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Abstract: This work combines compressive sensing and short word-length techniques to achieve 

localization and target tracking in wireless sensor networks with energy-efficient communication 

between the network anchors and the fusion center. Gradient descent localization is performed 

using time-of-arrival (TOA) data which are indicative of the distance between anchors and the 

target thereby achieving range-based localization. The short word-length techniques considered 

are delta modulation and sigma-delta modulation. The energy efficiency is due to the reduction of 

the data volume transmitted from anchors to the fusion center by employing any of the two delta 

modulation variants with compressive sensing techniques. Delta modulation allows the transmis-

sion of one bit per TOA sample. The communication energy efficiency is increased by RⱮ, R ≥ 1, 

where R is the sample reduction ratio of compressive sensing and Ɱ is the number of bits originally 

present in a TOA-sample word. It is found that the localization system involving sigma-delta 

modulation has a superior performance to that using delta-modulation or pure compressive sam-

pling alone, in terms of both energy efficiency and localization error in the presence of TOA 

measurement noise, owing to the noise shaping property of sigma-delta modulation. 

Keywords: wireless sensor network; compressive sensing; short word-length; sensor tracking; 

delta modulation; sigma-delta modulation; communication energy efficiency.  
 

1. Introduction 

The vast advances made in wireless technology and electronics have enabled the 
emergence of wireless sensor networks (WSN) which have received much attention 
recently, and are expected to become commonplace due to playing a major role in 
various applications such as industrial monitoring, health care monitoring, 
environmental sensing, target tracking, etc. Since sensors are usually small low-power 
devices powered by batteries that have limited lifetime, they are usually designed to 
send data to a fusion center at which most of the energy-consuming computations are 
performed. An example of data sent to the fusion center for processing are the 
time-of-arrival (TOA) samples needed for range-based anchor-based localization, which 
is the application considered in this work. The TOA data obtained at the anchors and 
sent to the fusion center for processing are indicative of the distance between an anchor 
and the target sensor to be localized or tracked. However, data processing is not the only 
energy-consuming process encountered. In fact, communication energy consumption in 
WSNs is greater than computational energy consumption [1]. Thus, in the present work, 
we focus on minimizing the energy expenditure in data communication between the 
anchors and the fusion center by minimizing the data volume undergoing transmission 
without significantly affecting the transmitted information.   
The work in [1] suggests two approaches for energy-efficient data processing and 
communication in WSNs. The first direction is to use short word-length (SWL) 
techniques such as delta modulation (DM) [2] and sigma-delta modulation (SDM) [3] in 
order to reduce the number of bits that represent a signal sample by exploiting the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 August 2021                   doi:10.20944/preprints202108.0547.v1

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

mailto:n.alwan@ieee.org
mailto:z.hussain@ecu.edu.au
mailto:zmhussain@ieee.org
https://doi.org/10.20944/preprints202108.0547.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 19 
 

 

difference between adjacent samples. This is beneficial in reducing both computational 
and communication power. The second approach is to use compressive sensing (CS) [4, 5] 
to reduce the communication power. CS compresses transmitted data by sampling 
randomly at a sub-Nyquist rate. Reconstruction of the original signal can generally be 
achieved by powerful optimization techniques such as 𝑙1-minimization [4]. CS with 
random sampling is effective in avoiding aliasing in reconstruction due to sub-Nyquist 
sampling of sparse signals [6, 7].  

The present work attempts both CS and SWL directions simultaneously to reduce 
the communication energy expenditure by first applying CS to the data to be transmitted 
so as to reduce the number of samples, and then applying DM or SDM to achieve a 1-bit 
representation per sample. We demonstrate the performance of this approach in the 
context of target tracking in WSNs as depicted in the block diagram of Figure 1. The 
CS-compressed TOA data are DM/SDM-modulated at the anchors before transmission to 
the fusion center where they are DM/SDM-demodulated, LP-filtered and interpolated to 
restore the original uncompressed TOA values. Then, localization or target tracking is 
achieved at the fusion center.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

Figure 1. Combined CS-SWL communication-energy-efficient localization wireless sensor system using five 

anchor or reference nodes. 

