321
D-GIN 5 4 0.852 £0.050 0.789 +0.026 dg451
D-GIN 3 7 0.851 £0.049 0.782+0.027 dg732
D-GIN 2 6 0.837 £0.042 0.788 +£0.020 dg622
D-GIN 3 5 1.061 £ 0.061 0.662 &+ 0.034 dg532
D-GIN cons. 2 5 0.794 £0.039 0.807 & 0.014 dg522_cons
D-GIN cons. 0 5 0.779 £0.040 0.814+0.014 dg502_cons
D-GIN cons. 5 5 0.778 £0.049 0.816 +0.020 dgb52_cons
D-GIN cons. 3 5 0.820 £ 0.054 0.795 +0.024 dg532_cons
D-GIN cons. 0 8 0.705£0.039 0.848 +0.014 dg801_cons
D-GIN cons. 2 7 0.757 £0.044 0.825+0.015 dg721_cons
D-GIN cons. 2 8 0.734 £0.033 0.835+0.012 dg822_cons
D-GIN cons. 3 7 0.733 £0.046 0.836+0.021 dg732_cons
D-GIN cons. 0 3 0.733 £0.040 0.836 +0.015 dg301_cons
D-GIN cons. 0 7 0.731 £0.035 0.836+0.010 dg701_cons
D-GIN cons. 5 3 0.730 £0.047 0.838 £0.019 dg352_cons
D-GIN cons. 3 3 0.727 £0.048 0.839 +0.021 dg332_cons
D-GIN cons. 5 4 0.739 £0.052 0.834 +0.023 dg451_cons
D-GIN cons. 5 7 0.748 £0.045 0.830+0.018 dg752_cons
D-GIN cons. 2 3 0.725 £0.041 0.839+0.014 dg321_cons
D-GIN cons. 3 8 0.724 £ 0.046 0.840 + 0.018 dg832_cons
D-GIN cons. 3 4 0.722 £ 0.047 0.841 +0.020 dg432_cons
D-GIN cons. 2 4 0.718 £0.031 0.842+0.011 dg422_cons
D-GIN cons. 3 6 0.718 £0.047 0.843 +0.021 dg631_cons
D-GIN cons. 2 6 0.716 £ 0.038 0.843 +0.014 dg622_cons
D-GIN cons. 0 4 0.715+£0.035 0.843 +0.011 dg401_cons
D-GIN cons. 5 6 0.711 £0.046 0.846 +0.021 dg651_cons
D-GIN cons. 0 6 0.724 £ 0.038 0.839 +0.016 dg601_cons
D-GIN cons. 5 8 0.735+£0.053 0.835+0.021 dg852_cons
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Table 18: Shows the 1ogS RMSE and 72 results for the D-MPNN model type used during
this survey. The last column consist of the unique identify. Training strategy 0 represents
a training strategy combining logD, logS and logP, 1 represents a strategy combining
logD and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using
logS and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and
6 represents a strategy using logP.

