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1. Introduction

As pointed out in [1], the following Logistic system has been widely concerned and studied due
to its importance in the development of ecology:

dZ
dt

= RZ(t)(1− Z(t)
K

), (1)

where Z(t) represents the density or quantity of population Z at time t, R > 0 and K represent the
intrinsic growth rate of population and environmental capacity, respectively. Because all solutions of
nonlinear ecosystem are difficult to be given accurately, people pay more attention to the long-term
dynamic trend of ecosystem, i.e., the long-term trend of population density (see, e.g. [1-5]). People
especially want to know whether the population will tend to a positive constant after a long time,
which is related to the final long-term existence of the population. For example, the authors of [2]
investigated the long time behavior of the following stochastic ecosystem for a single-species:

dZ = Z[a− bZ]dt + γZdB(t). (2)

Animal populations will inevitably spread because of climate, foraging and random walking.
And hence the reaction-diffusion ecological models well simulate the real ecosystem, and ([7-21]).
Particularly, reaction-diffusion ecosystem were studied in [11-21]. For example, in [12], a single-species
Markovian jumping ecosystem with diffusion and delayed feedback under Dirichlet boundary value
was investigated:


∂u(t, x)

∂t
=q∆u(t, x) + u(t, x)[a− bu(t, x)] + c(r(t))[u(t, x)− u(t− τ(t), x)], t > 0, x ∈ Ω,

u(t, x) =0, x ∈ ∂Ω, t > 0.
(3)

Markov systems often occurred in various engineering technologies (see, e.g. [24-26]). Particularly,
Markovian jumping delayed feedback model reflects well the influence of stochastic factors on time
delays of the changes of populations, such as weather, temperature, humidity, ventilation status, and
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so on. But the case of Neumann boundary value on a single-species ecosystem is seldom researched. In
fact, Neumann zero boundary value model well simulates the biosphere boundary without population
migration. For example, freshwater fish do not enter the sea through rivers. Inspired by some ideas or
methods of the related literature [11-28, 30], the author is to investigate the stability of a single-species
Markovian jumping ecosystem with diffusion and delayed feedback under Neumann zero boundary
value.

For convenience, throughout of this paper, Ω ⊂ RN(1 6 N 6 3) is denoted as a bounded

domain with a smooth boundary ∂Ω, Ω = Ω
⋃

∂Ω. Denote by ‖u‖H =
√∫

Ω |∇u(x)|2dx the norm of

H1
0(Ω), and by λ1 the first positive eigenvalue of Laplace operator −∆ in H1

0(Ω). Besides, we denote
|v| = (|v1|, |v2|)T for v = (v1, v2)

T ∈ R2, and |C| = (|cij|)2×2 for matrix C = (cij)2×2. N represents
the set of natural numbers {1, 2, · · · }. Denote by L2(Ω) the space of all real-valued square integrable
functions with the inner product 〈χ, η〉 =

∫
Ω χ(x)η(x)dx, for χ, η ∈ L2(Ω) which derives the norm

‖χ‖ = (
∫

Ω χ2(x)dx)
1
2 for χ ∈ L2(Ω). Denote by ∆ =

m
∑

j=1

∂2

∂x2
j

the Laplace operator, with domain

D(∆) = W1,2
0 (Ω)

⋂
W2,2

0 (Ω), which generates a strongly continuous semigroup et∆, where W1,2
0 (Ω)

and W2,2
0 (Ω) are the Sobolev spaces with compactly supported sets. Next, the definition of the mild

solution of the system (9) will be introduced. For convenience, the author takes U = {U(t, ·)}[0,T] for
any given T > 0 such that U(t) is a L2(Ω)-valued function.

2. System descriptions

Denote by (Υ, F , P) the complete probability space with a natural filtration {Ft}t≥0. Let S =

{1, 2, · · · , n0} and the random form process {r(t) : [0, +∞) → S} be a homogeneous, finite-state
Markovian process with right continuous trajectories with generator Π = (γij)n0×n0 and transition
probability from mode i at time t to mode j at time t + δ, i, j ∈ S,

P(r(t + δ) = j | r(t) = i) =

{
γijδ + o(δ), j 6= i

1 + γijδ + o(δ), j = i,
(4)

where γij > 0 is transition probability rate from i to j(j 6= i) and γii = −∑n0
j=1,j 6=i γij, δ > 0 and

lim
δ→0

o(δ)/δ = 0.

Consider the following ecosystem with diffusion and delayed feedback

∂u(t, x)
∂t

=q∆u(t, x) + u(t, x)[a− bu(t, x)]− c(r(t))[u(t, x)− u(t− τ(t), x)], t > 0, x ∈ Ω,

∂u(t, x)
∂x

=0, x ∈ ∂Ω, t > 0,

u(s, x) =Γ(s, x), (s, x) ∈ [−τ, 0]×Ω,

(5)

where a > 0 and b > 0 describe the growth rate and the intra-specific competition. Besides, the initial
value function Γ(s, x) is bounded on [−τ, 0]×Ω. For convenience, c(r(t)) is denoted simply by cr for
r ∈ S.