 
 
To the best of our knowledge, combining CS with SWL techniques has not been 

attempted in the literature. There are, however, several works on 1-bit CS [8-10] that are 
quite different from the present approach. In 1-bit CS, the limiting case of 1-bit 
measurements is considered by preserving just the sign information of random samples 
or measurements, and treating the measurements as sign constraints to be enforced in 
reconstruction. The original signal is then recovered by constrained optimization to 
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within a scaling factor since sign information does not include amplitude information. To 
resolve this ambiguity, reconstruction is constrained to be on the unit sphere to reduce 
the search space [8]. However, it has been shown in [11, 12] that for target localization or 
tracking in WSNs, the computationally expensive recovery by convex optimization can 
be replaced by simple linear interpolation due to the usually low frequency content of 
TOA measurements from moving targets. In addition to its computational efficiency, 
linear interpolation can be made to operate in real time or with small delay whereas 
other optimization techniques such as 𝑙1-minimization are batch processing techniques 
requiring the whole or a considerably large part of the signal to be available to be 
processed for optimized reconstruction [4, 13]. The proposed combined CS-SWL method 
suits the simple linear interpolation recovery scheme.  

Referring to the system in Figure 1, some computation is still needed in the anchor 
nodes to implement a random number generator for CS random acquisition of the TOA 
samples, in addition to the simple hardware of the DM/SDM modulator. However, this is 
more than compensated for by the achieved communication energy efficiency. 
Localization at the fusion center is performed by the method of gradient descent (GD) [14, 
11, 12].  

The remainder of the paper is organized as follows. Section 2 discusses GD 
localization in WSNs based on CS. Section 3 overviews DM and SDM, whereas Section 4 
explains their incorporation in the overall localization system and the ensuing parameter 
adjustments. Simulation results are presented in Section 5, and Section 6 concludes the 
paper.  

2. CS-Based Gradient Descent Localization in WSNs 

Localization in WSNs usually involves distance measurements between a target 
node and a number of reference nodes or anchors. Computing these distances by TOA 
data is most commonly adopted in low-density WSNs due to their insensitivity to 
inter-device distances compared to other types of data used in range-based localization 
such as time-difference-of-arrival (TDOA), received-signal-strength (RSS) or 
angle-of-arrival (AOA) data [15]. Iterative localization methods using GD are widely 
used due to their noise immunity compared to analytical methods [16], and low 
computational complexity [17].  

We consider GD localization in three dimensions as in [11, 12]. The error function 
to be minimized in this optimization problem is given by: 

𝑓(𝑝) = ∑ {[(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 + (𝑧 − 𝑧𝑖)
2]

1
2⁄ − 𝑑𝑖}

2
𝑁
𝑖=1       (1) 

with     𝑑𝑖 = 𝑐𝜀𝑖 = 𝑐(𝑡𝑖 − 𝑡𝑜)         (2) 
 
where the target node 𝑝 = (𝑥, 𝑦, 𝑧) needs N anchor nodes to be localized. For three 
dimensions, N is at least 4. The anchor nodes are  (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) with Ni .....,,2,1= . The 
distance between the i-th anchor node and the target is 𝑑𝑖, the receive time of the i-th 
anchor is 𝑡𝑖, and the transmit time of the target is 𝑡𝑜. Thus, 𝜀𝑖 = 𝑡𝑖 − 𝑡𝑜 is the TOA 
measurement acquired at the i-th anchor. Finally, c is the speed of light when RF or UWB 
signals are used in ranging.  

GD minimization of the error function in Equation 1 is achieved by: 
 

         𝑝𝑘+1 = 𝑝𝑘 − 𝛼𝑔𝑘         (3) 
 
where  𝑝𝑘 and 𝑔𝑘 are the vectors of position and gradient at the k-th iteration 

respectively, and α is the convergence factor. The iteration index k is also the time index 
when tracking is performed for a moving target.  

The gradient vector at the k-th iteration is given by: 

𝑔𝑘 = [ 
𝑑𝑓

𝑑𝑥
|

𝑘
 

𝑑𝑓

𝑑𝑦
|

𝑘

𝑑𝑓

𝑑𝑧
|

𝑘
 ]

𝑇

         (4) 

CS can be used to acquire the TOA data for energy-efficient localization. Following 
is a brief overview of CS.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 August 2021                   doi:10.20944/preprints202108.0547.v1

https://doi.org/10.20944/preprints202108.0547.v1


 4 of 19 
 

 

In compressive sensing, a discrete-time signal vector 𝒂 ∈ 𝑹𝑀

 can be acquired or 
sampled compressively by a measurement or sampling matrix 𝜱 ∈ 𝑹𝑉×𝑀  to yield the 
vector 𝒃 ∈ 𝑹𝑉, MV  , according to: 

 
𝒃 = 𝜱 𝒂           (5) 
 

