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Abstract: This study was conducted to examine whether there are quantitative or 
qualitative differences in the connectome between psychiatric patients and healthy 
controls and to delineate the connectome features of major depressive disorder 
(MDD), schizophrenia (SCZ), bipolar disorder (BD) and the severity of these 
disorders. Toward this end, we have performed effective connectivity analysis of 
resting state functional MRI data in these three patient groups and healthy controls. 
We have used spectral Dynamic Causal Modeling (spDCM), and the derived 
connectome features were further subjected to machine learning. The results outlined 
a model of 5 connections, which discriminate patients from controls, comprising 
major nodes of the limbic system (amygdala (AMY), hippocampus (HPC) and anterior 
cingulate cortex (ACC)), the salience network (anterior insula (AI), fronto-parietal and 
dorsal attention network (middle frontal gyrus (MFG) corresponding to dorsolateral 
prefrontal cortex, frontal eye field (FEF)). Notably, the alterations in the self-inhibitory 
connection of the anterior insula emerged as a feature of both mood disorders and 
SCZ. Moreover, 4 out of the 5 connectome features that discriminate mental illness 
from controls are features of mood disorders (both MDD and BD), namely the 
MFG→FEF, HPC→FEF, AI→AMY, and MFG→AMY connections, whereas one 
connection is a feature of SCZ, namely the AMY→SPL connectivity. A large part of 
the variance in the severity of depression (31.6%) and SCZ (40.6%) was explained by 
connectivity features. In conclusion, dysfunctions in the self-regulation of the salience 
network may underpin major mental disorders, while other key connectome features 
shape differences between mood disorders and SCZ, and can be used as potential 
imaging biomarkers.  

Keywords: psychiatry; effective connectivity; depression; salience network; 
schizophrenia; mood disorders 
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1. Introduction 
Mental illness can be defined as a complex construct integrating the 

continuity between a multifaceted phenomenological presentation and an 
incomplete theoretical knowledge on their morphological substrate and 
multifactorial etiopathophysiology [1]. There have been various conceptual 
attempts for systematization of psychiatric disorders with two major 
approaches: a categorical one, which differentiates distinct nosological 
entities such as schizophrenia (SCZ), bipolar disorder (BD), major depressive 
disorder (MDD), and a dimensional approach, which defines mental illness 
as a continuum from adaptive to discordant behavioral patterns. Both 
formulations, however, are heretofore insufficiently validated by objective 
scientific findings. This deficiency can be explained both by the heterogeneity 
of the research observations and the diversity of the symptomatologic 
presentation as well as the common comorbidity seen in the psychiatric 
clinical practice [1].   

Schizophrenia and bipolar disorder are two major conditions in 
psychiatry and refer to two different diagnostic categories but show many 
similarities and common features which support the continuum hypothesis. 
Both SCZ and BD demonstrate a high degree of genetic transmissibility 
supported by data from family and twin studies suggesting hereditary 
overlap, along with gene susceptibility markers located on the same 
chromosomes, and some similarities in neurotransmitter dysfunction [2]. 
Noto et al. (2019) reported that first episode psychosis, which later evolves 
into schizophrenia and bipolar disorder, is characterized by a cytokine storm 
which is somewhat more pronounced is subjects who will develop 
schizophrenia. The expanded continuum hypothesis was recently supported 
by the study of Sorella et al. [3]. They found clear evidence in SCZ and BD of 
a shared altered network of brain areas (including ventrotemporal, medial 
parieto-occipital areas, as well as portions of the cerebellum and the middle 
frontal gyrus), which could represent the neural underpinnings of an altered 
interpretation of reality connected with psychosis. This neural evidence, 
obtained using magnetic resonance imaging (MRI), is supported by 
convergent neuropsychological evidence, obtained using cognitive tests, and 
is proposed to form a common “psychotic core” shared by SCZ and BD. 
Similarly, the authors report neural and psychological evidence for a 
“cognitive” core, and less so for an “affective” core.  

On the other hand, the scientific framework of mood disorders is shaped 
over two major theoretical concepts: the first separates MDD and BD into 
distinct categorical entities [4], and the other defines these classes as a 
dimensional continuum [5]. In addition, both disorders have a complex and 
multifactorial etiopathophysiology (e.g., neurobiological, immunological, 
genetic, etc.) [6]. Contemporary psychiatric classifications group mood 
disorders into bipolar disorder with two distinct subtypes (BD type I, and BD 
type II), and major depressive disorder. A recent study by Guo et al. 
demonstrates that in terms of clinical symptoms six major domains of 
Overactivation, Psychomotor Acceleration, Distraction/ Impulsivity, 
Hopelessness, Retardation, and Suicide Tendency can describe the three 
diagnostic groups in a continuum from low to high [7]. The existence of the 
so-called mixed states is an additional support for the continuity of the 
affective spectrum.  In order to test the continuum hypothesis of mood 
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disorders, Benazzi et al. explored the distribution of the intra-depression 
hypomanic symptoms between BD type II and MDD and failed to find the 
expected bi-modality which would support the categorical approach [8]. 
Their findings are mirrored by a similar, non-bi-modal, distribution of 
lifetime manic/hypomanic symptoms in BP-I and MDD, and of the intra-
mania depressive symptoms [9, 10].  

Nevertheless, nomothetic network analysis shows that a shared core 
(i.e., a statistically defined unidimensional factor) underpins unipolar and 
bipolar disorder, namely the interconnected re-occurrence of (hypo)manic 
and depressive episodes and suicidal behaviors [11]. This indicates that 
unipolar depression and bipolar disorder are one and the same illness and 
that staging of illness contributes to different phenotypes [11]. This 
necessitates transdisciplinary methods for the research including the 
nomothetic networks approach as a bottom-up integration of horizontal and 
vertical levels of explanation [1, 12].  

However, heretofore, the results from numerous scientific inquiries 
regarding the connectome features of mood disorders and SCZ, remain 
heterogeneous. For instance, Ambrosi et al. found a significant reduction of 
the resting-state functional connectivity (rsFC) between the left insula and the 
left mid-dorsolateral prefrontal cortex as well as between bilateral insula and 
right frontopolar prefrontal cortex in patients with bipolar depression as 
opposed to patients with unipolar depression and healthy individuals [13]. 
Moreover, in the same study, a decreased functional connectivity was 
established between the right amygdala and the left anterior hippocampus in 
participants with depression in the context of MDD compared to individuals 
with BD and healthy controls. Yet, Anand et al. observed similar alterations 
in unipolar and bipolar depression, namely a low rsFC between the 
pregenual anterior cingulate cortex and the dorsomedial thalamus in 
comparison with healthy controls [14].  

