ON GRADED WEAKLY S-PRIME IDEALS

HICHAM SABER

Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il, Kingdom of Saudi Arabia

TARIQ ALRAQAD

Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il, Kingdom of Saudi Arabia

RASHID ABU-DAWWAS

Department of Mathematics, Yarmouk University, Irbid, Jordan

HANAN SHTAYAT

Department of Mathematics, Yarmouk University, Irbid, Jordan

MANAR HAMDAN

Department of Mathematics, Yarmouk University, Irbid, Jordan

ABSTRACT. Let R be a commutative graded ring with unity, S be a multiplicative subset of homogeneous elements of R and P be a graded ideal of R such that $P \cap S = \emptyset$. In this article, we introduce several results concerning graded S-prime ideals. Then we introduce the concept of graded weakly S-prime ideals which is a generalization of graded weakly prime ideals. We say that P is a graded weakly S-prime ideal of R if there exists $s \in S$ such that for all $x, y \in h(R)$, if $0 \neq xy \in P$, then $sx \in P$ or $sy \in P$. We show that graded weakly S-prime ideals have many acquaintance properties to these of graded weakly prime ideals.

1. Introduction

Throughout this article, G will be a group with identity e and R be a commutative ring with nonzero unity 1. Then R is called G-graded if $R = \bigoplus_{g \in G} R_g$ with $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$ where R_g is an additive subgroup of R for all $g \in G$. The elements of R_g are

E-mail addresses: hicham.saber7@gmail.com, t.alraqad@uoh.edu.sa, rrashid@yu.edu.jo, 2019105024@ses.yu.edu.jo, manar.hamdan94@gmail.com.

²⁰¹⁰ Mathematics Subject Classification. 13A02, 16W50.

 $[\]it Key\ words\ and\ phrases.$ Graded weakly prime ideals; graded S-prime ideals; graded weakly S-prime ideals.

called homogeneous of degree g. If $a \in R$, then a can be written uniquely as $\sum a_g$, where

 a_g is the component of a in R_g . The component R_e is a subring of R and $1 \in R_e$. The set

of all homogeneous elements of
$$R$$
 is $h(R) = \bigcup_{g \in G} R_g$. Let P be an ideal of a graded ring R . Then P is called a graded ideal if $P = \bigoplus_{g \in G} (P \cap R_g)$, i.e., for $a \in P$, $a = \sum_{g \in G} a_g$ where

 $a_q \in P$ for all $g \in G$. It is not necessary that every ideal of a graded ring is a graded ideal. For more details and terminology, see [6, 7].

Let P be a proper graded ideal of R. Then the graded radical of P is denoted by Grad(P) and it is defined as follows:

$$Grad(P) = \left\{ x = \sum_{g \in G} x_g \in R : \text{ for all } g \in G, \text{ there exists } n_g \in \mathbb{N} \text{ such that } x_g^{n_g} \in P \right\}.$$

Note that Grad(P) is always a graded ideal of R (see [9]).

A proper graded ideal P of R is said to be graded prime if for $x, y \in h(R), xy \in P$ implies $x \in P$ or $y \in P$ [9]. Graded prime ideals play a very important role in the commutative graded rings theory. There are several ways to generalize the concept of a graded prime ideal, for example, Atani in [2] defined the concept of graded weakly prime ideals; a proper graded ideal P of R is said to be a graded weakly prime ideal if whenever $0 \neq ab \in P$ for some $a, b \in h(R)$, then either $a \in P$ or $b \in P$.

Let $S \subseteq R$ be a multiplicative set and P be an ideal of R such that $P \cap S = \emptyset$. In [5], P is said to be an S-prime ideal of R if there exists $s \in S$ such that for all $x, y \in R$, if $xy \in P$, then $sx \in P$ or $sy \in P$. Then in [1], P is said to be a weakly S-prime ideal of R if there exists $s \in S$ such that for all $x, y \in R$, if $0 \neq xy \in P$, then $sx \in P$ or $sy \in P$.

Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and P be a graded ideal of R such that $P \cap S = \emptyset$. In this article, in Section Two, motivated by [5, 10], we study the concept of graded S-prime ideals. We say that P is a graded S-prime ideal of R if there exists $s \in S$ such that for all $x, y \in h(R)$, if $xy \in P$, then $sx \in P$ or $sy \in P$. Clearly, every S-prime ideal is graded S-prime, we prove that the converse is not necessarily true (Example 2.2). Also, it is obvious that every graded prime ideal that is disjoint with S is graded S-prime, we prove that the converse is not necessarily true (Example 2.3). Note that if S consists of units of h(R), then the notions of graded S-prime and graded prime ideal coincide. We show that graded S-prime ideals have many analog properties to these of graded prime ideals. In Section Three, motivated by [1], we introduce the concept of graded weakly S-prime ideals. We say that P is a graded weakly S-prime ideal of R if there exists $s \in S$ such that for all $x, y \in h(R)$, if $0 \neq xy \in P$, then $sx \in P$ or $sy \in P$. Clearly, every weakly S-prime ideal is graded weakly S-prime, we prove that the converse is not necessarily true (Example 3.2). Also, it is obvious that every graded weakly prime ideal that is disjoint with S is graded weakly S-prime, we prove that the converse is not necessarily true (Example 3.4). Note that if S consists of units of h(R), then the notions of graded weakly S-prime and graded weakly prime ideal coincide. Also, it is evident that every graded S-prime ideal is graded weakly S-prime, we prove that the converse is not necessarily true (Example 3.3). We show that graded weakly S-prime ideals have many acquaintance properties to these of graded weakly prime ideals.

2. Graded S-Prime Ideals

In this section, motivated by [5,10], we study the concept of graded S-prime ideals. We prove that graded S-prime ideals have many analog properties to these of graded prime ideals.

Definition 2.1. ([10]) Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and P be a graded ideal of R such that $P \cap S = \emptyset$. We say that P is a graded S-prime ideal of R if there exists $s \in S$ such that for all $x, y \in h(R)$, if $xy \in P$, then $sx \in P$ or $sy \in P$.

Clearly, every S-prime ideal is graded S-prime, but the converse is not necessarily true, see the following example:

Example 2.2. Consider $R = \mathbb{Z}[i]$ and $G = \mathbb{Z}_2$. Then R is G-graded by $R_0 = \mathbb{Z}$ and $R_1 = i\mathbb{Z}$. Consider the graded ideal I = 5R of R. We show that I is a graded prime ideal of R. Let $xy \in I$ for some $x, y \in h(R)$.

Case (1): $x, y \in R_0$. In this case, $x, y \in \mathbb{Z}$ such that 5 divides xy, and then either 5 divides x or 5 divides y as 5 is a prime, which implies that either $x \in I$ or $y \in I$.

Case (2): $x, y \in R_1$. In this case, x = ia and y = ib for some $a, b \in \mathbb{Z}$ such that 5 divides xy = -ab, and then 5 divides ab in \mathbb{Z} , and again either 5 divides a or 5 divides b, which implies that either 5 divides x = ia or 5 divides y = ib, and hence either $x \in I$ or $y \in I$.

Case (3): $x \in R_0$ and $y \in R_1$. In this case, $x \in \mathbb{Z}$ and y = ib for some $b \in \mathbb{Z}$ such that $\overline{5}$ divides xy = ixb in R, that is $ixb = 5(\alpha + i\beta)$ for some $\alpha, \beta \in \mathbb{Z}$, which gives that $xb = 5\beta$, that is 5 divides xb in \mathbb{Z} , and again either 5 divides x or 5 divides b, and then either 5 divides x or 5 divides y = ib in b, and hence either b or b divides b.

So, I is a graded prime ideal of R. Consider the graded ideal P = 10R of R and the multiplicative subset $S = \{2^n : n \text{ is a non-negative integer}\}\$ of h(R). We show that P is a graded S-prime ideal of R. Note that $P \cap S = \emptyset$. Let $xy \in P$ for some $x, y \in h(R)$. Then 10 divides xy in R. Then $xy \in I$, and then $x \in I$ or $y \in I$ as I is graded prime, which implies that $2x \in P$ or $2y \in P$. Therefore, P is a graded S-prime ideal of R. On the other hand, P is not an S-prime ideal of R since $3-i, 3+i \in R$ with $(3-i)(3+i) \in P$, $s(3-i) \notin P$ and $s(3+i) \notin P$ for each $s \in S$.

It is obvious that every graded prime ideal that is disjoint with S is graded S-prime. However, in Example 2.2, we proved that P is a graded S-prime ideal of R. On the other hand, P is not a graded prime ideal of R since $2, 5 \in h(R)$ with $2.5 \in P$, $2 \notin P$ and $5 \notin P$. Moreover, in the next example, we introduce another example on graded S-prime ideal which is not graded prime. In fact, if S consists of units of h(R), then the notions of graded prime and graded S-prime ideals coincide.