Clearly, the above is an underdetermined system of equations in terms of the 
recovery of  𝒂 from 𝒃. We assume that 𝒂 is K-sparse in the M-dimensional space 
spanned by the M basis vectors i  such that: 

 
𝒂 = ∑ 𝜓𝑖  𝑠𝑖 = 𝝍 𝒔𝑀

𝑖=1           (6) 
 

where 𝝍 is the matrix whose columns consist of the M basis vectors and s is the 
transform vector containing only K non-zero elements and K << M. In our case, 𝝍 is the 
DFT matrix. Therefore, Equation 5 becomes: 
 

𝒃 = 𝜱 𝝍 𝒔 = 𝜽 𝒔          (7) 
 

CS theory states that the vector 𝒂 is recoverable from 𝒃 if the sparsity information 
of the former is preserved in the latter. This is possible if 𝜽 satisfies the restricted 
isometry property (RIP) [18] which dictates the incoherence of  𝜱  with 𝝍 . This 
incoherence can be established by ensuring that 𝜱 is a random matrix which results in 
the vector 𝒂 being fully recoverable from 𝒃 when the following inequality is satisfied: 

 

𝐶𝐾 log (
𝑀

𝐾
) < 𝑉 < 𝑀,          (8) 

 
where C is a constant, and by solving the convex optimization problem of the 
underdetermined system of equations using  𝑙1-minimization [4, 19].  

For localization in WSNs, CS can therefore be applied by random acquisition or 
sampling of the TOA data at the anchors at a rate below the Nyquist rate. It has been 
demonstrated in [11] that the TOA data associated with helical motion of the target node, 
for instance, is sufficiently sparse in frequency, thereby justifying the use of CS for 
energy-efficient tracking. Moreover, it has also been shown that the computationally 
complex and batch-processing 𝑙1 -minimization can be replaced by simple linear 
interpolation of the compressed TOA data received at the fusion center as a 
computationally efficient and almost real-time recovery scheme of the original TOA data. 
This is possible because of the usually low-frequency content of TOA data, and taking 
into account that interpolation is a low-pass filtering operation.  

Thus far, a means to reduce communication energy consumption has been ensured 
by using CS to reduce the number of TOA samples transmitted from the anchors to the 
fusion center. A further reduction of this energy consumption component is to achieve a 
1-bit representation per TOA sample by using DM before transmission. DM techniques 
are overviewed in the following section. 

3. Overview of Delta Modulation Techniques 

In the context of digital modulation techniques, delta modulators have a 
particularly simple architecture compared to pulse code modulation (PCM) systems. DM 
systems produce a bit stream that corresponds to their sampled inputs using 
oversampling to overcome quantization noise effects. In PCM, the output bit stream 
consists of blocks of Ɱ bits where each Ɱ-bit block represents the quantized sample 
amplitude of the PCM pulse [2]. Quantization is a non-invertible process because an 
infinite number of amplitudes are mapped to a finite number of quantization levels such 
that the original signal cannot be recovered exactly [3]. DM systems include the simple 
DM and the sigma delta modulator or SDM which overcomes some disadvantages of the 
former. In addition to their simple architecture, they enable the representation of Ɱ bits 
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per sample by a single bit, thereby meeting the limited power consumption requirement 
in wireless sensor systems. DM and SDM are discussed next. 

3.1. Delta Modulation 

The DM scheme has initially been devised to reduce the complexity of PCM. Before 
describing DM, we wish to emphasize that while the DM analog-to-digital converter 
originally has an analog input, the input to the delta modulator used in the application 
under consideration in this work is a sampled discrete-time signal (the TOA samples). 
Without loss of generality, however, the DM operation remains essentially the same. The 
sequence of input samples is approximated by a sequence whose envelope is a staircase 
function moving above and below by one quantization level (δ) with each sample. Hence, 
a single binary digit corresponding to this up and down movement is sufficient to 
describe the DM operation for each sample. A ‘1’ is generated if the movement is 
upwards, for instance, and a ‘0’ otherwise, so that an output bit stream is produced. We 
call the output bit stream simply the DM signal.  Figure 2 describes the DM 
transmission and reception systems, and Figure 3 illustrates an example of DM 
operation.  

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 

Figure 2. Delta modulation: (a) Transmission (DM modulator as a comparator and integrator in a feedback 

loop); (b) Reception (DM demodulator as an integrator and LPF). 
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Figure 3. Example of delta modulation operation. 

 

 
It is clear from the figure block diagram that this is essentially a feedback process. 