In terms of large-scale networks, unipolar depression has been 
associated with increased functional connectivity in the Default Mode 
Network (DMN) and reduced rsFC between the cingulo-opercular network 
and DMN domains, whereas a higher rsFC in the fronto-parietal network was 
observed in bipolar depression [15, 16]. On the other hand, alterations in the 
static and dynamic functional connectivity strengths in the frontal–striatal–
thalamic circuits (in BD) and within the DMN/sensorimotor network (in 
MDD) have also been demonstrated as possible differentiating biomarkers 
between these disorders [17]. 

Schizophrenia and bipolar disorder, on the other hand, demonstrate 
both shared and divergent characteristics of the connectome. For instance, 
amygdala and prefrontal cortex appear to play important roles in both SCZ 
and BD. Liu et al. discovered that the resting-state functional connectivity 
between the amygdala and the dorsolateral PFC was significantly decreased 
in the schizophrenia group, whereas the rsFC between the amygdala and the 
ventrolateral PFC was significantly decreased in the bipolar group, 
suggesting that this dorsal vs ventral PFC differentiation in amygdala-PFC 
connectivity might be used as a potential marker for differential diagnosis 
during the early stages of the diseases [18].  

Moreover, Li et al. [19] found that both bipolar and schizophrenic 
patients had higher resting state functional connectivity from the insula to 
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the bilateral frontal pole and thalamus, the left middle frontal gyrus, and the 
hippocampus when compared to the healthy controls and that bipolar group 
exhibit higher connectivity from the insula to the perigenual anterior 
cingulate cortex, whereas the schizophrenic group had higher connectivity 
from the insula to the right caudate and to the left middle frontal gyrus (area 
that is situated on the lateral prefrontal cortex). Those findings suggest that 
the insula plays a significant role for the explanation of the similar 
pathophysiology of bipolar disorder and schizophrenia which is supported 
by the shared insular connectivity abnormalities patterns in both disorders, 
however insular functional connectivity also has disorder-specific 
characteristics, which might also point to possible pathways for 
differentiation in the early phases of the disease. 

Despite the research outlined hitherto there is no clear answer to the 
question whether the connectome differences between mentally healthy 
individuals and psychiatric patient groups are mainly quantitative or 
qualitative. The best way to explore this is by using a machine learning 
technique namely Soft Independent Modelling by Class Analogy (SIMCA) 
[20, 21]. SIMCA allows to compute principal component SIMCA models 
around the diagnostic classes based on connectome features and to compute 
the distance between the class models, whereby a large distance indicates 
qualitative differences between the classes [20-22].  

Hence this study was designed to examine whether there are 
quantitative or qualitative differences in the connectome between psychiatric 
patients and controls, on one hand, and to delineate the connectome features 
of MDD, SCZ, BD and severity of illness. In order to achieve our goals, we 
have performed effective connectivity analysis of resting state functional MRI 
data of three groups of patients presenting with the abovementioned 
psychiatric diagnostic classes and a group of healthy controls. We have 
focused on effective connectivity,  which delineates the influence that one 
neural system exerts over another thereby reflecting a direct causal influence 
instead of functional connectivity, which discloses only the correlation 
between the BOLD signals derived from different brain regions [23]. In 
addition, we have employed the spectral Dynamic Causal Modelling 
(spDCM) method [24], which estimates effective connectivity from the cross 
spectra of the fluctuations in neuronal states rather than from their time 
courses directly as it is the case with stochastic DCM [25]. 

2. Subjects and methods 
2.1. Subjects 

Hundred and one subjects were recruited for the present study divided 
into four groups: healthy controls, and patients with SCZ, BD or MDD. Each 
of the participants was assessed by an experienced psychiatrists (D.S., S.K.) 
using a general clinical interview and the structured Mini International 
Neuropsychiatric Interview (M.I.N.I 6.0) [26]. In addition the Montgomery–
Åsberg Depression Rating Scale (MADRS) [27] and the Positive and Negative 
Syndrome Scale (PANSS) [28] were implemented in depressed and 
schizophrenic patients respectively. The clinical diagnosis was established 
based on the interview, the available medical documentation and in some 
cases additional information from accompanying family members. The DSM-
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IV TR criteria were applied. Severity of illness was measured using the 
Clinical Global Impression scales for severity (CGI-S).  

 The SCZ group included subjects with current psychotic episode while 
patients with BD and MDD were suffering from a depressive episode at the 
time of recruitment. Psychiatric comorbidities such as panic disorder, 
agoraphobia, social phobia, generalized anxiety disorder, obsessive 
compulsive disorder, post-traumatic stress disorder, eating disorders 
(anorexia and bulimia), alcohol or other substance use disorders as well as 
dissocial personality disorder identified with the M.I.N.I interview were 
excluded.   

Severity of depression was measured with the MADRS. For the current 
study a cut-off value for the total score of 20 was used as an inclusion criterion 
for mood disorders. Severity of the psychotic symptoms was assessed with 
PANSS providing detailed scoring of positive, negative and general 
symptoms. The psychotic symptoms ratings of P1 (delusions) and/or P6 
(suspiciousness) had to exceed 3 in order to ensure the severity required. 
Nevertheless, in the current study we computed an index of overall severity 
of schizophrenia computed as z (sum of P1 (delusions) + P2 (conceptual 
disorganization) + P3 (hallucinatory behavior) + P6 (grandiosity) + z (sum of 
N1 (blunted affect) + N2 (emotional withdrawal) + N3 (poor rapport) + N4 
(passive social withdrawal) + N5 (difficulty in abstract thinking) + N6 (lack of 
spontaneity) + N7(stereotyped thinking)). Both schizophrenic and depressed 
patients were taking stable doses of their antidepressant and/or antipsychotic 
medication for the preceding two weeks.  