model training featurization logS r? unique

type strategy strategy RMSE ID

D-MPNN 3 8 0.913 £0.052 0.756 +0.026 dmp832
D-MPNN 2 6 0.857 £0.035 0.7824+0.015 dmp621
D-MPNN 2 3 0.865 £0.038 0.784 +0.016 dmp322
D-MPNN 0 5 0.962 £0.038 0.718 £0.018 dmp501
D-MPNN 0 8 0.907 £0.049 0.757 £0.021 dmp802
D-MPNN 5 8 0.921 £0.046 0.751 £0.025 dmp851
D-MPNN 2 8 0.906 £0.041 0.763 £ 0.020 dmp821
D-MPNN 0 7 0.906 £0.049 0.764 +0.027 dmp701
D-MPNN 2 7 0.902 £0.040 0.7724+0.021 dmp722
D-MPNN 3 5 0.938 £0.044 0.733+0.029 dmp532
D-MPNN 5 5 0.945 £0.041 0.734+0.030 dmp552
D-MPNN 3 4 0.896 £0.062 0.782 4+ 0.028 dmp432
D-MPNN 0 4 0.893 £0.040 0.76240.022 dmp401
D-MPNN 3 3 0.893 £0.054 0.775+0.026 dmp332
D-MPNN 5 6 0.879 £0.046 0.777 £0.021 dmp651
D-MPNN 5 3 0.878 £0.053 0.772 +£0.027 dmp351
D-MPNN 0 6 0.877 £0.039 0.780 £ 0.021 dmp601
D-MPNN 0 3 0.874 £0.046 0.779 £ 0.024 dmp302
D-MPNN 2 5 0.961 £0.036 0.721 +0.021 dmp521
D-MPNN 5 4 0.866 £0.054 0.778 £0.022 dmp452
D-MPNN 3 7 0.865 £0.049 0.773 £0.027 dmp731
D-MPNN 2 4 0.863 £0.046 0.800 +0.020 dmp422
D-MPNN 5 7 0.897 £0.050 0.763 £ 0.024 dmp751
D-MPNN 3 6 0.861 £0.047 0.780+0.024 dmp632
D-MPNN cons. 5 4 0.748 £0.055 0.830 +0.020 dmp452_cons
D-MPNN cons. 0 4 0.768 £0.040 0.819 +£0.015 dmp401_cons
D-MPNN cons. 2 8 0.769 £0.039 0.819 +0.014 dmp821_cons
D-MPNN cons. 3 8 0.762 £0.052 0.823 +0.022 dmp832_cons
D-MPNN cons. 5 6 0.749 £0.053 0.829 +0.021 dmp652_cons
D-MPNN cons. 0 8 0.770 £0.044 0.818 £0.016 dmp802_cons
D-MPNN cons. 3 3 0.762 £0.052 0.823 +0.021 dmp332_cons
D-MPNN cons. 0 7 0.771 £0.044 0.818 £0.016 dmp701_cons
D-MPNN cons. 2 7 0.771 £0.040 0.818 £ 0.016 dmp722_cons
D-MPNN cons. 5 7 0.761 £0.051 0.824 +0.021 dmp751_cons
D-MPNN cons. 5 8 0.774 £0.048 0.817 +0.022 dmp851_cons
D-MPNN cons. 3 5 0.777 £0.048 0.816 £ 0.021 dmp532_cons
D-MPNN cons. 5 5 0.779 £0.045 0.815+0.021 dmp552_cons
D-MPNN cons. 3 4 0.765 £0.056 0.822 +0.021 dmp431_cons
D-MPNN cons. 2 5 0.784 £0.038 0.811 £ 0.016 dmp521_cons
D-MPNN cons. 0 3 0.760 £0.042 0.823 £ 0.016 dmp302_cons
D-MPNN cons. 0 6 0.759 £0.039 0.823 +0.014 dmp601_cons
D-MPNN cons. 2 3 0.756 £0.039 0.825+0.014 dmp322_cons
D-MPNN cons. 2 6 0.744 £0.038 0.831 +0.013 dmp621_cons
D-MPNN cons. 5 3 0.752 £0.055 0.828 +0.021 dmp351_cons
D-MPNN cons. 3 7 0.744 £0.053 0.831 £0.021 dmp731_cons
D-MPNN cons. 2 4 0.750 £0.044 0.828 £0.016 dmp422_cons
D-MPNN cons. 3 6 0.748 £0.055 0.830+0.021 dmp632_cons
D-MPNN cons. 0 5 0.785 £ 0.040 0.811 £0.015 dmp501_cons
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Table 19: Shows the logS RMSE and 2 results for the GIN model type used during this
survey. The last column consist of the unique identify. Training strategy 0 represents a
training strategy combining logD, logS and logP, 1 represents a strategy combining logD
and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using logS
and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and 6

represents a strategy using logP.