For the transmission block diagram, it is clear that the input sample is compared to the 
previous approximating staircase function sample. A ‘1’ or ‘0’ is generated resulting in 
the addition of +δ or –δ respectively, such that the staircase samples are always in the 
direction of the input samples. The binary bit stream is used in the receiver to reconstruct 
the staircase samples. The latter can then be smoothed by a low-pass filter to reduce 
quantization noise.  

As shown in Figure 3, the step size δ must be chosen as a compromise between two 
types of errors that are to be avoided as much as possible. These are slope overload error 
and idling error. Slope overload occurs when the input samples are changing rapidly and 
therefore, the staircase samples are unable to follow closely. This type of error increases 
with the decrease of δ, and with the increase of high frequency content of the input 
samples. Idling error occurs when the input samples are changing very slowly, and it 
increases with the increase of δ. The accuracy of the DM scheme improves with the 
increase of the sampling rate [2]. The DM modulator of Figure 2-a can also be depicted in 
block diagram form as in Figure 4. 

 
 
 
 
 
 
 
 
 
 
 

    
  
      

Figure 4. Block diagram of the DM modulator of Figure 2-a. 
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Because slope overload increases with the increase in the frequency content of the 

input samples, simple DM becomes unsuitable when the input spectrum is flat. This can 
be overcome by using the SDM scheme described in the following subsection.  

3.2. Sigma-Delta Modulation 

 
The slope overload disadvantage of DM can be overcome by preceding the DM by 

an integrator in order to decrease the high frequency energy of the input samples [20, 3]. 
This is depicted in Figure (5-a). To retrieve the flat spectrum, a differentiator is then 
placed after the DM demodulator. A low-pass filter is also necessary to reduce 
quantization noise. However, since the demodulator is essentially an integrator, we can 
obtain the same effect at the receiver by omitting both demodulator and differentiator. 
The receiver will then consist only of the low-pass filter as shown in Figure (5-b).  

The name sigma-delta modulation comes from placing the integrator (sigma) 
before the delta modulator.  

The SDM modulator in Figure 5-b is shown in more detail in Figure 6-a, making 
use of Figure 4. The final block diagram of the SDM modulator is derived as in Figure 6-b 
by replacing the two integrators in Figure 6-a by an equivalent single integrator.  

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
   
 

Figure 5. Sigma-delta modulation (SDM): (a) Derivation of SDM; (b) SDM system. 
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Figure 6. SDM modulator: (a) as a DM modulator preceded by an integrator; (b) Equivalent SDM modulator block diagram. 

 

3.3. Oversampling, Noise Shaping and Low-Pass Filtering 

Oversampling (OS) is a technique used in both DM and SDM systems to lower the 
noise floor of the input signal to the system. If the sampling frequency of the input is 𝐹𝑠 
and the input is a single tone with noise, we know that the random noise extends from 
zero to 𝐹𝑠/2 of the input spectrum. If we now oversample by increasing the sampling 
frequency to 𝛽𝐹𝑠, the SNR remains the same but the noise energy will spread over a 
wider frequency range from zero to 𝛽𝐹𝑠/2, causing the noise floor to drop and the SNR 
to increase after low-pass filtering at the receiver. The parameter 𝛽 is the oversampling 
ratio. Thus, OS by itself changes the distribution of the noise and not the total noise 
power. Although the most common application of SDM is analog-to-digital conversion 
(ADC), the use of SDM in the present work is confined to its ability to allow one-bit 
transmission per TOA sample for energy-efficient CS-based localization in WSNs. 
Hence,we dispense with some features of the tranditional SDM such as the OS technique 
described above since OS contradicts the concept of CS and thereby cancels its benefits. 
OS is used to improve the resolution of classical ADC methods, which are not the 
objective of the present work. The assumption of OS dispensibility is true for many 
sensor applications where changes are slow such as those associated with bio-signals, 
temperature etc. [1].  
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In SDM systems, the technique of noise shaping can remove more noise than can 
simple OS. To understand noise shaping, consider redrawing Figure 6-b as in Figure 7 
which is a z-domain representation and where the quantizer is replaced by a 
quantization noise source. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
    

 
Figure 7. SDM modulator in the z-domain 

 
 
It is straightforward to show by superposition that [1]: 
 

    𝑌(𝑧) =
𝐻(𝑧)

1+𝐻(𝑧)
 𝑋(𝑧) +  

1

1+𝐻(𝑧)
 𝑁(𝑧)        (9) 

 