Example 2.3. Consider $R = \mathbb{Z}[X]$ and $G = \mathbb{Z}$. Then R is G-graded by $R_j = \mathbb{Z}X^j$ for $j \geq 0$ and $R_j = \{0\}$ otherwise. Consider the graded ideal P = 9XR of R and the multiplicative subset $S = \{3^n : n \text{ is a non-negative integer}\}$ of h(R). We show that P is a graded S-prime ideal of R. Note that $P \cap S = \emptyset$. Let $f(X)g(X) \in P$ for some $f(X), g(X) \in h(R)$. Then X divides f(X)g(X), and then X divides f(X) or X divides g(X), which implies that $9f(X) \in P$ or $9g(X) \in P$. Therefore, P is a graded S-prime ideal of R. On the other hand, P is not a graded prime ideal of R since $3, 3X \in h(R)$ with $3.3X \in P$, $3 \notin P$ and $3X \notin P$.

By ([10], Lemma 4.1), if I is a graded ideal of R, then $(I:a) = \{r \in R : ra \in I\}$ is a graded ideal of R for each $a \in h(R)$.

Proposition 2.4. Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and I be a graded ideal of R such that $I \cap S = \emptyset$. Then I is a graded S-prime ideal of R if and only if (I:s) is a graded prime ideal of R for some $s \in S$.

Proof. Suppose that I is a graded S-prime ideal of R. Then there exists $s \in S$ such that for any $x, y \in h(R)$, if $xy \in I$, then $sx \in I$ or $sy \in I$. We show that (I : s) is a graded prime ideal of R. Let $xy \in (I : s)$ for some $x, y \in h(R)$. Then $sxy = (sx)y \in I$, and then $s^2x \in I$ or $sy \in I$. If $sy \in I$, then $y \in (I : s)$. Assume that $s^2x \in I$. Then $s^3 \in I$ or

 $sx \in I$. If $s^3 \in I$, then $s^3 \in I \cap S$, which is a contradiction. So, $sx \in I$, which yields that $x \in (I:s)$. Therefore, (I:s) is a graded prime ideal of R. Conversely, let $xy \in I$ for some $x, y \in h(R)$. Then $sxy \in I$, and then $xy \in (I:s)$, which implies that $x \in (I:s)$ or $y \in (I:s)$, and hence $sx \in I$ or $sy \in I$. Therefore, I is a graded S-prime ideal of R. \square

Let R be a G-graded ring. Then T = R[X] is G-graded by $T_g = R_g[X]$ for all $g \in G$. Note that $f(x) \in T$ is a homogeneous element if all coefficients of f(x) are homogeneous of the same degree in R. Clearly, an ideal I of R is graded if and only if I[X] is a graded ideal of R[X].

Theorem 2.5. Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and I be an ideal of R such that $I \cap S = \emptyset$. Then I is a graded S-prime ideal of R if and only if I[X] is a graded S-prime ideal of R[X].

Proof. Suppose that I[X] is a graded S-prime ideal of R[X]. Then there exists $s \in S$ such that whenever $f(X), g(X) \in h(R[X])$ with $f(X)g(X) \in I[X]$, then $sf(X) \in I[X]$ or $sg(X) \in I[X]$. Let $a, b \in h(R)$ such that $ab \in I$. We have $I \subseteq I[X]$, thus $sa \in I[X]$ or $sb \in I[X]$. So $sa \in I$ or $sb \in I$. Conversely, (I:s) is a graded prime ideal of R[X] for some $s \in S$ by Proposition 2.4, and then (I:s)[X] is a graded prime ideal of R[X]. Let $f(X), g(X) \in h(R[X])$ such that $f(X)g(X) \in I[X]$. We have $f(X)g(X) \in I[X] \subseteq (I:s)[X]$. Therefore $f(X) \in (I:s)[X]$ or $g(X) \in (I:s)[X]$. This implies that $sf(X) \in I[X]$ or $sg(X) \in I[X]$.

Let R be a G-graded ring and I be a graded ideal of R. Then R/I is a G-graded ring by $(R/I)_g = (R_g + I)/I$ for all $g \in G$. Moreover, if P is an ideal of R containing I, then P is a graded ideal of R if and only if P/I is a graded ideal of R/I, see ([10], Lemma 3.2).

Theorem 2.6. Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and I be a graded ideal of R such that $I \cap S = \emptyset$. Suppose that $Z(R/I) \cap \overline{S} = \emptyset$, where $\overline{S} = \{s + I : s \in S\}$. Then I is a graded S-prime ideal of R if and only if I is a graded prime ideal of R.

Proof. Suppose that I is a graded S-prime ideal of R. We show that I = (I:s) for each $s \in S$. Let $s \in S$. Clearly, $I \subseteq (I:s)$. Let $x \in (I:s)$. Then $x_g \in (I:s)$ for all $g \in G$ as (I:s) is a graded ideal by ([10], Lemma 4.1), and then $sx_g \in I$ for all $g \in G$, which implies that $(s+I)(x_g+I) = sx_g+I = 0+I$ for all $g \in G$. Since $Z(R/I) \cap \overline{S} = \emptyset$ and $s \notin I$, $x_g \in I$ for all $g \in G$, and so $x \in I$. Hence, I = (I:s) for each $s \in S$, and then I is a graded prime ideal of R by Proposition 2.4. The converse is clear.

Recall that if R is a G-graded ring and $S \subseteq h(R)$ is a multiplicative set, then $S^{-1}R$ is a G-graded ring with $(S^{-1}R)_g = \left\{\frac{a}{s}, a \in R_h, s \in S \cap R_{hg^{-1}}\right\}$ for all $g \in G$. Moreover, if I is a graded ideal of R, then $S^{-1}I$ is a graded ideal of $S^{-1}R$ [7].

Theorem 2.7. Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and I be a graded ideal of R such that $I \cap S = \emptyset$. Suppose that $Z(R) \cap S = \emptyset$. Then I is a graded S-prime ideal of R if and only if $S^{-1}I$ is a graded prime ideal of $S^{-1}R$ and $S^{-1}I \cap h(R) = (I:_{h(R)} s)$ for some $s \in S$.

Proof. Since I is graded S-prime, there exists $s \in S$ such that whenever $a, b \in h(R)$ with $ab \in I$, then $sa \in I$ or $sb \in I$. Let $\frac{x}{s_1} \frac{y}{s_2} \in S^{-1}I$ for some $\frac{x}{s_1}, \frac{y}{s_2} \in h(S^{-1}R)$. Then $\frac{x}{s_1} \frac{y}{s_2} = \frac{z}{s_3}$ for some $z \in I$, $s_3 \in S$, and then $xys_3 = s_1s_2z \in I$. So, $sx \in I$ or $ss_3y \in I$, which yields that $\frac{x}{s_1} = \frac{sx}{ss_1} \in S^{-1}I$ or $\frac{y}{s_2} = \frac{ss_3y}{ss_3s_2} \in S^{-1}I$. Hence, $S^{-1}I$ is a graded prime ideal of $S^{-1}R$. Let $a \in (I:_{h(R)} s)$. Then $a \in h(R)$ with $sa \in I$, and then $a = \frac{sa}{s} \in S^{-1}I$. So, $a \in S^{-1}I \cap h(R)$, and hence $(I:_{h(R)} s) \subseteq S^{-1}I \cap h(R)$. Let $b \in S^{-1}I \cap h(R)$. Then $b \in h(R)$ and $b = \frac{w}{t}$ for some $w \in I$, $t \in S$, and then $bt = w \in I$. So, $sb \in I$ or $st \in I$.

Since $I \cap S = \emptyset$, $st \notin I$, and then $sb \in I$, which gives that $b \in (I:_{h(R)} s)$. Therefore, $S^{-1}I \cap h(R) = (I:_{h(R)} s)$. Conversely, let $xy \in I$ for some $x, y \in h(R)$. Then $\frac{x}{1} \frac{y}{1} \in S^{-1}I$, and then $\frac{x}{1} \in S^{-1}I$ or $\frac{y}{1} \in S^{-1}I$. If $\frac{x}{1} \in S^{-1}I$, then $\frac{x}{1} = \frac{z}{t}$ for some $z \in I$, $t \in S$, and then $xt = z \in I$, which implies that $x = \frac{xt}{t} \in S^{-1}I \cap h(R)$. By assumption, $x \in (I:_{h(R)} s)$ for some $s \in S$, which gives that $sx \in I$. Similarly, if $\frac{y}{1} \in S^{-1}I$, then $sy \in I$. Therefore, I is a graded S-prime ideal of R.