model training featurization logS r? unique
type strategy strategy RMSE ID

GIN 2 4 1.126 £ 0.047 0.612 +£0.029 g421

GIN 0 3 1.122 £ 0.049 0.615 £ 0.028 g301

GIN 0 4 1.116 £ 0.053 0.624 = 0.037 g402

GIN 0 7 1.089 +0.044 0.650 +0.031 g701

GIN 3 7 1.088 + 0.066 0.643 +0.036 g731

GIN 2 7 1.127 £0.049 0.613 £0.028 g721

GIN 3 4 1.147 £0.084 0.602 £ 0.052 g431

GIN 5 7 1.145 4+ 0.060 0.602 4= 0.038  g752

GIN 5 6 1.400 + 0.064 0.407 4+ 0.045 g652

GIN 5 5 1.362 +0.061 0.437 4+ 0.043 g552

GIN 2 6 1.359 £ 0.045 0.441 £0.036 g621

GIN 2 5 1.345 £ 0.044 0447 £0.030 g522

GIN 3 6 1.334 £ 0.058 0.463 & 0.047 g631

GIN 0 5 1.326 £ 0.049 0474 +0.031 g502

GIN 0 8 1.136 £ 0.058 0.605 + 0.034 g801

GIN 3 5 1.326 £ 0.066 0.472 £0.049 g532

GIN 5 8 1.217 £0.062 0.554 +£0.040 g851

GIN 5 3 1.178 £ 0.070 0.579 £0.042 g352

GIN 2 8 1.173 £0.050 0.580 &+ 0.027 g821

GIN 3 8 1.166 £ 0.059 0.603 &+ 0.036 g832

GIN 5 4 1.161 £ 0.089 0.598 & 0.057 g452

GIN 2 3 1.151 £0.047 0.595 £ 0.025 g321

GIN 3 3 1.148 £ 0.064 0.610 £ 0.036 g331

GIN 0 6 1.314 £ 0.053 0474 £0.034 g602
GINcons. 5 6 0.969 £0.057 0.714 +0.029 g652_cons
GINcons. 2 7 0.840 £0.036 0.784 +0.014 g721_cons
GINcons. 5 5 0.945 £0.045 0.728 +0.023 g552_cons
GINcons. 0 3 0.842 £0.041 0.783 £0.016 g301_cons
GINcons. 5 4 0.861 £0.065 0.774 +0.031 g452_cons
GINcons. 2 8 0.867 £0.043 0.770 £ 0.017 g821_cons
GINcons. 5 3 0.872 £0.056 0.769 +0.026 g352_cons
GINcons. 3 3 0.857 £0.054 0.776 +0.024 g331_cons
GINcons. 0 7 0.825 £0.038 0.791 £ 0.016 g701_cons
GINcons. 5 8 0.887 £0.056 0.760 + 0.026  g851_cons
GINcons. 2 3 0.855 £0.043 0.776 = 0.015 g321_cons
GINcons. 5 7 0.854 £0.055 0.778 £0.026 g752_cons
GINcons. 3 7 0.828 £0.052 0.791 +0.023 g731_cons
GINcons. 0 4 0.835 £0.040 0.786 +0.016 g402_cons
GINcons. 3 4 0.860 £0.061 0.775+0.029 g431_cons
GINcons. 2 4 0.835 £ 0.041 0.786 +0.014 g421_cons
GINcons. 0 6 0.926 £0.045 0.737 £0.017 g602_cons
GINcons. 0 5 0.933 £0.038 0.733 +0.015 g502_cons
GINcons. 3 5 0.934 £0.053 0.734 +0.025 g532_cons
GINcons. 2 5 0.938 £0.040 0.730 £ 0.015 g522_cons
GINcons. 3 6 0.940 £0.048 0.731 £0.025 g631_cons
GINcons. 2 6 0.945 £0.041 0.726 £0.017 g621_cons
GINcons. 0 8 0.850 £0.042 0.779 +0.014 g802_cons
GINcons. 3 8 0.861 £0.053 0.774 +0.018 g832_cons
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Table 20: Shows the logS RMSE and 2 results for the non-GNN model types used during
this survey. The last column consist of the unique identify. Training strategy 0 represents
a training strategy combining logD, logS and logP, 1 represents a strategy combining
logD and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using
logS and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and
6 represents a strategy using logP.