Exclusion criteria were the following: age under 18 or above 65 years, 
presence of metal implants or body grafts (e.g., pacemaker) incompatible 
with MRI, history of a psychiatric disorder (for the healthy controls), 
comorbid psychiatric disorder as identified by the clinical interview and the 
M.I.N.I., severe somatic or neurological disease, and traumatic brain injury 
with loss of consciousness. Written informed consent complying with the 
Declaration of Helsinki was obtained from each participant prior to inclusion. 
The study protocol was granted approval by the University’s Research Ethics 
Committee (№ R-2172/03.04.3015). 

2.2. Resting state MRI acquisition and analysis 
3Т MRI system (GE Discovery 750w) was used for the scanning of the 

participants. A high-resolution structural scan was first obtained (Sag 3D T1 
FSPGR, slice thickness 1 mm, matrix 256х256, relaxation time (TR) – 7.2 msec, 
echo time (TE) - 2.3 msec, flip angle 12о), followed by an eyes-closed resting 
state functional scan (2D Echo Planar Imaging (EPI), slice thickness 3 mm, 
matrix 64х64, TR - 2000 msec, TE – 30 msec, 36 slices, flip angle 90о, 192 
volumes). 

The subsequent data analysis was performed with the SPM 12 software 
(Statistical Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm/) running 
on MATLAB R2020b for Windows. The preprocessing of steps included 
realignment, co-registration with the structural scans, normalization to 
Montreal Neurological Institute (MNI) space, and smoothing with a 6 mm 
full-width-at-half-maximum Gaussian kernel.  

Next a general linear model (GLM) was applied to the time series as well 
as the covariates of no interest: the six rigid body motion parameters, average 
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white matter and cerebrospinal fluid signal time series. The BOLD timeseries 
were then extracted for eight predefined right sided regions of interest (ROI) 
using 6 mm radius spheres. These ROIs were the following (MNI coordinates 
given in brackets): ROI_1 - anterior insula (AI) [38, 22, 3], ROI_2 - inferior 
frontal gyrus (IFG) [50, 26, 16], ROI_3 - middle frontal gyrus (MFG) [36, 42, 
28] corresponding to dorsolateral prefrontal cortex (DLPFC), ROI_4 - frontal 
eye field (FEF) [31, -5, 58], ROI_5 - anterior cingulate cortex (ACC) [5, 45, 12], 
ROI_6 - superior parietal lobe (SPL) [24, -54, 68], ROI_7 - amygdala (AMY) 
[24, 3, -16] and ROI_8 - hippocampus (HPC) [30, -11, -17].  

Spectral dynamic causal modelling (spDCM) was performed with the 
abovementioned eight regions. We started with a fully connected model 
where each node was connected to each other node. The individual spDCM 
models were then jointly estimated using the Parametric Empirical Bayes 
(PEB) framework, implemented in SPM12. In the last step the connectivity 
strengths (A-matrix) were extracted from the estimated spDCM models and 
further tested for statistical significance. The indexing of the connectivity 
values was as follows: A11 = self-inhibitory connection of the first ROI – 
anterior insula (AI⸧), A12 = excitatory (positive numbers) or inhibitory 
(negative numbers) influence of ROI_1 to ROI_2 (AI→IFG) etc. 

2.3. Statistical analysis 
 Differences between the study groups in scale variables were 

assessed using the Kruskal-Wallis test or analysis of variance (ANOVA) 
followed by protected pairwise comparisons among treatment means. 
Associations between categorical variables were assessed using analysis of 
contingency tables (χ2 test). We used multiple regression analysis to assess 
the significant (at p=0.05) connectome data predicting the MDRS, CGI or 
OSOS scores while allowing for the effects of age and sex. We used a 
combination of hierarchical (i.e. we defined the order to enter the predictor 
variables in the model based on the importance of the connectome data) and 
automatic multiple regression analyses as explained when presenting the 
results of the regression analyses. The automated stepwise methods were 
performed with a p-to-entry of 0.05 and a p-to-remove of 0.06. All regressions 
were checked using R2 change, and multicollinearity (using tolerance and 
variance inflation factor), homoscedasticity (the White and modified 
Breusch-Pagan tests), and multivariate normality (Cook’s distance and 
leverage). We employed stepwise binary logistic regression analysis with 
diagnostic classes as dependent variables and the connectome data as 
explanatory variables while allowing for the effects of age and sex. We 
computed the odds ratio (OR) and corresponding 95% confidence intervals 
(CI) as well as Nagelkerke pseudo R2 value which was used as an estimate of 
the effect size. Moreover, we bootstrapped all regression analyses (5.000 
samples) and show the bootstrapped results if they would change the 
outcome of the model. The machine learning techniques, namely support 
vector machine (SVM), soft independent modeling of class analogy (SIMCA) 
and principal component analysis (PCA) followed by construction of a PC 
plot, were performed as explained previously [21]. Since the diagnostic 
classes were unbalanced, we have employed a random oversampling 
approach with multiple copies of the smaller n class in order to achieve an 
equal split among the classes when conducting SVM and binary logistic 
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regression analyses. All tests were two-tailed, and significance was set at 
p=0.05. The statistical analyses were performed using IBM SPSS windows 
version 25, 2017 (ANOVA, χ2, regression analyses) and the Unscrambler 
X10.5.1 (PCA, PC plot, SVM, SIMCA). 

3. Results 

3.1. Sociodemographic data. 
Table 1. shows the socio-demographic and clinical data of the patients 

and controls in this study. There were no significant differences in age, sex 
ratio, and education between the 4 study groups. All three patient groups 
showed a higher CGI score than controls. The MDRS score was significantly 
higher in BD and MDD patients than in healthy controls. The OSOS score was 
significantly higher in SCZ patients than in controls. There were no 
significant differences in illness duration, episode duration, and number of 
episodes between the patient groups. 

Table 1. Sociodemographic data. 