Example 2.8. In Example 2.3, we proved that P is a graded S-prime ideal of R. So, by Theorem 2.7, $S^{-1}P$ is a graded prime ideal of $S^{-1}R$, while P is not a graded prime idea of R.

Proposition 2.9. Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and I be a graded ideal of R such that $I \cap S = \emptyset$. Suppose that J is a graded ideal of R such that $J \cap S \neq \emptyset$. If I is a graded S-prime ideal of R, then JI is a graded S-prime ideal of R.

Proof. By ([4], Lemma 2.1), JI is a graded ideal of R. Clearly, $JI \cap S = \emptyset$. Since $J \cap S \neq \emptyset$, there exists $t \in J \cap S$. Since I is a graded S-prime ideal of R, there exists $s \in S$ such that whenever $x, y \in h(R)$ with $xy \in I$, then $sx \in I$ or $sy \in I$. Let $a, b \in h(R)$ such that $ab \in JI$. Then $ab \in I$, and then $sa \in I$ or $sb \in I$, which implies that $ts \in S$ with $tsa \in JI$ or $tsb \in JI$. Hence, tsup JI is a graded tsup S-prime ideal of tsup R. tuning S

Proposition 2.10. Let R, T be two G-graded rings with $R \subseteq T$ and $S \subseteq h(R)$ be a multiplicative set. If I is a graded S-prime ideal of T, then $I \cap R$ is a graded S-prime ideal of R.

Proof. By ([4], Lemma 2.1), $I \cap R$ is a graded ideal of R. Clearly, $(I \cap R) \cap S = \emptyset$. Since I is a graded S-prime ideal of T, there exists $s \in S$ such that whenever $x, y \in h(T)$ with $xy \in I$, then $sx \in I$ or $sy \in I$. Let $x, y \in h(R) \subseteq h(T)$ with $xy \in I \cap R$. Then $xy \in I$, and then $sx \in I$ or $sy \in I$, which implies that $sx \in I \cap R$ or $sy \in I \cap R$. Hence, $I \cap R$ is a graded S-prime ideal of R.

Theorem 2.11. Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and I be a graded ideal of R such that $I \cap S = \emptyset$. Then I is a graded S-prime ideal of R if and only if there exists $s \in S$ such that for all graded ideals K, J of R, if $KJ \subseteq I$, then $sK \subseteq I$ or $sJ \subseteq I$.

Proof. Suppose that I is a graded S-prime ideal of R. Then there exists $s \in S$ such that whenever $x, y \in h(R)$ with $xy \in I$, then $sx \in I$ or $sy \in I$. Let K, J be graded ideals with $KJ \subseteq I$. Assume that $sK \not\subseteq I$. Then $sx \not\in I$ for some $x \in K$, and then $sx_g \not\in I$ for some $g \in G$. Note that $x_g \in K$ as K is a graded ideal. Let $y \in J$. Then $y_h \in J$ for all $h \in G$ as J is a graded ideal. For $h \in G$, $x_g y_h \in KJ \subseteq I$, and then $sy_h \in I$ for all $h \in G$, which implies that $sy \in I$, and hence $sJ \subseteq I$. Conversely, let $a, b \in h(R)$ such that $ab \in I$. Then K = Ra and J = Rb are graded ideals of R with $KJ \subseteq I$, and then by assumption, $sK \subseteq I$ or $sJ \subseteq I$, and hence $sa \in I$ or $sb \in I$. Thus, I is a graded S-prime ideal of R.

Using induction, one can deduce the following from Theorem 2.11:

Corollary 2.12. Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and I be a graded ideal of R such that $I \cap S = \emptyset$. Then I is a graded S-prime ideal of R if and only if there exists $s \in S$ such that for all graded ideals $K_1, K_2, ..., K_n$ of R, if $K_1.K_2...K_n \subseteq I$, then $sK_j \subseteq I$ for some $1 \le j \le n$.

Also, using Corollary 2.12, one can prove the following:

Proposition 2.13. Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and I be a graded ideal of R disjoint with S. Then I is a graded S-prime ideal of R if and only if

ON GRADED WEAKLY S-PRIME IDEALS

there exists $s \in S$ such that for all $x_1, x_2, ..., x_n \in h(R)$, if $x_1.x_2...x_n \in I$, then $sx_i \in I$ for some $1 \le i \le n$.

Applying Corollary 2.12 with $S = \{1\}$, we have the following well-known fact:

Corollary 2.14. Let R be a graded ring and I be a proper graded ideal of R. Then I is a graded prime ideal of R if and only if for all graded ideals $I_1, I_2, ..., I_n$ of R, if $I_1.I_2...I_n \subseteq I$, then $I_j \subseteq I$ for some $1 \le j \le n$.

Using Corollary 2.12, we prove the following:

Proposition 2.15. Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and I be a graded ideal of R such that $I \cap S = \emptyset$. Suppose that K is a graded ideal of R with $K \subseteq I$. If I is a graded S-prime ideal of R, then there exists $s \in S$ such that $s.Grad(K) \subseteq I$.

Proof. Since I is a graded S-prime ideal of R, there exists $s \in S$ such that for all graded ideals $J_1, J_2, ..., J_n$ of R, if $J_1.J_2...J_n \subseteq I$, then $sJ_j \subseteq I$ for some $1 \leq j \leq n$ by Corollary 2.12. Let $a \in Grad(K)$. Then $a_g \in Grad(K)$ for all $g \in G$ as Grad(K) is a graded ideal, which gives that $a_g^{n_g} \in K$ for some positive integer n_g , and then for $g \in G$, $J = Ra_g$ is a graded ideal of R with $J.J...J \subseteq I$, which implies that $sJ \subseteq I$, and then $sa_g \in I$ for all n_g —times

 $g \in G$. So, $sa \in I$, and hence $s.Grad(K) \subseteq I$.

Proposition 2.16. Let $K_1, K_2, ..., K_n$ be graded S-prime ideals of R. Then there exists $s \in S$ such that $s.Grad(K_1 \cap K_2 \cap ... \cap K_n) \subseteq K_1 \cap K_2 \cap ... \cap K_n$.

Proof. By Proposition 2.15, for each $1 \leq i \leq n$, there exists $s_i \in S$ such that $s_i.Grad(K_i) \subseteq K_i$, and then $s = s_1.s_2...s_n \in S$ with $s.Grad(K_1 \cap K_2 \cap ... \cap K_n) = s.(Grad(K_1) \cap Grad(K_2) \cap ... \cap Grad(K_n)) \subseteq K_1 \cap K_2 \cap ... \cap K_n$.

Recall that if R and T are G-graded rings, then a ring homomorphism $f: R \to T$ is said to be a graded ring homomorphism if $f(R_q) \subseteq T_q$ for all $g \in G$ [7].

Proposition 2.17. Let $f: R \to T$ be a graded ring homomorphism and $S \subseteq h(R)$ be a multiplicative set with $0_T \in f(S)$. If P is a graded f(S)-prime ideal of T, then $f^{-1}(P)$ is a graded S-prime ideal of R.

Proof. By ([8], Lemma 3.11 (1)), $f^{-1}(P)$ is a graded ideal of R. Since P is a graded f(S)-prime ideal of T, there exists $s \in S$ such that whenever $a, b \in h(T)$ with $ab \in P$, then $f(s)a \in P$ or $f(s)b \in P$. Clearly, $f^{-1}(P) \cap S = \emptyset$. Let $x, y \in h(R)$ such that $xy \in f^{-1}(P)$. Then $f(x), f(y) \in h(T)$ with $f(x)f(y) = f(xy) \in P$, and then $f(s)f(x) = f(sx) \in P$ or $f(s)f(y) = f(sy) \in P$, which yields that $sx \in f^{-1}(P)$ or $sy \in f^{-1}(P)$. Hence, $f^{-1}(P)$ is a graded S-prime ideal of R.

Proposition 2.18. Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and K be a graded ideal of R disjoint with S. Let I be a proper ideal of R containing K such that $(I/K) \cap \overline{S} = \emptyset$, where $\overline{S} = \{s + K : s \in S\}$. Then I is a graded S-prime ideal of R if and only if I/K is a graded \overline{S} -prime ideal of R/K.