model training featurization logS r? unique
type strategy strategy RMSE ID
KNN  logS 14 1.547 +0.063 0.268 +0.054 KNN14
KNN  logS 11 1.587 £0.063 0.230 + 0.054 KNNI11
KNN  logS 10 1.587 £ 0.064 0.229 +0.056 KNN10
KNN  logS 12 1.600 + 0.066 0.217 +0.055 KNN12
KNN  logS 13 1.280 4+ 0.066 0.499 &+ 0.036 KNN13
KNN  logS 15 1.676 £0.066 0.140 4 0.068 KNN15
KNN  logS 17 1.058 £0.055 0.658 +0.032 KNNI17
KNN  logS 16 1.670 £ 0.065 0.147 £ 0.061 KNN16
RF logS 12 1239+ 0.056 0.530 +0.032 rfl2

RF logS 14 0.760 £0.043 0.823 +0.020 rf14

RF logS 15 0.764 £0.044 0.821 £0.022 rf15

RF logS 13 1.128 £ 0.061 0.611 +£0.039 rfl3

RF logS 16 0.765 £0.045 0.821 +£0.024 rfl6

RF logS 17 0.770 £0.049 0.818 £0.025 rfl7

RF logS 10 1.284 +0.055 0.495+0.033 rfl0

RF logS 11 1.271 +£0.057 0.506 £ 0.035 rfll
SVM  logS 12 1.142 £ 0.055 0.601 £+ 0.035 svm12
SVM  logS 11 1.149 £ 0.057 0.596 £ 0.035 svmll
SVM  logS 16 0.966 £0.049 0.715+0.024 svml6
SVM  logS 15 0.930 £0.046 0.735+0.023 svml5
SVM  logS 13 1.086 + 0.060 0.639 +0.034 svm13
SVM  logS 17 0.730 £0.041 0.837 £0.020 svml7
SVM  logS 14 0.891 £0.046 0.757 £0.023 svml4
SVM  logS 10 1.162 £ 0.056 0.587 £ 0.036 svm10
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Table 21: Shows the logP RMSE and r? results for the D-GIN model type used during
this survey. The last column consist of the unique identify. Training strategy 0 represents
a training strategy combining logD, logS and logP, 1 represents a strategy combining
logD and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using
logS and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and

6 represents a strategy using logP.

model training featurization logP r? unique
type strategy strategy RMSE ID

D-GIN 0 8 0.510 £0.026 0.878 +0.012 dg801
D-GIN 0 3 0.496 £0.025 0.885+0.012 dg302
D-GIN 0 6 0.493 £0.024 0.889+0.010 dgo601
D-GIN 6 4 0.493 £0.021 0.886 +0.011 dg461
D-GIN 6 7 0.541 £0.028 0.862 +0.014 dg761
D-GIN 0 4 0.487 £0.023 0.891 £0.012 dg401
D-GIN 6 8 0477 £0.025 0.893 £0.011 dg862
D-GIN 0 7 0.560 £0.029 0.852+0.015 dg701
D-GIN 0 5 0.663 £0.034 0.793 +0.021 dg501
D-GIN 6 5 0.653 £0.029 0.802 +0.018 dgb61
D-GIN 6 3 0472 £0.020 0.896 +0.009 dg362
D-GIN 6 6 0.511 £0.027 0.878 £ 0.013 dg662
D-GIN cons. 6 3 0428 £0.026 0.914 +0.010 dg362 cons.
D-GIN cons. 6 5 0.502 £0.027 0.881 +0.013 dg561 cons.
D-GIN cons. 0 7 0473 £0.032 0.894 +0.013 dg701 cons.
D-GIN cons. 0 5 0.515 4+ 0.033 0.875 +0.014 dg501 cons.
D-GIN cons. 0 3 0.447 £0.030 0.906 +0.012  dg302 cons.
D-GIN cons. 6 8 0433 £0.030 0.91240.012 dg862 cons.
D-GIN cons. 0 6 0434 £0.029 0.9114+0.011 dg601 cons.
D-GIN cons. 0 4 0439 £0.026 0.909 +0.011 dg401 cons.
D-GIN cons. 6 7 0.461 £0.027 0.900 +0.012 dg761 cons.
D-GIN cons. 0 8 0.452 £0.030 0.904 +0.014 dg801 cons.
D-GIN cons. 6 4 0.440 £0.030 0.909 +0.012 dg461 cons.
D-GIN cons. 6 6 0.442 £0.026 0.908 £0.011 dgo661 cons.
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Table 22: Shows the logP RMSE and r? results for the D-MPNN model type used during
this survey. The last column consist of the unique identify. Training strategy 0 represents
a training strategy combining logD, logS and logP, 1 represents a strategy combining
logD and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using
logS and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and
6 represents a strategy using logP.