 
HCA 

(n=21) 
SCZB 
(n=24) 

BDC 
(n=23) 

MDDD 
(n=33) 

KWT/F/x2  df p 

Age – years (SD) 39.0 (13.1) 38.8 (14.0) 42.8 (11.9) 46.6 (13.9) 2.21 3/97 0.092a 
Sex (M/F) 5/16 12/12 8/15  12/21 3.37 3 0.338b 

Education -        years 
(SD) 

14.3 (2.0) 12.8 (2.4) 13.6 (2.3)  14.0 (2.3)  1.86 3/96 0.141a 

CGI – S - mean (SD) 1.0 (0.0)B,C,D 4.29 (0.69)A 4.56 (0.73)A 4.39 (0.70)A KWT   <0.001 a 
MADRS - mean (SD) 0.5 (1.3)C,D - 30.3 (6.1)  29.3 (7.0) 201.41 2/69 <0.001a  

OSOS (z score) -1.79 (0.)B 1.82 (0.91)A - - KWT  <0.001 d 
Illness duration 

(months) 
- 156.6 (116.1)  133.7 (91.8)  118.0 (93.7) 0.96 2/73 0.387a 

Episode duration 
(weeks) 

- 16.1 (16.7) 17.0 (18.5) 14.7 (16.6) 0.11 2/67 0.900a 

Number of episodes - 5.0 (4.5)  4.9 (4.6) 3.9 (4.0) 0.48 2/66 0.619 a 
SD – Standard Deviation, a One-way ANOVA, b χ2 - test, KWT: Kruskal-Wallis test, A,B,C,D:  pairwise 
comparisons between group means, CGI – S – Clinical Global Impression – Severity, MADRS - 
Montgomery–Åsberg Depression Rating Scale, OSOS - Overall severity of schizophrenia. 

3.2. Connectome features in patients versus controls. 
 A first SIMCA was performed using all connectome data and 

feature selection was performed based on the modelling and discriminatory 
power of the connectome variables resulting in 9 variables with a significant 
modelling and discriminatory power. Consequently, we performed a second 
SIMCA which included only these 9 connectome features. Figure 1 shows 
that the top-5 discriminatory variables were (in descending order of 
discriminatory power) A11, A34, A51, A26, and A17. Nevertheless, SIMCA 
showed that the model-to-model distance was only 3.3 and that using those 
9 variables no significant classification ability could be achieved. Figure 2 
shows the PC plot obtained by principal component analysis with the first 
two PCs explaining 35% of the variance. In this two-dimensional display of 
the multivariate data set, no clear demarcation between patients and controls 
could be detected. Moreover, not one of the other combination of PCs showed 
any significant street between both groups. Using the same 9 variables, SVM 
showed a training accuracy of 96.4% and a validation accuracy of 87.1%.  
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Figure 1. Discrimination power of the nine significant connections. (A11 = self-inhibition of the AI, A 51 = 
ACC→AI, A 12 = AI→IFG, A 34 = MFG→FEF, A 84 = HPC→FEF, A26 = IFG→SPL, A 76 = AMY→SPL, A 17 
= AI→AMY, A 67 = SPL→AMY). 

 
Figure 2. Plot of PC 1 and PC 2 explaining 35% of the variance. 

Consequently, we have performed binary logistic regression analyses 
which introduced all AI and ACC connectome data. After performing 
automatic regression analyses with feature selection only 2 AI features were 
significant (A11=self-inhibition of the AI and A17=AI→AMY) and no ACC 
features. After this first step, we have consequently added the amygdala 
connectome features and performed another automatic regression and found 
that A76 (AMY→SPL) and A37 (MFG→AMY) were additional significant 
features. Consequently, we added the hippocampal feature set and found 
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that A84 (HPC→FEF) was another significant connectome feature. After 
consequently adding the remaining feature sets while conducting feature 
selection, we delineated 6 significant predictor variables, namely A11 (AI 
self-inhibition), A34 (MFG→FEF), A84 (HPC→FEF), A76 (AMY→SPL), A17 
(AI→AMY), and A37 (MFG→AMY) (see Table 2, model #1). A11 and A76 
were inversely associated with psychiatric disorders versus controls and A34, 
A84, A17, and A37 were positively associated. By inference, SIMCA, SVM 
and binary logistic regression analyses share A11, A34, A84, A76, and A17 as 
discriminatory variables, while logistic regression revealed that A37 was 
another predictor variable. A51 (ACC→AI), A26 (IFG→SPL), and A67 
(SPL→AMY) were significant discriminators as detected by SIMCA/SVM, 
but not by binary regression.  

Table 2. Results of linear logistic regression analysis with the psychiatric patients’ groups (SCZ, BD, MDD) 
as dependent variable, and controls as reference group. 

 Explanatory 
variables 

Nagelkerke 
pseudo R2 

x2 (df)    p-
values 

B SE Wald df=1  p OR 95% CI 

All patient vs HC 0.448 56.83 (6)       
AI⸧ (A11)   -1.113 0.308 14.24 <0.001 0.312 0.171-0.572 

MFG→FEF (A34)   0.722 0.252 8.23 0.004 2.05 1.26-3.37 
HPC→FEF (A84)   0.684 0.231 8.77 0.003 1.98 1.26-3.12 
AMY→SPL (A76)   -0.780 0.263 8.81 0.003 0.46 0.27-0.77 
AI→AMY (A17)   1.261 0.282 20.02 <0.001 3.53 2.03-6.13 

MFG→AMY 
(A37) 

-------------------- 
  0.827 0.279 8.78 0.003 2.29 1.32-3.95 

MOOD vs HC 0.487 
45.69 (5) 
<0.001 

      

AI (A11)   -1.348 0.401 11.27 0.001 0.26 0.12-0.57 
MFG→FEF (A34)   1.105 0.350 9.97 0.002 3.02 1.52-6.00 
HPC→FEF (A84)   0.950 0.295 10.40 0.001 2.59 1.45-4.61 
AI→AMY (A17)   1.380 0.381 13.14 <0.001 3.97 1.89-8.38 

MFG→AMY 
(A37) 

============ 
  1.180 0.371 10.11 0.001 3.26 1.57-6.74 

SCZ vs HC 0.316 
12.16 (2) 

0.002 
      

AI→AMY (A17)   0.802 0.382 4.41 0.036 2.23 1.06-4.71 
AMY→SPL (A76)   -1.112 0.479 5.40 0.020 0.033 0.13-0.84 

 In order to examine the connectome predictors of mood disorders 
versus controls, we entered the 5 variables delineated by the first regression 
in Table 2 together with A51, A26, and A67 in an automatic regression 
analysis and consequently added the other connectome feature sets in the 
same order as described above. Table 2, model 2 (MOOD vs HC) shows that 
mood disorders were best predicted by 5 variables, namely A11, A34, A84, 
A17, and A37 with a pseudo R2 of 0.487 and an accuracy of 73.3% (sensitivity 
= 73.2% and specificity = 73.3%). A34, A84, A17, and A37 were positively 
associated with mood disorders, whereas AI was inversely associated. None 
of the other feature sets or connectome variables added important 
information. 