Proof. Suppose that I is a graded S-prime ideal of R. Then there exists $s \in S$ such that whenever $x,y \in h(R)$ with $xy \in I$, then $sx \in I$ or $sy \in I$. By ([10], Lemma 3.2), I/K is a graded ideal of R/K. Let $x+K,y+K \in h(R/K)$ such that $(x+K)(y+K) = xy+K \in I/K$. Then $x,y \in h(R)$ such that $xy \in I$, and then $sx \in I$ or $sy \in I$, which gives that $s+K \in \overline{S}$ with $(s+K)(x+K) = sx+K \in I/K$ or $(s+K)(y+K) = sy+K \in I/K$. Therefore, I/K is a graded \overline{S} -prime ideal of R/K. Conversely, there exists $s+K \in \overline{S}$ such that whenever $x+K,y+K \in h(R/K)$ with $(x+K)(y+K) \in I/K$, then $(s+K)(x+K) \in I/K$ or $(s+K)(y+K) \in I/K$. By ([10], Lemma 3.2), I is a graded ideal of R. Clearly,

 $I \cap S = \emptyset$. Let $x, y \in h(R)$ such that $xy \in I$. Then $x + K, y + K \in h(R/K)$ with $(x + K)(y + K) = xy + K \in I/K$, and then $(s + K)(x + K) = sx + K \in I/K$ or $(s + K)(y + K) = sy + K \in I/K$, which yields that $s \in S$ with $sx \in I$ or $sy \in I$. Thus, I is a graded S-prime ideal of R.

Theorem 2.19. Let R be a graded ring and $S \subseteq h(R)$ be a multiplicative set. Suppose that I is a graded ideal of R and $I_1, I_2, ..., I_n$ are graded S-prime ideals of R. If $I \subseteq \bigcup_{k=1}^n I_k$, then there exists $s \in S$ and such that $sI \subseteq I_k$ for some $1 \le k \le n$.

Proof. By Proposition 2.4, for all $1 \leq k \leq n$, there exists $s_k \in S$ such that $(I_k : s_k)$ is a graded prime ideal of R. We have $I \subseteq \bigcup_{k=1}^n I_k \subseteq \bigcup_{k=1}^n (I_k : s_k)$. By the graded prime avoidance theorem ([3], Theorem 2.7), there exists $1 \leq k \leq n$ such that $I \subseteq (I_k : s_k)$, this implies that $s_k I \subseteq I_k$.

3. Graded Weakly S-Prime Ideals

In this section, motivated by [1], we introduce the concept of graded weakly S-prime ideals. We show that graded weakly S-prime ideals have many acquaintance properties to these of graded weakly prime ideals.

Definition 3.1. Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and P be a graded ideal of R such that $P \cap S = \emptyset$. We say that P is a graded weakly S-prime ideal of R if there exists $s \in S$ such that for all $x, y \in h(R)$, if $0 \neq xy \in P$, then $sx \in P$ or $sy \in P$.

It is evident that every weakly S-prime ideal is graded weakly S-prime, but the converse is not necessarily true, see the following example:

Example 3.2. In Example 2.2, we proved that P is a graded S-prime ideal of R, so P is a graded weakly S-prime ideal of R. On the other hand, P is not a weakly S-prime ideal of R since $3-i, 3+i \in R$ with $0 \neq (3-i)(3+i) \in P$, $s(3-i) \notin P$ and $s(3+i) \notin P$ for each $s \in S$.

Clearly, every graded S-prime ideal is graded weakly S-prime, but the converse is not necessarily true, see the following example:

Example 3.3. Consider $R = \mathbb{Z}_{12}[i]$ and $G = \mathbb{Z}_2$. Then R is G-graded by $R_0 = \mathbb{Z}_{12}$ and $R_1 = i\mathbb{Z}_{12}$. Consider the graded ideal $P = \{0\}$ of R and the multiplicative subset $S = \{1, 3, 9\}$ of h(R). Note that $P \cap S = \emptyset$. Clearly, P is a graded weakly S-prime ideal of R. On the other hand, P is not a graded S-prime ideal of R since $2, 6 \in h(R)$ with $2.6 \in P$, $2s \notin P$ and $6s \notin P$ for each $s \in S$.

Also, it is obvious that every graded weakly prime ideal that is disjoint with S is graded weakly S-prime, but the converse is not necessarily true, see the following example. In fact, if S consists of units of h(R), then the notions of graded weakly prime and graded weakly S-prime ideals coincide.

Example 3.4. In Example 2.3, we proved that P is a graded S-prime ideal of R, so P is a graded weakly S-prime ideal of R. On the other hand, P is not a graded weakly prime ideal of R since $9, X \in h(R)$ with $0 \neq 9X \in P$, $9 \notin P$ and $X \notin P$.

Proposition 3.5. Let R be a graded ring and S be a multiplicative subset of h(R). If I is a graded weakly S-prime ideal of R, then $S^{-1}I$ is a graded weakly prime ideal of $S^{-1}R$.

Proof. Since $S \cap I = \emptyset$, we have that $S^{-1}I \neq S^{-1}R$. Let $0 \neq \frac{x}{s_1} \frac{y}{s_2} \in S^{-1}I$ for some $x, y \in h(R)$ and $s_1, s_2 \in S$. Then $\frac{x}{s_1} \frac{y}{s_2} = \frac{z}{s_3}$ for some $z \in I$ and $s_3 \in S$. So, there is $t \in S$ such that $0 \neq ts_3xy = ts_1s_2z \in I$. Since I is graded weakly S-prime, there exists $s \in S$ such that $sts_3 \in I$ or $0 \neq sxy \in I$. Thus $0 \neq sxy \in I$ as $sts_3 \notin I$ because $S \cap I = \emptyset$. Hence, $0 \neq s^2x \in I$ or $sy \in I$, and so $sx \in I$ or $sy \in I$. This implies that $\frac{x}{s_1} = \frac{sx}{ss_1} \in S^{-1}I$ or $\frac{y}{s_2} = \frac{sy}{ss_2} \in S^{-1}I$. Hence, $S^{-1}I$ is a graded weakly prime ideal of $S^{-1}R$.

Proposition 3.6. Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set consisting of regular elements and I be a graded ideal of R such that $I \cap S = \emptyset$. Then I is a graded weakly S-prime ideal of R if and only if (I:s) is a graded weakly prime ideal of R for some $s \in S$.

Proof. Suppose that I is a graded weakly S-prime ideal of R. Then there exists $s \in S$ such that for any $x, y \in h(R)$, if $0 \neq xy \in I$, then $sx \in I$ or $sy \in I$. We show that (I:s) is a graded weakly prime ideal of R. Let $0 \neq xy \in (I:s)$ for some $x, y \in h(R)$. Then $0 \neq sxy = (sx)y \in I$, and then $0 \neq s^2x \in I$ or $sy \in I$. If $sy \in I$, then $y \in (I:s)$. Assume that $0 \neq s^2x \in I$. Then $s^3 \in I$ or $sx \in I$. If $s^3 \in I$, then $s^3 \in I \cap S$, which is a contradiction. So, $sx \in I$, which yields that $x \in (I:s)$. Therefore, (I:s) is a graded weakly prime ideal of R. Conversely, let $0 \neq xy \in I$ for some $x, y \in h(R)$. Then $sxy \in I$, and then $0 \neq xy \in (I:s)$, which implies that $x \in (I:s)$ or $y \in (I:s)$, and hence $sx \in I$ or $sy \in I$. Therefore, I is a graded weakly S-prime ideal of R.

As one can see from the proof of Proposition 3.6, it is always true that if (I:s) is a graded weakly prime ideal of R for some $s \in S$ and I is a graded ideal of R with $I \cap S = \emptyset$, then I is a graded weakly S-prime ideal of R. The condition that "S consisting of regular elements" was needed for the converse. The next example shows that this condition is a sufficient condition which is not necessary:

Example 3.7. In Example 3.3, $I = \{0\}$ is a graded weakly S-prime ideal of R. One can see that $s = 1 \in S$ with (I : s) = I is a graded weakly prime ideal of R. On the other hand, $3 \in S$ is a zero divisor since $4 \in R$ with 3.4 = 0.

Proposition 3.8. Let R be a graded ring, S be a multiplicative subset of h(R) consisting of regular elements, and I be a graded ideal of R disjoint with S. Then I is a graded weakly S-prime ideal of R if and only if $S^{-1}I$ is a graded weakly prime ideal of $S^{-1}R$ and there is $s \in S$ such that $(I : h(R), t) \subseteq (I : h(R), s)$ for all $t \in S$.

