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Abstract: A graph based path planning method consisting of off-line part and on-line part for1

multi-UAV system in windy condition is proposed. In the off-line part, the task area is divided into2

grids. When two nodes is close enough, they are connected and weighted by the cost, obtained by3

solving an optimization problem based on difference method, between them. In order to ensure4

the accuracy of the difference method, the adjacent radius is set to be small enough. In order to5

ensure the generated paths close to analytical solution, the grid size is set to be much smaller than6

the adjacent radius. The shortest path algorithm is used to update the adjacent matrix and path7

matrix. In the on-line part, the target position assignment and optimal velocity can be obtained by8

accessing the adjacent matrix and path matrix. At the end of this paper, some numerical examples9

are taken to illustrate the validity of our method and the influence of the parameters.10

Keywords: Path planning; Multi-UAV system; Shortest path algorithm11

1. Introduction12

In the past decades, cooperative coordination of multi-agent systems (MASs) has13

attracted adding attention from different domains [1]. Path planning of multi-unmanned14

aerial vehicle (multi-UAV) system is one of the key problems in MASs because of UAV’s15

wide application ranges in searching, surveying, mapping, measurement and rescue16

missions [1] [2] . Path planning aims to find the path with the minimal cost between17

two points. Many path planning approaches have been proposed in literatures, which18

can be categorized into several types [3], such as graph-search methods, variational and19

nonlinear programming (NLP) methods, artificial potential field (APF) methods, and so20

on.21

In graph based methods, the space is discretized as a graph, and the nodes represent22

a set of positions, the edges represent transitions between nodes. The optimal path is23

generated by making a search for a minimal cost path in such a graph. Then algorithms24

search the available nodes giving a solution if a path exist [4]. A* [5] [6] [7], D* [5] and25

rapidly random-exploring tree (RRT) [8] [9] [10] are the representatives of this class.26

In recent years, some improvements of the above-mentioned methods were published.27

Based on variable-step-length, paper [11] proposed an improvement of A* algorithm to28

overcome the drawbacks of the traditional A* algorithm, such as the large amount of29

steps and the non-optimal solution. A modifications in A* algorithm for reducing the30

processing time are proposed in [12]. For purpose of improving the real-time capability31

of UAV path planning, a method based on A* algorithm and virtual force is proposed32

in paper [13]. In paper [14], an algorithm named A*-RRT* is introduced. In A*-RRT*33

algorithm, an initial path is generated from the A* algorithm, and then used to guide the34

sampling process of the RRT* planner. Based on any-angle path biasing, the Thete*-RRT*35

algorithm, which can find a shorter path in shorter time than the RRT* and the A*-RRT*36
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algorithms, is proposed in paper [15]. To overcome the limitaions of RRT, such as slow37

convergence and high memory consumption, combined with the convolutional neural38

network (CNN), paper [10] proposed the Neural RRT* algorithm.39

A path planning problem can be converted to an optimization problem. Variational40

methods may be the most natural and direct for such problems. However, it is nearly41

impossible to solve complex problems using variational methods. Many papers solve42

such problems with NLP method, where the state and input variables sets are discretized43

into several intervals [16] [17] [18].44

APF represents a class of effective motion planning methods, its algorithm structure45

is simple and suitable for navigation tasks with real-time requirements [19] [? ]. Agents46

are simplified to particles moving along the current gradient direction of a potential47

created according to the target and the environment obstacles. Singularities and the48

convergence to local minimum are the most important problems still being studied [2].49

In the past few years, the complexity of the path planning problem has increased. To50

deal with this complexity, researchers start to concentrate on nondeterministic algorithms51