model training featurization logP r? unique

type strategy strategy RMSE ID

D-MPNN 6 6 0.540 £0.019 0.863 £ 0.012 dmp661
D-MPNN 6 5 0.735+0.026 0.746 £ 0.019 dmp561
D-MPNN 0 8 0.583 £0.020 0.845+0.012 dmp802
D-MPNN 0 6 0.551 £0.022 0.861 £0.012 dmp601
D-MPNN 6 4 0.556 £0.019 0.856 +0.011 dmp461
D-MPNN 0 5 0.717 £0.027 0.758 £ 0.021 dmp501
D-MPNN 6 3 0.570 £ 0.019 0.847 £0.012 dmp362
D-MPNN 6 7 0.629 +0.023 0.815+0.014 dmp762
D-MPNN 0 7 0.605 £0.020 0.828 +0.012 dmp702
D-MPNN 6 8 0.593 £0.021 0.834+0.014 dmp862
D-MPNN 0 4 0.571 £0.022 0.851 £0.012 dmp401
D-MPNN 0 3 0.552 £0.018 0.857 £ 0.011 dmp301
D-MPNN cons. 6 5 0.533 £0.031 0.866 +0.015 dmp562 cons.
D-MPNN cons. 0 6 0.444 £0.024 0.907 £0.010 dmp601 cons.
D-MPNN cons. 6 6 0.452 £0.026 0.904 +0.011 dmp661 cons.
D-MPNN cons. 0 5 0.524 +£0.031 0.870 £ 0.015 dmp501 cons.
D-MPNN cons. 0 3 0.461 £0.027 0.900 +0.011 dmp301 cons.
D-MPNN cons. 0 4 0.463 +0.027 0.899 £ 0.011 dmp401 cons.
D-MPNN cons. 6 3 0.464 +0.026 0.899 £ 0.012 dmp362 cons.
D-MPNN cons. 6 8 0471 £0.028 0.895+0.012 dmp862 cons.
D-MPNN cons. 0 8 0.475 +£0.027 0.894 +0.011 dmp802 cons.
D-MPNN cons. 0 7 0.484 £0.028 0.890+0.012 dmp701 cons.
D-MPNN cons. 6 4 0.454 +£0.026 0.903 £ 0.012 dmp462 cons.
D-MPNN cons. 6 7 0.488 +0.027 0.888 +0.012 dmp761 cons.
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Table 23: Shows the logP RMSE and r? results for the GIN model type used during this
survey. The last column consist of the unique identify. Training strategy 0 represents a
training strategy combining logD, logS and logP, 1 represents a strategy combining logD
and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using logS
and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and 6

represents a strategy using logP.