Proof. Suppose that I is a graded weakly S-prime ideal of R. Then by Proposition 3.5, $S^{-1}I$ is a graded weakly prime ideal of $S^{-1}R$. Since I is a graded weakly S-prime ideal of R, there exists $s \in S$ such that for any $x, y \in h(R)$, if $0 \neq xy \in I$, then $sx \in I$ or $sy \in I$. Let $t \in S$ and $0 \neq x \in (I:_{h(R)}t)$. Then $0 \neq tx \in I$. Hence, $st \in I$ or $sx \in I$. Since $I \cap S = \emptyset$, $st \notin I$ which implies that $sx \in I$. Consequently, $x \in (I:_{h(R)}s)$. Conversely, let $0 \neq xy \in I$ for some $x, y \in h(R)$. Then $0 \neq \frac{x}{1} \cdot \frac{y}{1} \in S^{-1}I$, and then $\frac{x}{1} \in S^{-1}I$ or $\frac{y}{1} \in S^{-1}I$. If $\frac{x}{1} \in S^{-1}I$, then $\frac{x}{1} = \frac{p}{t}$ for some $p \in I$ and $t \in S$, and then $xt = p \in I$, which implies that $x \in (I:_{h(R)}t) \subseteq (I:_{h(R)}s)$ for some $s \in S$ by assumption. Hence, $sx \in I$. Similarly, if $\frac{y}{1} \in S^{-1}I$, then $sy \in I$. Therefore, I is a graded weakly S-prime ideal of R.

Proposition 3.9. Let R be a graded ring, S be a multiplicative subset of h(R) consisting of regular elements, and I be a graded ideal of R disjoint with S. Then I is a graded weakly S-prime ideal of R if and only if $S^{-1}I$ is a graded weakly prime ideal of $S^{-1}R$ and $S^{-1}I \cap h(R) = (I:_{h(R)} s)$ for some $s \in S$.

Proof. Suppose that I is a graded weakly S-prime ideal of R. Then by Proposition 3.5, $S^{-1}I$ is a graded weakly prime ideal of $S^{-1}R$. Since I is a graded weakly S-prime ideal of R, there exists $s \in S$ such that for any $x, y \in h(R)$, if $0 \neq xy \in I$, then $sx \in I$ or $sy \in I$.

Let $0 \neq x \in (I:_{h(R)} s)$. Then $sx \in I$ and $x = \frac{xs}{s} \in S^{-1}I$. Hence, $x \in S^{-1}I \cap h(R)$. Now, let $0 \neq x \in S^{-1}I \cap h(R)$. Then $x \in h(R)$ and $x = \frac{p}{t}$ for some $p \in I$ and $t \in S$. So, $0 \neq tx = p \in I$. Hence, $st \in I$ or $sx \in I$. Thus, $sx \in I$ since $S \cap I = \emptyset$. Consequently, $x \in (I:_{h(R)} s)$. Therefore, $S^{-1}I \cap h(R) = (I:_{h(R)} s)$. Conversely, Let $x, y \in h(R)$ such that $0 \neq xy \in I$. Since $0 \neq \frac{x}{1} = \frac{y}{1} \in S^{-1}I$, we have $\frac{x}{1} \in S^{-1}I$ or $\frac{y}{1} \in S^{-1}I$. If $\frac{x}{1} \in S^{-1}I$, then $\frac{x}{1} = \frac{p}{t}$ for some $p \in I$ and $t \in S$. Hence, $tx = p \in I$ and so $x = \frac{tx}{t} \in S^{-1}I \cap h(R)$, and then $x \in (I:_{h(R)} s)$ for some $s \in S$ by assumption, that is $sx \in I$. Similarly, if $\frac{y}{1} \in S^{-1}I$, then $sy \in I$. Therefore, I is a graded weakly S-prime ideal of R.

Lemma 3.10. Let R be a graded ring, S be a multiplicative subset of h(R) and I be a graded ideal of R such that $I \cap S = \emptyset$. Then there is a graded ideal P of R which is maximal with respect to the properties that $I \subseteq P$ and $P \cap S = \emptyset$. Moreover, P is a graded prime ideal of R.

Proof. Let Γ be the set of all graded ideals J of R such that $I \subseteq J$ and $J \cap S = \emptyset$. Then $\Gamma \neq \emptyset$ since $I \in \Gamma$. By Zorn's lemma, Γ has a maximal element P. Suppose that P is not a graded prime ideal of R. Then there exist $x,y \in h(R)$ such that $xy \in P, x \notin P$ and $y \notin P$. Then by ([4], Lemma 2.1), P + Rx and P + Ry are graded ideals of R with $P \subset P + Rx$ and $P \subset P + Ry$, and so there exist $s,t \in S$ such that $s \in P + Rx$ and $t \in P + Ry$. Hence, s = p + rx and $t = q + \alpha y$ for some $p,q \in P$ and $r,\alpha \in R$. So, $st = pq + p\alpha y + rxq + r\alpha xy \in P \cap S$, which is a contradiction. Therefore, P is a graded prime ideal of R.

A graded ring R is said to be a graded field if every nonzero homogeneous element of R is unit [10]. Clearly, every field is a graded field, but the converse is not necessarily true, see ([10], Example 3.6). In the same context, a graded ring R is said to be a graded domain if R has no homogeneous zero divisor. Obviously, every domain is a graded domain, but the converse is not necessarily true, see ([10], Example 3.6).

Proposition 3.11. Let R be a graded ring and S be a multiplicative subset of h(R). Then the following statements are equivalent:

- (1) $\{0\}$ is the only graded weakly S-prime ideal of R.
- (2) $\{0\}$ is the only graded S-prime ideal of R.
- (3) R is a graded domain and $S^{-1}R$ is a graded field.

Proof. (1) \Rightarrow (2): Let I be a graded S-prime ideal of R. Then I is a graded weakly S-prime ideal of R, and then $I = \{0\}$. So, $\{0\}$ is the only graded S-prime ideal of R.

- (2) \Rightarrow (3): By Lemma 3.10, there is a graded prime ideal P of R with $P \cap S = \emptyset$. Hence, P is a graded S-prime ideal of R. Then $P = \{0\}$, and so R is a graded domain. Let $0 \neq x \in h(R)$ and $s \in S$. We show that $\frac{x}{s}$ is unit in $S^{-1}R$. If $x \in S$, then we have the desired result. Assume that $x \notin S$. If $Rx \cap S = \emptyset$, then by Lemma 3.10, there is a graded prime ideal P of R such that $Rx \subseteq P = \{0\}$, a contradiction. So, $Rx \cap S \neq \emptyset$. Let $t \in Rx \cap S$. Then $t \in S$ and t = rx for some $r \in R$. We have, $\frac{sr}{t} \in S^{-1}R$ and $\frac{x}{s} \cdot \frac{sr}{t} = \frac{st}{st} = \frac{1}{1}$. Then $\frac{x}{s}$ is unit in $S^{-1}R$, and hence $S^{-1}R$ is a graded field. (3) \Rightarrow (1): Let I be a nonzero graded weakly S-prime ideal of R. Let $0 \neq p \in I$. Then
- $(3) \Rightarrow (1)$: Let I be a nonzero graded weakly S-prime ideal of R. Let $0 \neq p \in I$. Then $0 \neq p_g \in I$ for some $g \in G$ since I is a graded ideal. Since $S^{-1}R$ is a graded field, there exists $0 \neq x \in R$ and $s \in S$ such that $\frac{p_g}{1} \frac{x}{s} = \frac{1}{1}$. Since R is a graded domain, we deduce that $p_g x = s \in I \cap S = \emptyset$, a contradiction. Consequently, $\{0\}$ is the only graded weakly S-prime ideal of R.

Proposition 3.12. Let R be a graded ring and S be a multiplicative subset of h(R). Then every graded weakly S-prime ideal of R is graded prime if and only if R is a graded domain and every graded S-prime ideal of R is graded prime.

Proof. Suppose that every graded weakly S-prime ideal of R is graded prime. Since $\{0\}$ is a graded weakly S-prime ideal of R, $\{0\}$ is a graded prime ideal of R, and then R is a graded domain. Also, every graded S-prime ideal of R is graded weakly S-prime, and hence is graded prime by assumption. Conversely, since R is a graded domain, every graded weakly S-prime ideal of R is graded S-prime, and hence is graded prime by assumption.

Proposition 3.13. Let R be a graded ring, $S \subseteq h(R)$ be a multiplicative set and I be a graded weakly S-prime ideal of R. If J is a graded ideal of R such that $J \cap S \neq \emptyset$, then $I \cap J$ is a graded weakly S-prime ideal of R.

Proof. By ([4], Lemma 2.1), $I \cap J$ is a graded ideal of R. Clearly, $(I \cap J) \cap S = \emptyset$. Let $t \in J \cap S$. Assume that $0 \neq xy \in I \cap J$ for some $x, y \in h(R)$. Then $0 \neq xy \in I$, and then $sx \in I$ or $sy \in I$ for some $s \in S$, which implies that $st \in S$ with $stx \in I \cap J$ or $sty \in I \cap J$. Hence, $I \cap J$ is a graded weakly S-prime ideal of R.