[20]. In paper [21], a method based on vibrational genetic algorithm (GA) is proposed to52

improve the exploration and avoidance of local minima when searching for an optimal53

path. Combining with the concept of artificial immune system, the authors of [22] use54

a GA to maintain superior population diversity throughout the evolution process. In55

paper [23], the authors use a particle swarm optimization (PSO) to calculate the shortest56

path between reconnaissance UAV targets.57

Although above-mentioned researches has gained notable achievement in many58

areas, there are still some deficiencies to be improved. The search strategy of some59

traditional graph based approaches can be summed up as "eight neighbourhood search",60

where the number of adjacent nodes of each node is limited 8, and the motion azimuth61

angle is limited as integral multiple of π/4. Under this limitation, the obtained path is62

probably not the optimal path. For some NLP methods and nondeterministic algorithms,63

it is hard to satisfy the requirement of the real-time capability because of their time64

consumption on repeated iteration or evolution. And some researches lack of the65

comparison between their results and the analytical solutions. In addition, the existing66

researches focus primarily on the path planning with obstacle avoidance, but the path67

planning of UAVs in windy conditions is rarely studied.68

Fortunately, recently, a trajectory optimization algorithm that balances optimality69

and real-time performance has been proposed in literature [24]. Based on this algorithm,70

an improved graph based approach is proposed in this paper. To make the generated71

path converge to the optimal path, a concept named adjacent radius, a standard to judge72

whether two nodes is adjacent, is put forward. In order to balance the optimality and73

the real-time capability, our method consists of two parts: off-line part and on-line part.74

In the off-line part, the cost, such as time consumption and fuel consumption, between75

two adjacent nodes is calculated using difference method and stored in an adjacency76

matrix. After that, the shortest path algorithm, such as Floyd-Warshall algorithm, is77

taken to update the adjacency matrix. In the on-line part, the UAV is guided from the78

initial position to the target position according to the message stored in the adjacency79

matrix.80

The rest of this paper is organized as follows. Section 2 presents some preliminaries81

and problem formulation. Section 3 presents the details of our method. Some numerical82

simulations are given in Section 4. The results are summarized in Section 5.83

2. Preliminaries And Problem Formulation84

2.1. Preliminaries85

In graph theory, the shortest path problem is to find the path between two nodes in a86

graph such that the sum of the weights of its constituent edges is minimized. Two nodes87

are adjacent when they are both incident to a common edge. The adjacency relationship88

of a graph is always described by a adjacent matrix whose element in row i column j89
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presents the weight from the ith node to the jth node , and the weight is set to infinity90

if there is no edge start from vertex i to vertex j. For a undirected graph, the adjacent91

matrix is symmetric [25] [26].92

Floyd-Warshall algorithm is a famous shortest path algorithm. It can find shortest93

paths in a weighted graph with no negative cycles, and it can find the summed weights94

of shortest paths between all pairs of nodes. With simple modifications, it is possible to95

reconstruct the paths. The Floyd-Warshall algorithm compares all possible paths through96

the graph between each pair of nodes, such that its time complexity and space complexity97

are O(N3) and O(N2) respectively [27]. In this paper, Floyd-Warshall algorithm is used98

to solve the shortest path problem.99

2.2. Problem Formulation100

We consider a planar system that consists of M UAVs and each UAV, i ∈ V =
{1, ..., M}, has the following dynamics in stagnant air:

ṗi = ui
pi ∈ Ωp −Ωb
ui ∈ Ωu

(1)

where pi and ui are the position and velocity of the ith UAV; Ωu ,Ωp are closed sets, and

Ωp =
{
(x1, x2)|δd

1 ≤ x1 ≤ δu
1 , δd

2 ≤ x2 ≤ δu
2

}
; Ωb is a open set and represents the barrier.

Ωp is in a steady wind field. The wind speed at position x is denoted as

w = f (x) (2)

Then the dynamics of the ith UAV in the wind field is

ṗi = f (pi) + ui (3)

Let Ii denote the initial position of the ith UAV and T = {T1, ..., TM} denote the set
of target positions. The objective of this paper is to specify a target position, say Tki, for
the ith UAV, and design a control law ui = g(pi) such that

Jsum =


M
∑

i=1

∫ t f i
0 L(pi, ui)dt

s.t. pi(0) = Ii
pi(t f i) = Tki

(4)

reach its minimum. The function L(pi, ui) in Equation 4 is the cost function, and it is101

smooth about pi and ui.102

3. Method Details103

3.1. Mesh the Task Area104

The first step of our method is to mesh the task area Ωp. The ith dimension of Ωp is
divided evnely by Ni nodes, then the mesh nodes set is

V =

{
δd

1 + k
δu

1 − δd
1

N1 − 1

∣∣k = 0, 1, ..., N1 − 1

}

×
{

δd
2 + k

δu
2 − δd

2
N2 − 1

∣∣k = 0, 1, ..., N2 − 1

} (5)
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where "×" is Cartesian product. The mesh size can be defined as s = max
(

δu
1−δd

1
N1−1 , δu

2−δd
2

N2−1

)
.