model training featurization logP r? unique
type strategy strategy RMSE ID

GIN 0 3 0.752 £ 0.040 0.742 +0.025 g302

GIN 0 8 0.750 £0.029 0.738 - 0.018  g802

GIN 0 4 0.716 £ 0.032  0.758 = 0.019  g402

GIN 0 5 0.902 £0.033 0.624 +0.026  g502

GIN 6 5 0.894 £0.036 0.626 +0.026 g561

GIN 0 7 0.717 £0.033  0.758 +0.019 g701

GIN 6 7 0.727 £0.032  0.753 £0.022 g761

GIN 6 3 0.739 £0.030 0.744 +0.019 g361

GIN 6 8 0.741 £0.027 0.743 £ 0.018 g862

GIN 6 6 0.871 £0.033 0.643 +0.024 g662

GIN 6 4 0.725 £0.037 0.753 £ 0.025 g462

GIN 0 6 0.883 £0.036 0.640 +0.026  g601
GINcons. 6 7 0.537 £0.035 0.864 & 0.016 g761 cons.
GINcons. 6 8 0.548 £0.034 0.858 +0.016 g861 cons.
GINcons. 0 4 0.539 £0.035 0.863 +0.015 g402 cons.
GINcons. 0 7 0.539 - 0.034 0.863 4= 0.015 g701 cons.
GINcons. 6 4 0.534 £0.039 0.865 4+ 0.018 g462 cons.
GINcons. 0 6 0.612 £0.038 0.823 - 0.019  g601 cons.
GINcons. 6 6 0.606 £ 0.037 0.827 & 0.019  g662 cons.
GINcons. 6 3 0.544 £0.035 0.860 +0.015 g362 cons.
GINcons. 0 3 0.547 £0.036 0.859 +0.015 g302 cons.
GINcons. 0 8 0.555 £0.033 0.855 4+ 0.014 g802 cons.
GINcons. 6 5 0.614 £0.038 0.822 +0.019 g561 cons.
GINcons. 0 5 0.618 £0.037  0.820 - 0.018  g502 cons.
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Table 24: Shows the logP RMSE and r? results for the non-GNN model types used during
this survey. The last column consist of the unique identify. Training strategy 0 represents
a training strategy combining logD, logS and logP, 1 represents a strategy combining
logD and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using
logS and logP, 4 represents a strategy using logD, 5 represents a strategy using logS and
6 represents a strategy using logP.

model training featurization logP r? unique
type strategy strategy RMSE ID
KNN  logP 13 0.939 £0.029 0.586 +0.024 KNN13
KNN  logP 14 0.995 £0.029 0.534 +0.025 KNN14
KNN  logP 15 1.065+0.032 0.467 +0.027 KNN15
KNN  logP 10 1.082 £ 0.035 0.450 &+ 0.023 KNN10
KNN  logP 12 1.087 £0.033 0.445 4+ 0.023 KNN12
KNN  logP 16 1.100 £ 0.034 0.431 +£0.026 KNN16
KNN  logP 11 1.103 £ 0.035 0.428 +0.026 KNN11
KNN  logP 17 0.744 £0.019 0.740 £0.014 KNN17
RF logP 13 0.814 £0.029 0.688 +0.023 RF13
RF logP 15 0479 £0.022 0.892+0.010 RF15
RF logP 17 0.472 £ 0.023 0.895 +0.010 RF17
RF logP 14 0472 £0.024 0.895+0.011 RF14
RF logP 12 0.893 £0.030 0.625+0.021 RF12
RF logP 16 0470 £0.024 0.896 +£0.011 RF16
RF logP 10 0.921 £0.031 0.601 +0.022 RF10
RF logP 11 0.928 +0.029 0.595 + 0.022 RF11
SVM  logP 14 0.572 £0.021 0.846 +0.012 SVM14
SVM  logP 12 0.809 £0.027 0.692+0.018 SVMI12
SVM  logP 16 0.628 £0.020 0.815+0.012 SVMlé6
SVM  logP 17 0.493 £0.030 0.886 +0.013 SVM17
SVM  logP 10 0.833 £0.029 0.673 +£0.020 SVM10
SVM  logP 11 0.827 £0.028 0.678 £0.020 SVM11
SVM  logP 13 0.782 £0.029 0.713 +£0.020 SVM13
SVM  logP 15 0.602 £0.021 0.830 +0.013 SVM15
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