Remark 3.14. Let $S_1 \subseteq S_2$ be multiplicative subsets of h(R) and I be a graded ideal of R disjoint with S_2 . Clearly, if I is a graded weakly S_1 -prime ideal of R, then I is graded weakly S_2 -prime. However, the converse is not necessarily true. To see this, we proved in Example 2.3 that P = 9XR is a graded S_2 -prime ideal of R, where $S_2 = \{3^n : n \text{ is a non-negative integer}\}$, so P is a graded weakly S_2 -prime ideal of R. On the other hand, $S_1 = \{1\} \subseteq S_2$ with P is not a graded weakly S_1 -prime ideal of R since $9, X \in h(R)$ with $0 \neq 9X \in P$, $9 \notin P$ and $X \notin P$.

Proposition 3.15. Let $S_1 \subseteq S_2$ be multiplicative subsets of h(R) such that for any $s \in S_2$, there is an element $t \in S_2$ satisfying $st \in S_1$. If I is a graded weakly S_2 -prime ideal of R, then I is a graded weakly S_1 -prime ideal of R.

Proof. Since I is a graded weakly S_2 -prime ideal of R, there exists $s \in S_2$ such that if $x, y \in h(R)$ with $0 \neq xy \in I$, then $sx \in I$ or $sy \in I$. Let $x, y \in h(R)$ such that $0 \neq xy \in I$. Then $sx \in I$ or $sy \in I$. By the assumption, $r = st \in S_1$ for some $t \in S_2$, and then $rx \in I$ or $ry \in I$. Consequently, I is a graded weakly S_1 -prime ideal of R.

Let S be a multiplicative subset of h(R), $S^* = \{r \in h(R) : \frac{r}{1} \text{ is unit in } S^{-1}R\}$ denotes the saturation of S. Note that, S^* is a multiplicative subset of h(R) containing S.

Proposition 3.16. Let R be a graded ring, S be a multiplicative subset of h(R) and I be a graded ideal of R disjoint with S. Then I is a graded weakly S-prime ideal of R if and only if I is a graded weakly S^* -prime ideal of R.

Proof. Clearly, $S^* \cap I = \emptyset$. We show that for any $a \in S^*$, there is $b \in S^*$ such that $ab \in S$. Let $a \in S^*$. Then $\frac{a}{1}\frac{c}{s} = 1$ for some $s \in S$ and $c \in h(R)$. This implies that $tca = ts \in S$, for some $t \in S$. Now, take b = tc. Then, we have $b \in S^*$ with $ab \in S$, and so the desired condition is satisfied. Therefore, by putting $S = S_1$ and $S_2 = S^*$, we conclude immediately the result from Proposition 3.15.

Proposition 3.17. Let $f: R \to T$ be a graded ring homomorphism and S be a multiplicative subset of h(R).

- (1) If f is a graded epimorphism and I is a graded weakly S-prime ideal of R containing Ker(f), then f(I) is a graded weakly f(S)-prime ideal of T.
- (2) If f is a graded monomorphism and J is a graded weakly f(S)-prime ideal of T, then $f^{-1}(J)$ is a graded weakly S-prime ideal of R.
- Proof. (1) By ([8], Lemma 3.11 (2)), f(I) is a graded ideal of T. Let $r \in f(S) \cap f(I)$. Then r = f(p) = f(s) for some $p \in I$ and $s \in S$. So, $s - p \in Ker(f) \subseteq I$, which implies that $s \in I$, a contradiction. Hence $f(S) \cap f(I) = \emptyset$. Now, let

 $0 \neq xy \in f(P)$ for some $x, y \in h(T)$. Then there is $a, b \in h(R)$ such that f(a) = x, f(b) = y and $0 \neq f(ab) = xy \in f(P)$. Since $Ker(f) \subseteq I$, we get $0 \neq ab \in I$, and so $sa \in I$ or $sb \in I$ for some $s \in S$. It means that $f(s)x \in f(P)$ or $f(s)y \in f(I)$. Thus, f(I) is a graded weakly f(S)-prime ideal of T.

(2) By ([8], Lemma 3.11 (1)), $f^{-1}(J)$ is a graded ideal of R. Clearly, $f^{-1}(J) \cap S = \emptyset$. Let $x, y \in h(R)$ such that $0 \neq xy \in f^{-1}(J)$. Since $Ker(f) = \{0\}$, we get $0 \neq f(xy) = f(x)f(y) \in J$. Then $f(s)f(x) = f(sx) \in J$ or $f(s)f(y) = f(sy) \in J$ for some $s \in S$. Thus, $sx \in f^{-1}(J)$ or $sy \in f^{-1}(J)$, and so we conclude that $f^{-1}(J)$ is a graded weakly S-prime ideal of R.

Corollary 3.18. Let R be a graded ring and S be a multiplicative subset of h(R).

- (1) If $I \subseteq P$ are two graded ideals of R and P is a graded weakly S-prime ideal of R, then P/I is a graded weakly \overline{S} -prime ideal of R/I, where $\overline{S} = \{s + I : s \in S\}$.
- (2) If P is a graded weakly S-prime ideal of R, then $P \cap R_e$ is a weakly S-prime ideal of R_e .
- *Proof.* (1) By ([10], Lemma 3.2), P/I is a graded ideal of R/I. Define $f: R \to R/I$ by f(r) = r + I. Then f is a graded epimorphism, and then the result follows by Proposition 3.17 (1).
 - (2) Define $f: R_e \to R$ by f(r) = r. Then f is a graded monomorphism, and then the result follows by Proposition 3.17 (2).

Proposition 3.19. Let R be a graded ring and $S \subseteq h(R)$ a multiplicative set. If every proper graded ideal of R is graded weakly S-prime, then $S \subseteq U(R)$, and hence the concepts of graded weakly S-prime ideals and graded weakly prime ideals coincide.

Proof. Let $s \in S$. Since every graded maximal ideal of R is graded weakly S-prime, there is no graded maximal ideal of R contains s. This implies that s is unit, and so $S \subseteq U(R)$.

Definition 3.20. Let R be a G-graded ring, $g \in G$, $S \subseteq R_e$ be a multiplicative set and P be a graded ideal of R such that $P \cap S = \emptyset$. We say that P is a g-S-prime ideal of R if there exists $s \in S$ such that for all $x, y \in R_g$, if $xy \in P$, then $sx \in P$ or $sy \in P$.

Definition 3.21. Let R be a G-graded ring, $g \in G$, $S \subseteq R_e$ be a multiplicative set and P be a graded ideal of R such that $P \cap S = \emptyset$. We say that P is a g-weakly S-prime ideal of R if there exists $s \in S$ such that for all $x, y \in R_g$, if $0 \neq xy \in P$, then $sx \in P$ or $sy \in P$.

Remark 3.22. Clearly, every g-S-prime ideal is g-weakly S-prime. However, in Example 3.3, P is a graded weakly S-prime ideal of R, so P is a g-weakly S-prime ideal of R for all $g \in G$. On the other hand, P is not a 0-S-prime ideal of R since $2, 6 \in R_0$ with $2.6 \in P$, $2s \notin P$ and $6s \notin P$ for each $s \in S$.

Proposition 3.23. Let R be a G-graded ring, $g \in G$, S be a multiplicative subset of R_e and I be a g-weakly S-prime ideal of R which is not g-S-prime. Then $I_g^2 = \{0\}$.

Proof. Since I is a g-weakly S-prime ideal of R, there exists $s \in S$ such that whenever $x, y \in R_g$, $0 \neq xy \in I$ implies $sx \in I$ or $sy \in I$. Suppose that $I_g^2 \neq \{0\}$. We show that I is a g-S-prime ideal of R. Let $x, y \in R_g$ such that $xy \in I$. If $xy \neq 0$, then $sx \in I$ or $sy \in I$. Assume that xy = 0. If $xI_g \neq \{0\}$, there is $p \in I_g$ such that $0 \neq xp$, and so $0 \neq xp = x(p+y) \in I$. Hence, $sx \in I$ or $s(p+y) \in I$, and hence $sx \in I$ or $sy \in I$. Similarly, if $yI_g \neq \{0\}$, we obtain the same result. Finally, assume that $xI_g = \{0\}$ and $yP_g = \{0\}$. Since $I_g^2 \neq \{0\}$, there exists $p, q \in I_g$ such that $pq \neq 0$. Thus, $0 \neq pq = (x+p)(y+q) \in I$. Then $s(x+p) \in I$ or $s(y+q) \in I$. Therefore, $sx \in I$ or $sy \in I$. Consequently, we conclude that I is a g-S-prime ideal of R. So, $I_g^2 = \{0\}$. \square

11

Compare the following corollary with ([2], Proposition 2.2):

Corollary 3.24. Let R be a G-graded ring, $g \in G$ and I be a g-weakly prime ideal of R which is not g-prime. Then $I_g^2 = \{0\}$.

Proof. Apply Proposition 3.23 with $S = \{1\}$.