The coordinates of the ith node in V are:

vi =

(
δd

1 + ki
1

δu
1 − δd

1
N1 − 1

, ki
2

δu
2 − δd

2
N2 − 1

)
(6)

where

ki
1 = i//N2

ki
2 = i%N2

(7)

”//” and ”%” are exact division operator and modulo operator respectively. For any
x = (x1, x2) ∈ Ωp, assume its nearest mesh point is vi, then

i = Int

[
x1(N1 − 1)

δu
1 − δd

1

]
N2 + Int

[
x2(N2 − 1)

δu
2 − δd

2

]
(8)

Function Int(.) means the nearest integer of its inside, that is

Int(x) = arg min
i∈Z
|x− i| (9)

3.2. Calculate and Update the Adjacent Matrix105

Define a graph over all nodes by connecting the ith node vi and the jth node vj if
(as measured by Euclid norm

∥∥vi − vj
∥∥

2) they are closer than the adjacent radius r and
there are no barriers on the line between vi and vj, then set the edge weights ci,j equal to
the minimal cost from vi to vj, otherwise, ci,j = ∞. If r is small enough, by using central
difference method, ci,j can be obtained. See Equation (10).

ci,j =



min
u

L
( vi+vj

2 , u
)

∆t

s.t. vj = vi +
[

f
( vi+vj

2

)
+ u

]
∆t

u ∈ Ωu

∆t ≥ 0


,

∥∥vi − vj
∥∥

2 ≤ r
lvi ,vj ∩Ωb = ∅

∞, otherwise

(10)

Where lvi ,vj is the line between vi and vj. Then, set the element at row i and column j of106

adjacent matrix D as ci,j.107

After that, use Floyd-Warshall algorithm to update the adjacent matrix D and108

generate path matrix P. Finally, Di,j is the cost of the shortest path in the graph start109

from vi to vj, and Pi,j is the index of the first node passed by the shortest path from vi to110

vj.111

The pseudocode of algorithm described in this subsection is shown in Algorithm 1.112

Literature [24] suggests that the shortest path from vi to vj converges to the optimal tra-113

jectory between vi and vj, if the adjacent radius r and the grid size s tend to infinitesimal114

and s is a higher infinitesimal of r.115

3.3. On-line Control116

For any positions p1, p2 ∈ Ωp −Ωb, the nearest nodes, say vi1 and vi2, of them can117

be obtained by using Equation (8) and (9). Then Di1,i2 is the approximate value of the118

minimal cost from p1 to p2. Therefore, the targets assignment problem can be solved by119

using Hungarian algorithm [28] or by traversing all permutations of set T. The outcome120

of this step depends on the accuracy of D. An inaccurate D always results in a bad121

assignment.122
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Algorithm 1 Calculate and update the adjacent matrix

1: Let D and P are matrices with shape N1N2 × N1N2;
2: for i ∈ {0, 1, ..., N1N2 − 1} do
3: for j ∈ {0, 1, ..., N1N2 − 1} do
4: if i = j then
5: Di,j ← 0;
6: Continue;
7: end if
8: if

∥∥vi − vj
∥∥

2 ≤ r and lvi ,vj ∩Ωb = ∅ then

9: ci,j ←


min

u
L
( vi+vj

2 , u
)

∆t

s.t. vj = vi +
[

f
( vi+vj

2

)
+ u

]
∆t

u ∈ Ωu
∆t ≥ 0

10: Di,j ← ci,j;
11: else
12: Di,j ← ∞;
13: end if
14: end for
15: end for
16: Use Floyd-Warshall algorithm to update D and P;