In order to delineate the significant predictors of SCZ versus controls we 
followed a same procedure with the limit of maximal 3 explanatory variables. 
Table 2, model 3 (SCZ vs HC) shows that 2 variables significantly 
discriminated SCZ from controls, namely A17 (inversely associated) and A76 
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(positively associated with a pseudo R2 of 0.316). None of the other 
connectome features had a significant discriminatory power. 

3.3. Connectome features as predictors of severity of illness 
 In order to delineate the connectome features that best predicted 

severity of psychiatric illness (the CGI score) we have performed automatic 
multiple regression analyses with the CGI score as dependent variable and 
the connectome data as explanatory variables while allowing for the effects 
of age and sex (entered as a dummy variable). Firstly, we entered all variables 
which were significant in the logistic regression analysis separating patients 
from controls. Table 3, model #1 shows that only 2 of those variables 
significantly predicted CGI, namely A17 and A84, which together explained 
14.9% of the variance in the CGI score. Sex and age were not significant in 
this regression analysis. Consequently, we included firstly the ACC data, 
then the amygdala connectome data, performed automatic regression 
analysis and found that 2 more features were significant predictors, namely 
A56 and A65. Consequently, adding the other feature sets showed that none 
of the remaining features was significant. The final model shown in table 3, 
regression #2 shows that 29.8% of the variance in the CGI score was explained 
by the regression on A17, A84, A56 and A65 (all positively). 

Table 3. results of multiple regression analysis with the CGI, MDRS and OSOS as dependent variables and 
connectivity strengths as explanatory variables. 

Dependent variables 
Explanatory 

variables 
B A p F Df  p R2 

CGI Model #1    6.03 2/69 0.004 0.149 
 HPC→FEF (A84) 0.265 2.38 0.020     
 AI→AMY (A17) 0.279 2.51 0.014     

CGI  Model #2    7.10 4/67 <0.001 0.298 
 AI→AMY (A17) 0.278 2.79 0.007     
 HPC→FEF (A84) 0.317 3.06 0.003     
 ACC→SPL (A56) 0.468 3.75 <0.001     
 SPL→ACC (A65) 0.299 2.42 0.018     

MADRS Model #3    6.11 5/66 <0.001 0.316 
 HPC→FEF (A84) 0.308 3.02 0.004     
 ACC→SPL (A56) 0.422 3.57 0.001     
 AI⸧ (A11) -0.223 -2.17 0.034     
 SPL→ ACC (A65) 0.317 2.61 0.011     

 
SPL→ AMY 

(A67) 
0.223 2.11 0.038     

OSOS Model #4    6.62 2/36 0.004 0.269 
 AI→AMY (A17) 0.410 2.88 0.007     
 AMY→SPL (A76) -0.332 -2.33 0.026     

OSOS  Model #5    7.96 3/35 <0.001 0.406 
 AI→AMY (A17) 0.386 2.96 0.006     
 AI→IFG (A12) -0.432 -3.26 0.002     
 IFG→SPL (A26) -0.334 -2.52 0.016     

 In order to delineate the best connectome predictors of the MDRS 
we performed a same procedure as explained above (see CGI score). These 
automatic regression analyses showed that 5 connectome features were 
incorporated in the final model (see Table 3, model #3) and explained 31.6% 
of the variance in the MDRS data. A84, A56, A65, and A67 were positively 
associated with the MDRS and A11 was inversely associated with the MDRS 
score. Figure 3 shows the partial regression of the MADRS score on A84 
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(HPC→FEF). Figure 4 shows the partial regression of the MDRS score on A56 
(ACC→SPL). 

 
Figure 3. Partial regression plot of the MARDS score on the HPC→FEF connection. 
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Figure 4. Partial regression plot of the MARDS score on the ACC→SPL connection. 

To examine the connectome features of OSOS we first entered the two 
connectome variables that significantly discriminated SCZ from controls and 
found that A17 (positively) and A76 (inversely) were significantly associated 
with OSOS explaining 26.9% of its variance. Entering the other connectome 
feature sets revealed that A76 was no longer significant after considering the 
effects of two other variables, namely A12 and A26, which were both 
inversely associated with OSOS. As such, three connectome features 
explained 40.6% of the variance in OSOS, namely A17 (positively), and A12 
and A26 (both inversely). Figure 5 shows the partial regression of OSOS on 
A17 (AI→AMY) and Figure 6 shows the partial regression of OSOS on A12 
(AI→IFG). 
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Figure 5. Partial regression plot of the OSOS score on the AI→AMY connection. 
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Figure 6. Partial regression plot of the OSOS score on the AI→IFG connection. 

3.4. Connectome features discriminating patient subgroups. 
 Table 4, regression #1 shows the results of a binary logistic 

regression analysis separating mood disorders from SCZ. To construct this 
final model, we first entered the amygdala, hippocampus and MFG feature 
sets and performed an automatic regression analysis resulting in three 
significant explanatory variables, namely A27, A23, and A76. Following this 
first step, we consequently added the superior frontal gyrus feature set, but 
no additional features were significant. Next, we added the IFG feature set 
and found that three additional IFG features could be added as 
discriminatory variables. Addition of the other feature sets did not reveal any 
other significant features. Table 4, regression #1 shows the final model, i.e., 6 
connectome features significantly discriminated both groups with a pseudo 
R2 value of 0.604 and an accuracy of 83.1% (sensitivity=75.0% and 
specificity=89.7%), namely A23 and A76 were positively associated and A21, 
A52, A25, and A27, inversely associated with mood disorders versus SCZ. 
Lastly, we performed a logistic regression analysis with MDD as dependent 
variable and BD (no MDD) as reference group and firstly entered the AI and 
ACC data sets. The final model (Table 4, regression #2) shows that 3 
connectome features were associated with MDD, namely A31 (positively) 
and A26 and A57 (both inversely) with a pseudo R2 value of 0.547 and 
accuracy of 80.4%.    
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Table 4. Results of binary logistic regression analyses which delineates the connectome features of patient 
subgroups  . 