Recall that a ring R is said to be reduced if $N(R) = \{0\}$.

Corollary 3.25. Let R be a G-graded ring, $g \in G$, S be a multiplicative subset of R_e and P be a g-weakly S-prime ideal of R which is not g-S-prime. Then $I_g \subseteq Grad(\{0\})$. In particular, if R is reduced, then $I_g = \{0\}$.

Compare the following theorem with ([2], Proposition 2.3, Theorem 2.10, Theorem 2.12):

Theorem 3.26. Let R be a G-graded ring, $g \in G$, $S \subseteq R_e$ be a multiplicative subset and I be a graded ideal of R disjoint with S. Then the following statements are equivalent:

- (1) I is a g-weakly S-prime ideal of R.
- (2) There exists $s \in S$ such that for each $a \notin (I :_{R_g} s)$ we have either $(I :_{R_g} a) \subseteq (I :_{R_g} s)$ or $(I :_{R_g} a) = (0 :_{R_g} a)$.
- (3) There exists $s \in S$ such that for all graded ideals K and J of R, if $0 \neq K_g J_g \subseteq I$, then $sK_g \subseteq I$ or $sJ_g \subseteq I$.
- Proof. (1) \Rightarrow (2): Since I is a g-weakly S-prime ideal of R, there exists $s \in S$ such that whenever $a, b \in R_g$, $0 \neq ab \in I$ implies $sa \in I$ or $sb \in I$. Let $a \in R_g (I:_{R_g} s)$. Then $sa \notin I$. Suppose that $(I:_{R_g} a) \neq (0:_{R_g} a)$. Since $(0:_{R_g} a) \subseteq (I:_{R_g} a)$, there exists $x \in (I:_{R_g} a)$ with $xa \neq 0$. Thus, $0 \neq xa \in I$. Hence, since $sa \notin I$, we have $sx \in I$. Assume that $b \in (I:_{R_g} a)$. Then $ab \in I$. If $ab \neq 0$, then $sb \in I$, and then $b \in (I:_{R_g} s)$. Suppose that ab = 0. Then $0 \neq ax = a(x + b) \in I$, and then $s(x + b) \in I$. Therefore, $sb \in I$. So, $b \in (I:_{R_g} s)$. Consequently, $(I:_{R_g} a) \subseteq (I:_{R_g} s)$.
- $(2) \Rightarrow (3)$: Let K and J be graded ideals of R such that $0 \neq K_g J_g \subseteq I$. Suppose that $sK_g \nsubseteq I$ and $sJ_g \nsubseteq I$. We show that $K_g J_g = \{0\}$. Let $a \in K_g (I:_{R_g} s)$. Then $aJ_g \subseteq I$, and then $J_g \subseteq (I:_{R_g} a)$. Since $J_g \nsubseteq (I:_{R_g} s)$, we get $J_g \subseteq (I:_{R_g} a) = (0:_{R_g} a)$. Hence, $aJ_g = \{0\}$. Suppose that $a \in K_g \cap (I:_{R_g} s)$. Let $b \in J_g$. If $b \notin (I:_{R_g} s)$, then as heretofore, we obtain $bK_g = \{0\}$, and so ba = 0. If $b \in (I:_{R_g} s)$, take $r \in J_g$ such that $sr \notin I$. Hence, $r \notin (I:_{R_g} s)$ and $b + r \notin (I:_{R_g} s)$. Hence, ar = 0 and a(b + r) = 0. Then ab = 0. So, $aJ_g = \{0\}$. Consequently, $I_g J_g = \{0\}$.
- $(3) \Rightarrow (1)$: Let $x, y \in R_g$ with $0 \neq xy \in I$. Then K = Rx and J = Ry are graded ideals of R with $0 \neq K_g J_g \subseteq I$. Hence, by assumption we have $sK_g \subseteq I$ or $sJ_g \subseteq I$. Thus, $sx \in I$ or $sy \in I$, and so we conclude that I is a g-weakly S-prime ideal of R. \square

Proposition 3.27. Let R be a graded ring, S be a multiplicative subset of R_e and I be an e-weakly S-prime ideal of R that is not e-S-prime. Then $sI_e(Grad(\{0\}))_e = \{0\}$ for some $s \in S$.

Proof. By Theorem 3.26, there exists $s \in S$ such that for each $a \notin (I:_{R_e} s)$ we have either $(I:_{R_e} a) \subseteq (I:_{R_e} s)$ or $(I:_{R_e} a) = (0:_{R_e} a)$. Let $x \in (Grad(\{0\}))_e$. If $x \in (I:_{R_e} s)$, then $sx \in I_e$. Thus, by Proposition 3.23, $sxI_e = \{0\}$. Suppose that $x \notin (I:_{R_e} s)$. Then $(I:_{R_e} x) \subseteq (I:_{R_e} s)$ or $(I:_{R_e} x) = (0:_{R_e} x)$. Since $I \subseteq (I:_{R_e} x)$, the case $(I:_{R_e} x) = (0:_{R_e} x)$ implies that $xI_e = \{0\}$, and then $sxI_e = \{0\}$. Assume that $(I:_{R_e} x) \subseteq (I:_{R_e} s)$. Let m > 1 be a minimal integer such that $x^m = 0$. Then $x^{m-1} \in (I:_{R_e} x) \subseteq (I:_{R_e} s)$. Therefore, $sx^{m-1} \in I_e$. Since $I \cap S = \emptyset$, m-1 > 1. If $sx^{m-1} \neq 0$, then $sx \in I_e$, a contradiction. So, $sx^{m-1} = 0$. Let k be minimal such that $sx^k = 0$. Since $sx \neq 0$, we get that k > 1. Suppose that there exists $p \in I_e$ such that $sxp \neq 0$. We have $0 \neq sx(x^{k-1} + p) = sxp \in I$. Then, $s(x^{k-1} + p) \in I$. Hence,

 $0 \neq sx^{k-1} \in I$. Hence, $sx \in I$, a contradiction. Thus, $sxI_e = \{0\}$. Consequently, $sI_eGrad(\{0\}) = \{0\}$.

Corollary 3.28. Let R be a graded ring, S be a multiplicative subset of R_e and I be an e-weakly S-prime ideal of R that is not e-S-prime. Then $I_e \subseteq Grad(\{0\})$ and $I_e(Grad(\{0\}))_e = \{0\}$.

Proof. Apply Corollary 3.25 and Proposition 3.27 with $S = \{1\}$.

Corollary 3.29. Let R be a graded ring and S be a multiplicative subset of R_e . If I and J are e-weakly S-prime ideals that are not e-S-prime, then $sI_eJ_e = \{0\}$ for some $s \in S$.

Proof. By Corollary 3.25, $J_e \subseteq Grad(\{0\})$, and then $J_e \subseteq R_e \cap Grad(\{0\}) = (Grad(\{0\}))_e$. So, by Proposition 3.27, $sI_eJ_e \subseteq sI_e(Grad(\{0\}))_e = \{0\}$ for some $s \in S$.

Let R_1 and R_2 be two G-graded rings. Then $R = R_1 \times R_2$ is G-graded by $(R_1 \times R_2)_g = (R_1)_g \times (R_2)_g$ for all $g \in G$. Moreover, $I = I_1 \times I_2$ is a graded ideal of R if and only if I_1 is a graded ideal of R_1 and I_2 is a graded ideal of R_2 ([10], Lemma 3.10).

Proposition 3.30. Let R_1 , R_2 be two G-graded rings, S_1 , S_2 be multiplicative subsets of $(R_1)_e$, $(R_2)_e$ respectively, and I_1 , I_2 be nonzero graded ideals of R_1 , R_2 , respectively. Suppose that $I = I_1 \times I_2$ and $S = S_1 \times S_2$. Then the following statements are equivalent:

- (1) I is an e-weakly S-prime ideal of R.
- (2) I_1 is an e-S₁-prime ideal of R_1 and $S_2 \cap I_2 \neq \emptyset$ or I_2 is an e-S₂-prime ideal of R_2 and $S_1 \cap I_1 \neq \emptyset$.
- (3) I is an e-S-prime ideal of R.