Given the current position pcur and the target position ptar of a UAV, the nearest123

nodes, say va and vb, of them can be obtained. Then the node numbered Pa,b can be124

choosen as a temporary target, and the distance between temporary target and va is less125

than r. And the optimal velocity u∗ of this UAV can be obtained through some simple126

calculations, see Equation (11).127

u∗ =



arg min
u

L
( pcur+vPa,b

2 , u
)

∆t

s.t. vPa,b = pcur +
[

f
( pcur+vPa,b

2

)
+ u

]
∆t

u ∈ Ωu

∆t ≥ 0


,

‖pcur − ptar‖2 > s

arg min
u

L
(

pcur+ptar
2 , u

)
∆t

s.t. ptar = pcur +
[

f
(

pcur+ptar
2

)
+ u

]
∆t

u ∈ Ωu

∆t ≥ 0


,

‖pcur − ptar‖2 ≤ s

(11)

See Fig. 1 for the intuitive interpretation.128

4. Numerical Simulations129

In this section, some simulations under different parameters are taken to analyze130

the influence of mesh size s and adjacent radius r on the solution, and to illustrate the131

validity of our method.132
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Figure 1. Intuitive interpretation of u∗

Consider a path planning problem for a multi-UAV system with 4 UAVs, the
task area is Ωp = {(x1, x2)| − 100 ≤ x1, x2 ≤ 100}. the limitation of UAV velocity is
Ωu = {(u1, u2)| − 10 ≤ u1, u2 ≤ 10}, and the wind field w is{

w1 = 0.08x2

w2 = −0.08x1
(12)

And the barriers set is Ωb = {(x1, x2)|x2 ≥ 8x1 + 60, x2 ≥ −8x1 + 60}. In the following133

examples, the nodes quantities in the two dimensions of task area are equal, that is134

N1 = N2.135

4.1. Time Optimal Path Planning136

This subsection aims to specify a proper target position and plan path for each
UAV to minimize the time consumption of the task. The initial positions set of UAVs
is I = {(−100,−10), (−100, 10), (−80,−10), (−80, 10)}, and the target positions set is
T = {(90, 50), (90, 25), (40,−70), (50,−80)}. In other words, mathematically, find ui(t)
for the ith UAV, i = 1, ..., 4, to minimize the following expression:

Jsum =



4
∑

i=1

∫ t f i
0 1dt

s.t. pi(0) = Ii
pi(t f i) = Tki
ṗ = w + ui
pi(t) ∈ Ωp −Ωb
ui(t) ∈ Ωu

(13)

where Tki is the specified position for the ith UAV. Four groups of parameters are tested,137

they are s = 4 r = 4
√

2, s = 2 r = 2
√

5, s = 4/3 r = 16/3 and s = 1, r = 5. After the138

aversal of all the permutations of set T, see Algorithm 2, the correspondences between139

the UAVs and the target positions under the different parameters are shown in Table 1.140

For this problem, after identified the initial position and target postion for UAVs, the141

analytical solutions can be easily obtained. The simulation results are shown in Figure 2,142

the simulation time step is set as 0.001.143

It can be seen from Table 1 and Figure 2 that as both the density of nodes and the144

quantity of adjacent points of each node increases, the planned paths generated by the145

proposed method approach to the analytical solutions, and the estimated time consump-146
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Table 1: Specified target position for each UAV under different parameters

Number
of UAV

Initial
Position

s = 4, r = 4
√

2 s = 2, r = 2
√

5 s = 4/3, r = 16/3 s = 1, r = 5

Target
position

Estimated
cost

Target
position

Estimated
cost

Target
position

Estimated
cost

Target
position

Estimated
cost

1 (−100,−10) (50,−80) 17.71 (90, 50) 13.58 (90, 50) 13.37 (90, 50) 13.27
2 (−100, 10) (90, 50) 13.39 (90, 25) 13.45 (90, 25) 13.24 (90, 25) 13.14
3 (−80,−10) (40,−70) 14.94 (40,−70) 13.65 (40,−70) 13.23 (40,−70) 13
4 (−80, 10) (90, 25) 12.39 (50,−80) 14.59 (50,−80) 14.04 (50,−80) 13.82