Explanatory 
variables 

Nagelkerke 
pseudo R2 

x2 (df)    p-
values 

B SE Wald df=1  p OR 95% CI 

MOOD vs SCZ 0.604 
74.55 (6) 
<0.001 

      

IFG→AI (A21)   -6.272 1.625 14.89 <0.001 0.002 0.00-0.046 
ACC→IFG (A52)   -3.935 1.239 10.08 0.001 0.02 0.00-0.22 
IFG→ACC (A25)   -3.314 1.057 9.84 0.002 0.04 0.00-0.29 
IFG→AMY (A27)   -4.430 1.422 9.71 0.002 0.01 0.00-0.19 
AI→AMY (A23)   1.495 0.368 16.51 <0.001 4.46 2.17-9.17 

AMY→SPL (A76)   1.687 0.470 12.90 <0.001 5.40 2.15-13.57 

MDD vs BD 0.547 
29.16 (3) 
<0.001 

      

IFG→SPL (A26)   -5.39 2.632 9.76 0.002 0.01 0.00-0.13 
ACC→AMY (A57)   -5.85 2.908 5.18 0.023 0.00 0.00-0.44 

MFG→AI (A31)   1.36 0.675 8.10 0.004 3.90 1.53-9.96 

 

4. Discussion 
The first major finding of our study points to highly significant 

connectome differences between patients and controls, as demonstrated 
using SIMCA and SVM. Nevertheless, these differences were more 
quantitative than qualitative because the distance between both SIMCA 
models constructed around the SCZ and control classes was not that large 
[21, 22]. These findings contribute to the growing evidence of quantitative 
changes along a spectrum from health to mental illness. These advanced 
machine learning techniques were able to define a model consisting of 9 
connectome features reaching a training accuracy of 96.4% and a validation 
accuracy of 87.1% as demonstrated by SVM. The top 5 features of the model 
included the self-inhibition of the AI (A11), the MFG→FEF (A34), the 
ACC→AI (A51), the IFG→SPL (A26), and the AI→AMY connections (A17). 
The binary logistic regression analysis, on the other hand, identified the AI 
self-inhibition (A11), the MFG→FEF (A34), the HPC→FEF (A84), the 
AMY→SPL (A76), the AI→AMY (A17), and the MFG→AMY (A37) 
connections as significant discriminators between patients and healthy 
individuals. Notably, three of the features were detected in both SIMCA and 
binary logistic regression, namely: the self-inhibition of the AI, the 
MFG→FEF, the AI→AMY connectivity, and should be regarded as 
“authorities” or key connectome features.  

The role of the AI (part of the salience network), the AMY (major node 
of the limbic system), the MFG (DLPFC) and FEF (the central executive 
network) in the development of various psychiatric disorders is suggested by 
numerous studies, although not all interactions are completely delineated. 
For instance, the AI as part of the SN regulates the dynamic switch between 
the DMN and the CEN and is essential for the rapid change of focus between 
internal and external stimuli. By integrating sensory, emotional, and 
cognitively charged information, the SN engages in complex processes such 
as communication, social behavior, and self-awareness [29]. In schizophrenia 
and in high-risk individuals for psychosis there is an impaired functional 
connectivity (FC) in the nodes of the SN as well as aberrant interactions of the 
SN with other large brain networks [30, 31]. Depression, on the other hand, 
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has been associated with decreased FC within the SN, and the severity of 
symptoms correlated with decreased intrinsic FC of the right AI [32]. 
Moreover, decreased functional connectivity between DLPFC and insula was 
found in subjects with subthreshold depression compared to healthy controls 
[33]. In a previous study, we have found decreased effective connectivity 
between the AI and the MFG as well as an aberrant connection (non-existent 
in healthy individuals) from the AMY to the AI in a sample of unipolar and 
bipolar depressed patients [34].  

In short, it seems that the dysfunction of the SN is in line with the clinical 
presentation and the suggested hypothesis of symptom formation in both 
mood and psychotic disorders – with predominance of externalizing mental 
representations in SCZ leading to paranoid symptoms and overrepresented 
internalizing in depression that leads to self-defeating depressive symptoms. 
This might explain why the self-inhibitory properties of the AI in our study 
were identified as the major connectome feature contributing to the 
distinction between healthy individuals and psychiatric patients presenting 
with psychotic or depressive symptoms.  

The other significant connection in our results involved the influence of 
the DLPFC on the FEF, two regions considered to be part of the CEN (known 
as well as the fronto-parietal network - FPN) and the dorsal attention network 
(DAN) or dorsal FPN, respectively. Several lines of research support the role 
of the DLPFC in the pathophysiology of both SCZ and depression. DLPFC 
dysfunction was found to characterize SCZ patients during a high cognitive 
control task, along with significant impairments in functional connectivity 
between the dorsolateral prefrontal cortex and other task-relevant brain 
regions. In addition, cognitive performance, behavioral disorganization, and 
global functioning demonstrated significant correlations with DLPFC 
functional connectivity [35]. Moreover, lower N-acetyl aspartate (NAA) to 
creatine (Cr) ratio in the left DLPFC was associated with the cognitive deficits 
in patients with first episode SCZ, and was suggested to be an early 
biochemical marker for the cognitive impairment in schizophrenia [36].  

Apart from the classical role of the DLPFC in “cognitive” or “executive” 
functions, such as working memory, intention formation, goal-directed 
action, abstract reasoning, and attentional control [37], which are often 
impaired in SCZ, there is an increasing understanding of its involvement in 
the regulation of emotions as well [38], and more specifically of the valence 
of emotional experiences [39]. Additionally, the DLPFC is responsible for 
suppression of posterior cingulate cortex  overactivation which is considered 
to underly depressive ruminations [40]. Decreases of gray matter volumes, 
along with disruptions of both DLPFC activity during task performance and 
functional connectivity during rest have been demonstrated in depression 
[41-43]. Moreover, the region is used as a target for different treatment 
techniques such as neurofeedback [44], and transcranial magnetic 
stimulation alleviating the symptoms of depression [45].  