Proof. (1) \Rightarrow (2): Let $(x,y) \in R_e$ such that $0 \neq (x,y) \in I$. Then $0 \neq (x,y) = (x,1)(1,y) \in I$. Since I is an e-weakly S-prime ideal of R, then there is $s = (s_1,s_2) \in S$ such that $s(x,1) = (s_1x,s_2) \in I$ or $s(1,y) = (s_1,s_2y) \in I$. Thus, $S_1 \cap I_1 \neq \emptyset$ or $S_2 \cap I_2 \neq \emptyset$. Assume that $S_2 \cap I_2 \neq \emptyset$. As $I \cap S = \emptyset$, we have $I_1 \cap S_1 = \emptyset$. Now, we show that I_1 is an e- S_1 -prime ideal of R_1 . Let $xy \in I_1$ for some $x,y \in (R_1)_e$. Since $S_2 \cap I_2 \neq \emptyset$, then there is $0 \neq t \in S_2 \cap I_2$, and so we have $0 \neq (x,t)(y,1) \in I$. Hence, $s(x,t) = (s_1x,s_2t) \in I$ or $s(y,1) = (s_1y,s_2) \in I$. So, we get $s_1x \in I_1$ or $s_1y \in I_1$, as desired.

 $(2) \Rightarrow (3)$: Follows from ([10], Lemma 3.11).

/	•• \	. /	1 \	$\bigcap_{i=1}^{n} A_i = A_i$	\neg
Ι.	. S I	\Rightarrow 1	1).	Obvious.	- 1
Ι.	\mathbf{U}_{j}	/ \	- /·	00/1046.	_

Proposition 3.31. Let R_1 , R_2 be two G-graded rings, S_1 , S_2 be multiplicative subsets of $(R_1)_e$, $(R_2)_e$ respectively, and $S = S_1 \times S_2$. If every proper graded ideal of R is e-weakly S-prime, then $(R_1)_e$ and $(R_2)_e$ are fields.

Proof. Let P_1 be a proper graded ideal of R_1 . Then $P_1 \times R_2$ is an e-weakly S-prime ideal of R, and so P_1 is an e- S_1 -prime ideal of R_1 by Proposition 3.30. Thus, every proper graded ideal of R_1 is e- S_1 -prime. So, by ([10], Corollary 2.14), $(R_1)_e$ is a field. Similarly, $(R_2)_e$ is a field.

Proposition 3.32. Let R_1 , R_2 be two G-graded rings, S_1 , S_2 be multiplicative subsets of $(R_1)_e$, $(R_2)_e$ respectively, and $S = S_1 \times S_2$. If R_1 and R_2 are graded fields, then every proper graded ideal of R is e-weakly S-prime.

Proof. Since R_1 and R_2 are graded fields, we have exactly three proper graded ideals of R, that are $\{0\} \times \{0\}, \{0\} \times R_2$ and $R_1 \times \{0\}$ which are e-weakly-S-prime by Proposition 3.30.

Assume that M is an R-module. Then M is said to be G-graded if $M = \bigoplus_{g \in G} M_g$ with

 $R_g M_h \subseteq M_{gh}$ for all $g, h \in G$ where M_g is an additive subgroup of M for all $g \in G$. The

elements of M_g are called homogeneous of degree g. It is clear that M_g is an R_e -submodule of M for all $g \in G$. We assume that $h(M) = \bigcup_{g \in G} M_g$. Let N be an R-submodule of a

graded R-module M. Then N is said to be graded R-submodule if $N = \bigoplus_{g \in G} (N \cap M_g)$,

i.e., for $x \in N$, $x = \sum_{g \in G} x_g$ where $x_g \in N$ for all $g \in G$. It is known that an R-submodule

of a graded R-module need not be graded. For more terminology see [6,7].

Let M be an R-module. The idealization $R(+)M = \{(r,m) : r \in R \text{ and } m \in M\}$ of M is a commutative ring with componentwise addition and multiplication; $(x, m_1) + (y, m_2) = (x + y, m_1 + m_2)$ and $(x, m_1)(y, m_2) = (xy, xm_2 + ym_1)$ for each $x, y \in R$ and $m_1, m_2 \in M$. Let G be an abelian group and M be a G-graded R-module. Then X = R(+)M is G-graded by $X_g = R_g(+)M_g$ for all $g \in G$. Note that, X_g is an additive subgroup of X for all $g \in G$. Also, for $g, h \in G$, $X_g X_h = (R_g(+)M_g)(R_h(+)M_h) = (R_g R_h, R_g M_h + R_h M_g) \subseteq (R_{gh}, M_{gh} + M_{hg}) \subseteq (R_{gh}, M_{gh}) = X_{gh}$ as G is abelian [11]. Moreover, if P is an ideal of R and R is an R-submodule of R such that R is a graded ideal of R and R is a graded R-submodule of R and R-submodule of R-su

Proposition 3.33. Let G be an abelian group, R be a G-graded ring, M be a G-graded R-module, S be a multiplicative subset of h(R) and I be a graded ideal of R disjoint with S. Then the following statements are equivalent:

- (1) I(+)M is a graded weakly $(S(+)\{0\})$ -prime ideal of R(+)M.
- (2) I(+)M is a graded weakly (S(+)h(M))-prime ideal of R(+)M.
- (3) I is a graded weakly S-prime ideal of R associated to $s \in S$ and whenever $x, y \in h(R)$ with xy = 0, but $sx \notin I$ and $sy \notin I$, then $x \in Ann_R(M)$ and $y \in Ann_R(M)$.

Proof. (1) \Rightarrow (2): Follows by Remark 3.14 since $S(+)\{0\} \subseteq S(+)h(M)$.

- $(2) \Rightarrow (3)$: Let $x,y \in h(R)$ such that $0 \neq xy \in I$. Then $(0,0) \neq (x,0)(y,0) \in I(+)M$. As I(+)M is a graded weakly (S(+)h(M))-prime ideal of R(+)M, there is $(s,n) \in S(+)h(M)$ such that $(s,n)(x,0) = (sx,xn) \in I(+)M$ or $(s,n)(y,0) = (sy,yn) \in I(+)M$. Thus, $sx \in I$ or $sy \in I$, and so I is a graded weakly S-prime ideal of R. Suppose that xy = 0 with $sx \notin I$ and $sy \notin I$. Assume that $x \notin Ann_R(M)$. Then there is $m \in M$ such that $xm \neq 0$, which gives that $xm_g \neq 0$ for some $g \in G$, and so we have $(0,0) \neq (x,0)(y,m_g) \in I(+)M$. Hence, $(s,n)(x,0) = (sx,xn) \in I(+)M$ or $(s,n)(y,m_g) = (sy,sm_g+yn) \in I(+)M$, a contradiction. Therefore, $x \in Ann_R(M)$ and $y \in Ann_R(M)$.
- $(3) \Rightarrow (1)$: Let $(0,0) \neq (x,m)(y,n) \in I(+)M$, where $(x,m),(y,n) \in h(R(+)M)$. If $xy \neq 0$, then $sx \in I$ or $sy \in I$, and hence $(s,0)(x,m) \in I(+)M$ or $(s,0)(y,n) \in I(+)M$. Assume that xy = 0 with $sx \notin I$ and $sy \notin I$. Then $x, y \in Ann_R(M)$. Consequently, we get (x,m)(y,n) = (0,0), a contradiction. Therefore, I(+)M is a graded weakly $(S(+)\{0\})$ -prime ideal of R(+)M.

References

- [1] F. A. A. Almahdi, E. M. Bouba and M. Tamekkante, On weakly S-prime ideals of commutative rings, Analele Universitatii "Ovidius" Constanta-Seria Matematica, 29 (2) (2021), 173-186.
- [2] S. E. Atani, On graded weakly prime ideals, Turkish Journal of Mathematics, 30 (2006), 351-358.
- [3] S. E. Atani and U. Tekir, On the graded primary avoidance theorem, Chiang Mai Journal of Science, 34 (2) (2007), 161-164.
- [4] F. Farzalipour and P. Ghiasvand, On the union of graded prime submodules, Thai Journal of Mathematics, 9 (2011), 49-55.

ON GRADED WEAKLY S-PRIME IDEALS

- [5] A. Hamed and A. Malek, S-prime ideals of a commutative ring, Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 61 (2020), 533-542.
- [6] R. Hazrat, Graded rings and graded Grothendieck groups, Cambridge University press, 2016.
- [7] C. Nastasescu and F. Oystaeyen, Methods of graded rings, Lecture Notes in Mathematics, 1836, Springer-Verlag, Berlin, 2004.
- [8] M. Refai and R. Abu-Dawwas, On generalizations of graded second submodules, Proyeccionese Journal of Mathematics, 39 (6) (2020), 1537-1554.
- [9] M. Refai, M. Hailat and S. Obiedat, Graded radicals and graded prime spectra, Far East Journal of Mathematical Sciences, (2000), 59-73.
- [10] H. Saber, T. Alraqad and R. Abu-Dawwas, On graded s-prime submodules, Aims Mathematics, 6 (2020), 2510-2524.
- [11] R. N. Uregen, Ü. Tekir, K. P. Shum and S. Koç, On graded 2-absorbing quasi primary ideals, Southeast Asian Bulletin of Mathematics, 43 (4) (2019), 601-613.