  𝑌(𝑧) = 𝑆𝑇𝐹(𝑧). 𝑋(𝑧) + 𝑁𝑇𝐹(𝑧). 𝑁(𝑧)           (10) 

 
where 𝑆𝑇𝐹(𝑧)  and 𝑁𝑇𝐹(𝑧)  are the signal transfer function and the noise transfer 
function respectively. If 𝐻(𝑧) is a simple integrator with transfer function given by  
𝑧/(𝑧 − 1), then it is easy to prove that SDM performs LP filtering on the signal and HP 
filtering on the noise. This is called noise shaping the effect of which is to push the noise 
outside the band of interest where it is cancelled at the receiver by the LPF which 
averages the 1-bit SDM signal. The receiver LPF reconverts the signal back to a multi-bit 
one. The noise shaping property of SDM will be shown to have a significant effect on the 
performance of localization problem at hand, even when used without OS.  

The following section describes the incorporation and analysis of the DM/SDM 
system in CS node localization for WSNs. 

 

4. CS-DM/SDM Localization in WSNs 

Both DM and SDM systems are considered for the application of WSN node 
localization and tracking employing CS in the anchor acquisition of the TOA samples 
sent from the target. Referring to Figure 1 of the introduction section, let us assume that 
the sample reduction ratio R regarding the CS operation is given by: 

 

𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑠𝑝𝑎𝑐𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑆 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
      (11) 

Therefore, CS reduces the number of transmitted samples by R. If we further 
assume that each sample is represented by an Ɱ-bit word, then the total communication 
energy from anchor to fusion center, after applying CS and DM/SDM, is reduced by (R. 
Ɱ) owing to the 1-bit-per-sample representation enabled by DM/SDM. 

The localization error criterion used to assess performance is chosen as the 
normalized error measure (NEM) given in dBs. This is a relative error measure involving 

Integrator 

H(z) Σ + 
   _  

Σ 

X(z) 

N(z) 

    + 

+ 

Y(z) 
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the localization error function 𝑓(𝑝) and the true distances 𝑑𝑖 of Equation (1), and is 
given by: 

             𝑁𝐸𝑀 = 10 𝑙𝑜𝑔10 (
∑ 𝑓(𝑝)|𝑘

Ҡ
𝑘=1

∑ (∑ [𝑑𝑖|𝑘]2𝑁
𝑖=1 )Ҡ

𝑘=1

)           (12) 

where k is the iteration number, Ҡ is the total number of target path points and N is the 
number of anchors. 

Let us first consider the DM-based localization system. Under no-compression 
conditions (R=1), operation can be almost free from quantization noise when the step size 
is optimized for best performance measured by NEM. Introducing CS to the system by 
randomly acquiring TOA values at the anchors and gradually increasing the maximum 
random sampling interval, we find that the succeeding DM system will exhibit slope 
overload because the input samples change abruptly in magnitude between successive 
randomly-spaced samples. Thus, the effect of CS on the original uncompressed slowly 
varying TOA sequence is to introduce higher frequencies due to abrupt transitions 
caused by compression, thereby leading to slope overload. This necessitates 
re-optimizing (increasing) the DM step size every time the maximum sampling interval 
is increased. The increasing step size will increase the quantization noise and hence 
decrease the localization accuracy at the fusion center. This is the major disadvantage of 
the DM system when used in conjunction with CS.  

Noting the noise shaping property of the SDM system, its use instead of the DM 
system is expected to improve the overall performance or localization accuracy measured 
by NEM. However, the reconstruction LPF at the fusion center must be carefully 
designed. Moreover, the phase introduced by this filter introduces additional localization 
error. In contrast, the reconstruction filter used with CS-DM localization can be simple 
and does not introduce significant distortion; the reason is that the reconstruction filter 
filters the staircase waveform which is mainly of low frequency content, whereas in SDM 
it filters the SDM signal itself which has a wider-range spectral content. Therefore, the 
filter to be used in this work in conjunction with CS-SDM will be chosen as a linear-phase 
optimal finite impulse response (FIR) digital filter employing the Parks-McClellan filter 
design algorithm [21]. The equiripple method of designing this type of filter is an 
optimization problem that adjusts the coefficient values to create an optimal filter such 
that the transition width is minimized along with the stopband and passband ripple.  