tion (the estimated cost in Table 1) and the real time consumption (the simulation time,147

shown in the red textboxes in Figure 2) of our method close to the time consumption of148

the analytical solutions (shown in the blue textboxes in Figure 2). Limited by the "eight149

neighbourhood search", the estimated costs in the case of s = 4, r = 4
√

2s have relatively150

big error such that the method cannot specify the optimal target postion for every UAV,151

and the planned paths are far away from the analytical solutions.152

4.2. Fuel Optimal Path Planning153

This subsection aims to specify a proper target position and plan path for each
UAV to minimize the total fuel consumption of the task. The initial positions set
of UAVs is I = {(100, 0), (80, 0), (60, 0), (40, 0)}, and the target positions set is T =
{(−80, 20), (−60, 20), (70, 20), (50, 30)}. That is, find ui(t) for the ith UAV, i = 1, ..., 4,
to minimize the following expression:

Jsum =



4
∑

i=1

∫ t f i
0 ‖ui‖2dt

s.t. pi(0) = Ii
pi(t f i) = Tki
ṗ = w + ui
pi(t) ∈ Ωp −Ωb
ui(t) ∈ Ωu

(14)

The parameter settings are same as the previous subsection. The results of target position154

assignment under different parameters are shown in Table 2. And the simulation results155

and the analytical solutions (not unique) are shown in Figure 3. It can be seen from156

Table 2 and Figure 3 that, similarly as the previous example, greater nodes density can157

significantly improve the performance of our method in terms of fuel consumption158

estimate accuracy and generated paths. In the cases of s = 4, r = 4
√

2s and s = 2, r =159

2
√

5s, the fuel consumption estimates have relatively big error, and the generated paths160

are very different from the optimal paths.161
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(a) Simulation result under s =

4, r = 4
√

2.
(b) Simulation result under s =

2, r = 2
√

5.

(c) Simulation result under s =

4/3, r = 16/3.
(d) Simulation result under s =

1, r = 5.

Figure 2. Simulation results for time optimal path planning under different parameters.
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Table 2: Specified target position for each UAV under different parameters

Number
of UAV

Initial
Position

s = 4, r = 4
√

2 s = 2, r = 2
√

5 s = 4/3, r = 16/3 s = 1, r = 5

Target
position

Estimated
cost

Target
position

Estimated
cost

Target
position

Estimated
cost

Target
position

Estimated
cost

1 (100, 0) (−60, 20) 60.75 (−80, 20) 26.55 (−80, 20) 19.24 (−80, 20) 17.56
2 (80, 0) (−80, 20) 53.52 (−60, 20) 24.37 (−60, 20) 18.67 (−60, 20) 16.76
3 (60, 0) (70, 20) 41.62 (70, 20) 41.22 (70, 20) 15.01 (70, 20) 14.03
4 (40, 0) (50, 30) 46.73 (50, 30) 26.03 (50, 30) 19.21 (50, 30) 18.32

(a) Simulation result under s =

4, r = 4
√

2.
(b) Simulation result under s =

2, r = 2
√

5.

(c) Simulation result under s =

4/3, r = 16/3.
(d) Simulation result under s =

1, r = 5.

Figure 3. Simulation results for time optimal path planning under different parameters.

5. Conclusion162

This paper proposed a graph based path planning method for multi-UAV system163

in steady windy condition. For both accuracy and real time capability, the method is164

divided into off-line and on-line parts. In the off-line part, the task area is divided into165

grids and a adjacent matrix and a path matrix are established. A pair of nodes are166

connected and weighted by the cost between them if they are closer than the adjacent167

radius. The cost is obtained by solving an optimization problem based central difference168

method and stored in the adjacent matrix. After that, Floyd-Warshall algorithm is used169

to update the adjacent matrix and path matrix. In the on-line part, the costs of different170

target position assignment schemes can be accurately estimated by access the adjacent171
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matrix. And the optimal velocity of each UAV can be easily obtained by access the path172

matrix.173

However, some shortcomings are found during the study. A large number of nodes174

always result in a lot of memory consumption. In addition, this method lacks a collision175

avoidance mechanism. These problems will be considered in our future work.176
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