The third significant feature of the model distinguishing between 
healthy controls and mentally ill patients was the connection arising from the 
AI to the AMY. The role of the AI as part of the SN that has been implicated 
in the detection and integration of emotional and sensory stimuli, and its 
contribution to the pathophysiology of the diagnostic entities under study 
has been underlined repeatedly throughout the discussion hitherto. 
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Therefore, we will focus our further attention on the amygdala as a key node 
of the limbic system (LS), along with the hippocampus, hypothalamus, OFC, 
and ACC [46]. A variety of structural, functional, and connectivity 
abnormalities of the AMY has been demonstrated in SCZ, bipolar and 
unipolar depression (UD) [47-50]. Recent meta-analysis reported consistent 
findings of reduced left, right, and total amygdala volumes in SCZ, relative 
to both healthy controls and bipolar subjects while such abnormalities were 
not confirmed in bipolar patients. Studies of the uncinate fasciculus tract 
(which connects the AMY with the medial- and orbitofrontal cortices) 
showed comparable degrees of reduced fractional anisotropy in both SCZ 
and bipolar patients. In addition decreased amygdala-orbitofrontal cortex 
functional connectivity was generally a characteristic of SCZ, while in bipolar 
disorder the findings were inconsistent [51].  

A review of emotion processing fMRI studies in major depression has 
confirmed the often-reported increased amygdala activation to negative and 
arousing stimuli which typically normalizes with antidepressant treatments 
[52]. Comparison studies suggested greater activation of the amygdala 
toward negative emotional stimuli in MDD compared to BD, with the 
opposite pattern during exposure to positive emotional stimuli of different 
types (facial expressions, even in subliminal presentations, and 
autobiographical memories) [16]. Lower resting state FC (rsFC) between the 
right amygdala and the left anterior hippocampus was observed in MDD 
compared to BD and controls [13]. BD patients showed increased rsFC 
between left amygdala and left anterior supramarginal gyrus when 
compared to healthy controls and MDD [53]. Overall, the literature is 
consistent that amygdala dysfunction plays a crucial role in the 
pathophysiology of both unipolar and bipolar depression, although there is 
less support for the specific alterations distinguishing both classes.  

In conclusion, our findings suggest that there are three major 
connectivity features distinguishing mentally healthy individual from 
psychiatric patients: first, the self-regulatory properties of the AI (securing 
the balance between the internally and externally focused attention); second, 
the communication between the DLPFC and the FEF (providing appropriate 
executive functioning and attention), and third, the influence that the AI 
exerts on the AMY (the salience network regulation of the emotion 
processing). Our results are supported by numerous findings of structural 
and functional disruptions of the abovementioned brain regions in all three 
diagnostic classes under study. Moreover, studies on the neural substrates of 
general psychopathology outline a role for delayed maturation of limbic and 
default mode connectivity and more generally reduced between-network 
connectivity, leading to a compromised ability to integrate and switch 
between internally (somatosensory-motor networks, DMN) and externally 
(executive networks) focused tasks [54]. 

In addition, the overall severity of illness as measured with CGI was 
predicted by connectome features including again the anterior insula, and 
amygdala nodes, as well as the hippocampus, the frontal eye field, and the 
bidirectional connection between the superior parietal lobe and the anterior 
cingulate cortex. As mentioned earlier, the ACC is a major node in the limbic 
network, as well as the SN and both structural and functional anomalies of 
this brain area have been reported in major psychiatric disorders, more so in 
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bipolar and unipolar depression but in SCZ as well [16, 55-58]. A recent meta-
analysis by Goodkind et al. [59] compared structural imaging studies across 
major psychiatric disorders, and demonstrated a shared pattern of reduced 
grey matter volume in dorsal anterior cingulate cortex and bilateral anterior 
insula. The only significant difference across diagnostic classes was the more 
pronounced hippocampus/amygdala gray matter loss in MDD compared to 
BD, anxiety and obsessive-compulsive disorder. 

The second major finding in our study was that SCZ could be 
discriminated from healthy controls using the AI→AMY (A17), and the 
AMY→SPL connections (A76). In addition, the OSOS was predicted by the 
connections from the AI to both the AMY (A17), and the IFG (A12), and from 
the IFG to the SPL (A26). As discussed earlier the structural, functional and 
connectivity findings point to the involvement of both the anterior insula and 
the amygdala in the pathophysiology of SCZ. In addition, a recent study 
using combined voxel-based morphometry and resting-state functional 
connectivity reported that early-stage SCZ patients demonstrated 
significantly reduced gray matter volume in both bilateral AI and ACC 
compared to the HC group. Moreover, significantly reduced functional 
connectivity within the SN was found in the SCZ group. These convergent 
morphological and functional deficits in the SN were significantly associated 
with hallucinations [57]. In line with our findings, a most recent resting state 
fMRI study reported decreased FC of the right amygdala with the anterior 
insula in both high-risk subjects and first episode schizophrenia [50]. 
Moreover, the positive symptom scores of the PANSS scale were correlated 
with the FC within the right AI during the state of psychosis [30]. 

We also found that severity of SCZ was associated with changed 
connectivity in the SPL and the IFG nodes. The superior parietal lobe plays 
an important role in different brain functions including visuomotor, 
cognitive, sensory, higher order, working memory, attention and 
visuospatial perception, including the representation and manipulation of 
objects [60-62]. The inferior frontal gyrus is functionally part of the 
ventrolateral prefrontal cortex (VLPFC) which is involved in cognitive 
control and motor response inhibition [63], as well as in emotion regulation, 
and its activation correlates with the intensity of the emotional stimuli [64]. 
Moreover, the activation of the right VLPFC seems to be crucial for the 
successful implementation of emotion regulation strategies such as affect 
labeling or cognitive reappraisal which can eventually reduce the activation 
of the amygdala to negative stimuli [65, 66]. Compared to healthy controls 
both SCZ patients and their unaffected siblings demonstrated hypoactivation 
in VLPFC, insula, and middle temporal gyrus when reappraising negative 
pictures [67]. Similarly, reduced activation of the VLPFC was found during 
conscious down regulation of negative emotions in schizophrenic compared 
to bipolar patients [68]. Meta-analytic data shows that when emotional facial 
stimuli were contrasted to neutral stimuli, SCZ patients displayed 
underactivation throughout the entire facial affect processing network and 
increased activation in visual processing regions within the cuneus [48]. 
Thus, we may suggest that the severity of schizophrenia symptoms in our 
study was associated with the connectivity between regions implicated 
mainly in emotion regulation.  
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The third major finding of the current study was that five connectome 
features could discriminate healthy controls from mood disorder patients, 
namely the self-inhibition of the AI (A11), the connections from the MFG and 
the HPC to the FEF (A34 and A84), and the influences exerted upon the AMY 
by both AI (A17) and MFG (A37).  The role of the structural and functional 
abnormalities of the amygdala and the anterior insula in the pathophysiology 
of depression has been discussed earlier (see above). The influences exerted 
by the MFG (DLPFC) and HPC onto the FEF reflect the top-down and 
bottom-up regulation of attention by the cognitive and affective systems 
respectively. As depression encompasses both cognitive and affective 
symptoms, our findings further support the research so far outlining the 
impairment of both the cognitive control (for example - hypoactivation of the 
DLPFC during task performance [41, 69], and the emotional response (e.g. 
the increased activation of the limbic system in response to negative stimuli 
[52]).  