In this work, we consider tracking a target moving along a helical path in three 
dimensions representing the moving-target position. These dimensions are described by 
the following equations: 

 
𝑥 = 𝑟 cos(𝜃) ;   𝑦 = 𝑟 sin(𝜃) ;   𝑧 = ҡ 𝜃               (13) 
 
We assume that the angle 𝜃 takes on the values from zero to 2π, and r and ҡ are 

constants. All anchors are assumed to be in the radio range of the target path. In [11, 12], 
a helical path with r = 40 and ҡ = 20 was considered. It was shown that the TOA values 
as a function of time had low frequency content. Therefore, we consider 315 points in the 
path are enough to yield acceptable localization error.  

To achieve CS, the complete vector of 315 discrete TOA samples is input to a 
random sampling algorithm to yield a shorter vector of TOA measurements as in 
Equation (5), only to be reconstructed later by interpolation at the fusion center. In 
Equation (5), the sampling matrix Φ has at most one non-zero value (unity) in each row. 
The random sampling that generates the compressed vector is based on the selection of 
samples separated by random periods. The random variable representing these random 
periods is uniformly distributed over the time interval [𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥]. Thus, the sampling 
instants indexed by the integer 𝑛, 𝑛 ≥ 0, are given by:  

 
𝑡𝑛 =    𝑡1 + 𝑇𝑠  ∑ 𝑇𝑘 ;       𝑇𝑘 ∈ 𝑈(𝑇𝑚𝑖𝑛

𝑛
𝑘=1 , 𝑇𝑚𝑎𝑥)                  (14) 

 
where 𝑡1 is the initial time instant, 𝑇𝑠 is the original sampling period and 𝑈(𝑃, 𝑄), 𝑃 <
𝑄, is the discrete uniform distribution over the integer interval [𝑃, 𝑄]. 
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It is assumed that the fusion center knows the distribution generating the random 
sampling instants in order to maintain the structure of the original TOA samples. The 
interpolated or reconstructed TOA values are then used to localize the target path by 
gradient descent. 

In the following section on simulation results, both localization systems employing 
CS-DM and CS-SDM will be simulated, discussed and compared.  

 

5. Simulation Results 

 
The moving target localization and tracking problem is simulated in MATLAB. The 

WSN considered is three-dimensional with a volume of 150 × 150 × 150 cubic meters. 
Five anchors are selected such that they all are in the radio range of the target as it moves 
along a helical path according to Equation (12). The x-, y-, and z-dimensions of the 
anchors are taken as [10,100,10,100,90], [100,90,70,80,90] and [10,10,100,100,150] meters 
respectively. The helix constants are r=40, ҡ =20 and 𝜃 varies from zero to 2π. The 
initial dimensions of the moving target location are taken as the point (50, 0, 0). The TOA 
data acquired at the anchors are assumed to be line-of-sight (LOS) arrivals only. In 
accordance with Figure 1, the TOA values from the target moving along its path are 
compressed at the anchors by random CS after sampling to 315 helical path points. In 
[11], the spectrum of the TOA data in a similar localization problem is shown to be sparse 
as required by CS, and its magnitude never reaches zero; therefore, sampling is 
inevitably sub-Nyquist. The random sampling period obeys a uniform distribution as 
discussed in Section 4, with 𝑇𝑚𝑖𝑛=1 and 𝑇𝑚𝑎𝑥=1 to 6. The localization error criterion is 
taken as NEM. All results are averaged over 100 independent runs. The results for the 
CS-DM and CS-SDM localization systems will be presented separately first and then 
compared.  

 

5.1. CS-DM System 

 
The system in Figure 1 is first simulated without CS (𝑇𝑚𝑎𝑥=1). The optimum DM 

step size δ was found to be 2.8 ns. The demodulation LPF of Figure 2-b is a simple first 
order LPF to reduce the quantization noise. Localization is achieved at the fusion center 
with the GD algorithm using a convergence factor α=0.24. This value has been optimized 
to yield the minimum NEM value of -39.54 dB. When calculating NEM, we discard the 
first erroneous 20 samples to take only the steady state localized points into account. 
Then, CS is incorporated with 𝑇𝑚𝑎𝑥=3, and the optimized δ in this case is 7 ns, resulting 
in NEM equal to -38.22 dB. As 𝑇𝑚𝑎𝑥 is increased, slope overload occurs so it becomes 
necessary to increase the DM step size, and therefore, the quantization noise increases 
resulting in greater localization error even after step size optimization.  

Figure 8 shows the DM signal and the original and reconstructed TOA values for 
both cases of 𝑇𝑚𝑎𝑥=1 and 3. With 𝑇𝑚𝑎𝑥=3, the average sampling interval is 2; that is why 
the corresponding DM signal in Figure 8-c has half the number of original points.  It is 
clear from Figure 8-d that slope overload has occurred since the plot is for the original 
step size (2.8 ns) before optimization to the value of 7 ns. The increased localization error 
brought about by DM is compensated for by the achieved communication energy 
efficiency.  