The interactions of the SN (AI) and the CEN (MFG) with the limbic 
system (AMY) seem to represent a key feature of mood disorders. A possible 
clinical correlate of the dysfunctional communication between those three 
major networks might be the well-known negative bias in depression [70, 71]. 
The basis of it is suggested to be the failure of the DLPFC to exert appropriate 
top-down regulation of the AMY response along with bottom-up emotional 
expression dysfunction characterizing depression [72]. In accordance with 
this explanation are the reports of reduced functional and effective 
connectivity in both MDD and BD [73, 74].  

An additional finding of our study consists of the MDRS score being 
predicted by the following connections: HPC→FEF (A84), ACC→SPL (A56), 
SPL→ACC (A65), and SPL→AMY (A67), which were positively associated 
with the score, and self-inhibition of the AI (A11), which was inversely 
associated. The main nodes involved in these significant connections include 
key limbic regions such as HPC, ACC and AMY as well as the SPL which is 
part of the association cortex. Previous studies exploring the neural correlates 
of symptom severity of depression have found various positive associations 
including with: 1) decreased intrinsic FC within the right AI [75], 2) increased 
FC of the DMN [76], 3) increased amplitude of low-frequency fluctuations 
(ALFF) values of the left dorsal medial PFC [77], 4) ALFF values of the right 
superior frontal gyrus [78] (while the same study found a negative correlation 
with the ALFF values of the left insula), 4) increased FC of bilateral dorsal 
medial PFC [79], and 5) reduced perfusion in the DMN (the posterior 
cingulate cortex and the right inferior parietal lobe) [80]. On the other hand, 
our finding of negative associations between AI self-regulation and the 
MADRS score is in line with the report of Manoliu et al. who found that the 
decreased intrinsic FC within the right AI was positively associated with 
severity of symptoms [75].  

Finally, in our study there were three connectome features significantly 
discriminating between MDD and BD including the IFG→SPL, the 
ACC→AMY, and the MFG→AI connections. Once again, we detected the 
major nodes of the LS – the anterior cingulate cortex and the amygdala 
(emotion processing), along with the dorsolateral and ventrolateral 
prefrontal cortices (cognitive control) and the balancing SN in the face of the 
anterior insula. Differentiating between unipolar and bipolar depression is a 
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major unsolved clinical challenge in psychiatry, and it is not surprising that 
there is an abundance of studies comparing the two diagnostic entities in 
search for potential structural, functional or connectivity markers as it is 
reported in a recent review by Han et al. [16]. Overall, the most convergent 
findings involve regions such as the amygdala, the anterior cingulate cortex, 
and the prefrontal cortex, mainly DLPFC. Nevertheless, to the best of our 
knowledge, there are no other effective connectivity studies comparing 
unipolar and bipolar depression by means of spectral DCM by the time of the 
writing of the present text.  

However, in line with our findings, is the reported association of bipolar 
depression with decreased FC between the insula and the DLPFC when 
compared to MDD and controls [13]. Our results can be viewed as 
complementary in the sense that they demonstrate the directionality of the 
differential connection, namely from the DLPFC to the AI. Moreover, in a 
recent study exploring the brain networks connectivity by means of group 
independent component analysis, and graph theory, BD was associated with 
stronger FC and more efficient topological properties in the DLPFC, VLPFC, 
and ACC compared to MDD [81].  

Earlier reports on resting state fMRI demonstrated that BD was 
associated with decreased ALFF in the left posterior insula and superior 
parietal lobule and increased amplitude of low-frequency fluctuations in the 
right dorsal anterior insula compared to MDD [82]. Another study revealed 
that individuals with BD showed lower fractional ALFF in the left medial and 
middle frontal gyrus compared to those with MDD [83]. Thus, along with 
previous findings, our results suggest that abnormalities in resting-state 
neural connectivity of the anterior insula, amygdala and PFC may be a useful 
marker for differentiating the depressive states of MDD and BD.  

In the final lines of this report, we want to point the reader’s attention to 
the fact that 4 out of the 5 connectome features that discriminate controls from 
mental illness are features of mood disorders, namely the MFG→FEF, the 
HPC→FEF, the AI→AMY, and the MFG→AMY connections (A34, 84, 17, 37). 
As it can be easily seen, these involve major nodes of the SN, FPN, DAN, and 
the Limbic system. Only one of the connections was pertinent to SCZ, the 
AMY→SPL connectivity (A76) which reflects the influence of the Limbic 
system on the association cortex, while the self-inhibitory connection of the 
AI (A11) is a feature of both mood disorders and SCZ.  Thus, the shared A11 
connectome feature supports the continuous theory i.e., the self-regulation of 
the SN underpins mental illness, while the other features support qualitative 
differences between mood disorders and SCZ, and can be used as potential 
imaging biomarkers.  

 Several limitations of the current study should be acknowledged. 
First, the sample size might not be sufficient to detect more subtle changes in 
connectivity. Second, since the medication status may have influenced the 
results future studies on unmedicated patients are needed to establish the 
replicability of our findings. In addition, study samples should be enlarged 
to examine this issue using machine learning and network analysis.   
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