Figure 9 shows the true and localized 315-point path for the two cases of 𝑇𝑚𝑎𝑥=1 
and 3. Both plots in Figure 9 are for the original step size of 2.8 ns. In Figure 9-a (𝑇𝑚𝑎𝑥=1), 
the true and localized paths almost coincide. In Figure 9-b (𝑇𝑚𝑎𝑥=3), the effect of slope 
overlaod on the localized path is clear. If the step size were optimized for Tmax =3, then 
the corresponding path would be closer to that of 𝑇𝑚𝑎𝑥=1 (without CS). That is, the 
localization error would decrease but it remains greater than that of the original settings 
without CS.  
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Figure 8. DM signals with original and reconstructed TOA values for the CS-DM localization 

system. The original TOA values are shown in red, the reconstructed in black. 

 

 

 

 

 

 

Figure 9. True and localized helical paths for the cases Tmax=1 and 3. The true path is shown 

in bold red. The small circles indicate the five anchor positions. 
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5.2. CS-SDM System 

As in the previous subsection, the system in Figure 1 is simulated but using the 
SDM modulator of Figure 6-b, resulting in the CS-SDM system. The convergence factor is 
the same for the CS-DM system for subsequent comparison. The LPF in the demodulator 
filters the SDM signal directly and therefore must be carefully designed to faithfully yield 
the reconstructed TOA values. The quantizer in Figure 6-b is assigned the two levels 200 
ns and 650 ns at its SDM output. These levels are first roughly chosen such that they are 
related to the exact TOA values so that when the SDM signal is filtered by the LPF, the 
reconstructed TOA values can be adjusted for minimum NEM by fine-tuning the two 
quantizer levels. For this purpose, the exact TOA values are obtained by setting 𝑓(𝑝) in 
Equation (1) to zero and substituting the helical path positions, the anchor positions, and 
the speed of light. The DFT magnitude of the exact TOA waveform seen by Anchor 1 is 
shown in Figure 10. The position coordinates of Anchor 1 are (10, 100, 10). The system is 
first simulated with 𝑇𝑚𝑎𝑥=1 (no CS). The Parks-McClellan LPF filter discussed in Section 
4 is designed according to the following specifications with a number of weights equal to 
43: 

Table 1. SDM reconstruction LPF specifications 

Band (rad) Gain Ripple 

Passband: (0 - 0.04π) or  

(0 - 0.126 rad) 

 

1 5 dB 

Stopband: (0.1π - π) or  

(0.314 - 3.14 rad) 
0 -40 dB 

 
 

 

 

Figure 10. (a) The DFT magnitude of the TOA sequence seen by Anchor 1. (b) A magnified view. 
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It is clear from inspecting Figure 10 that the specified LPF passband of Table 1 
includes the better part of the non-zero DFT values, and the stopband after the transition 
width is also well chosen.  

The transfer function of this filter is shown in Figure 11. At DC frequency the gain 
is slightly above 0 dB due to the equiripple property. It was found that multiplying the 
designed filter coefficients by 0.82 (that is multiplying the filter transfer function by a 
gain of 0.82) provides best results; it gives a gain of almost 0 dB (unity) at DC frequency.  

 
 

 

 

Figure11. Demodulation LPF transfer function for the CS-SDM localization system. 

 

 
Under all above conditions, and without CS, the resulting NEM is equal to -39.84 

dB which is less than the corresponding DM case provided that the phase introduced by 
the LPF to the TOA values is subtracted. The phase causes a delay of 25 samples for this 
case of 𝑇𝑚𝑎𝑥=1. This is the major disadvantage of using CS-SDM although it yields 
significantly better results in terms of localization error if the phase delay is accounted 
for. For 𝑇𝑚𝑎𝑥=3, the value of NEM was found to amount to -39.7 dB after correcting a 
delay of 60 samples. Therefore, compared to the CS-DM system, CS in CS-SDM almost 
does not increase localization error if delay is corrected. Figure 12 demonstrates the 
CS-SDM localization system operation for the cases 𝑇𝑚𝑎𝑥=1 and 3. It is obvious from 
comparing Figures 12-a and 12-c that the phase introduced by the filter increases upon 
applying CS; the reason is that CS introduces higher frequencies to the TOA sequence 
and, therefore, to the SDM signal. This results in larger values of phase shift provided by 
the linear-phase FIR reconstruction filter used. However, the ensuing localization error 
can be eliminated if delay is accounted for. This is evident from Figures 12-b and 12-d 
which are almost identical. This advantage of the CS-SDM system is due to the noise 
shaping property of SDM. Contrariwise, for the CS-DM system, the quantization error 
could not be removed totally even when step size is optimized. 
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Figure 12. SDM signals, original and reconstructed TOA values and localized paths for the 

CS-SDM localization system. The original TOA values are shown in red, the reconstructed in black. 

True and localized helical paths are also shown. The true path is shown in bold red. The small 

circles indicate the five anchor positions. 

 

5.3.Performance comparison of CS-SWL localization systems 
  

The performance in terms of NEM in dBs versus 𝑇𝑚𝑎𝑥  is shown in Figure 13 for the 
two considered CS-SWL systems together with the corresponding purely CS system. In 
this figure the CS-DM system is optimized regarding its step size with the increase in 
𝑇𝑚𝑎𝑥 . Likewise, the CS-SDM system is delay-corrected with every increase in the value of 
𝑇𝑚𝑎𝑥 . The CS system exhibits a slightly better performance than the CS-SDM system in 
terms of localization error; however, the latter system is superior in terms of energy 
efficiency. The poorest performance is that of the CS-DM system on account of the 
necessary step size optimization process explained in Section 4, which increases the 
quantization noise and therefore the localization error although it would be better than 
the case in which no step size optimization is carried out as 𝑇𝑚𝑎𝑥  increases.  

So far, we have assumed that the TOA values acquired at the anchors are free of 
measurement noise. In practice, the TOA discrete waveform is subject to measurement 
noise which can be modeled as zero-mean additive white Gaussian noise. Figure 14 
demonstrates NEM in dBs versus SD in nanoseconds, where SD is the standard deviation 
of the TOA measurement noise. 𝑇𝑚𝑎𝑥  is set to 3 in this figure, and the DM step size for 
the CS-DM case is optimized at 7 ns. The CS-DM system is poorest for SD less than 
around 3 ns. However, for SD greater than 3 ns, the performance of CS-DM improves 
over the purely CS system because the quantization process will crop any measurement 
noise that causes the TOA sample to exceed the quantized value, provided that no slope 
overload occurs. This applies to the CS-SDM system as well which is, in addition, 
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characterized by its noise shaping property making it the recommended system for both 
energy efficiency and resilience to TOA measurement noise.   

  

 
Figure 13. Performance of CS-SWL localization systems in terms of localization NEM versus 

maximum sampling interval (𝑇𝑚𝑎𝑥). 

 

 

 
Figure 14. Localization NEM versus standard deviation of TOA measurement noise for the 

three localization systems. 𝑇𝑚𝑎𝑥=3. 
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Figure 15 shows the normalized communication energy consumption (E) for the 
three localization systems. This is measured by the total number of bits transmitted to 
localize the complete helical path of length 315 positions. The normalized energy 
consumption in transmitting one bit is taken as unity. Therefore, E for the CS system can 
be expressed as: 

 

𝐸 =
315∗Ɱ∗𝑁

𝑅
           (15) 

 

and for the CS-DM and CS-SDM systems as: 
 
 

𝐸 =
315∗𝑁

𝑅
            (16) 

 

In Figure 15, N=5, 𝑅 = (1 + 𝑇𝑚𝑎𝑥)/2 = 3 for 𝑇𝑚𝑎𝑥 = 5, and Ɱ is made variable as 
shown. The energy efficiency achieved using SWL is evident.  

 

 

   

 

Figure 15. Normalized communication energy consumption for the three localization systems versus the number of bits/word (Ɱ) of 

the original TOA samples. R=3, N=5, path length=315. 

 

 

6. Conclusions 

Three GD localization systems of a moving target within a WSN are simulated and 
compared with the aim of achieving the greatest possible communication energy 
efficiency without degrading performance. The three systems are pure CS localization, 
CS-DM and CS-SDM localization systems which employ, in addition to CS, short 
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word-length techniques leading to energy efficiency.  The optimum system in terms of 
both energy efficiency and localization error is found to be the CS-SDM localization 
system due to the noise shaping property of SDM. The poorest performance in terms of 
localization error is the CS-DM system; still it is a possible choice due to the achieved 
energy efficiency. Both CS-DM/SDM schemes, especially the system involving SDM, 
proved resilient to TOA measurement noise.  
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