In addition, due to the limited resources of nature, the population density should have an upper
limit. At the same time, the population density should also have a lower limit. For example, if the
population density of whales is less than a certain degree, the population will become extinct, because
male whales and female whales cannot meet in the sea. So the following assumption is suitable:

(H1) There exist two positive constants N1 and N2 with N1 6 a
b 6 N2 such that

0 < N1 6 u(t, x) 6 N2, ∀ x ∈ Ω, t > −τ. (6)

Definition 1. Set u∗(t, x) ≡ u∗(x), ∀ (t, x) ∈ [−τ,+∞) × Ω, then u∗(x) is said to be a stationary
solution of the ecosystem system (5) if u∗(x) satisfies the boundedness assumption (H1), and
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
q∆u∗(x) + u∗(x)[a− bu∗(x)] = 0, t > 0, x ∈ Ω,

∂u∗(x)
∂x

= 0, x ∈ ∂Ω, t > 0.
(7)

Now, people can easily conclude from Definition 1 that u∗ ≡ a
b is a stationary solution of the

ecosystem system (5). Moreover, setting U(t, x) = u(t, x)− u∗, then the system (5) is translated into

∂U(t, x)
∂t

=q∆U(t, x)− aU(t, x)− bU2(t, x)− cr[U(t, x)−U(t− τ(t), x)], t > 0, x ∈ Ω,

∂U(t, x)
∂x

=0, x ∈ ∂Ω, t > 0,

U(s, x) =Γ(s, x)− a
b

, (s, x) ∈ [−τ, 0]×Ω,

(8)

where the zero solution of the system (8) is corresponding to the positive stationary solution u∗ ≡ a
b of

the ecosystem (5). And hence, the stability of the above-mentioned zero solution will be investigated
below. Furthermore, applying an impulse control on the natural ecosystem (5) or (8) results in

∂U(t, x)
∂t

=q∆U(t, x)− aU(t, x)− bU2(t, x)− cr[U(t, x)−U(t− τ(t), x)], t > 0, t 6= tk, x ∈ Ω,

U(t+k , x) =MkU(t−k , x), k ∈ N,

∂U(t, x)
∂x

=0, x ∈ ∂Ω, t > 0,

U(s, x) =ξ(s, x) = Γ(s, x)− a
b

, (s, x) ∈ [−τ, 0]×Ω,

(9)

whose zero solution is corresponding to the equilibrium point u∗ ≡ a
b of the following system:

∂u(t, x)
∂t

=q∆u(t, x)− a[u(t, x)− a
b
]− b[u(t, x)− a

b
]2 − cr[u(t, x)− u(t− τ(t), x)], t > 0, t 6= tk, x ∈ Ω,

u(t+k , x)− a
b
=Mk[u(t

−
k , x)− a

b
], k ∈ N,

∂u(t, x)
∂x

=0, x ∈ ∂Ω, t > 0,

u(s, x) =Γ(s, x), (s, x) ∈ [−τ, 0]×Ω,
(10)

where each tk(k ∈ N) is a fixed impulsive instant with 0 < t1 < t2 < · · · , u(t+k , x) = lim
t→t+k

u(t, x), and

u(t−k , x) = lim
t→t−k

u(t, x) = u(tk, x).

Definition 2. For an arbitrarily given T > 0, a L2(Ω)-valued function U = {U(t)}[0,T] is called a

mild solution of (9) if U(t, x) ∈ C([0, T]; L2(Ω)) satisfies
∫ t

0 ‖U(s)‖pds < ∞, i = 1, 2, and the following
integral equations hold for any t ∈ [0, T] and x ∈ Ω,

U(t, x) =eqt∆ξ(0, x) +
∫ t

0
eq(t−s)∆

(
− aU(s, x)− bU2(s, x)− cr[U(s, x)−U(s− τ(s), x)]

)
ds

+ eqt∆ ∑
0<tk<t

e−qtk∆(Mk − 1)U(tk, x), t > 0,
(11)

and
∂U
∂ν

= 0, x ∈ ∂Ω, t > 0,

U(s, x) = ξ(s, x), s ∈ [−τ, 0], x ∈ Ω.

Remark 1. Definition 2 is well defined in view of [22] and [23].
In this paper, the following condition is also required:
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(H2) ‖et∆‖2 6 Me−γt, where both M > 0 and γ > 0 are constants, where ‖et∆‖2 = sup
‖w‖=1

‖et∆w‖

(see [22]).

Lemma 1.(see, e.g. [30]). Let Ω be a bounded domain of Rm with a smooth boundary ∂Ω of class C2 by
Ω. v(x) is a real-valued function belonging to H1

0(Ω) and ∂v(x)
∂ν |∂Ω = 0. Then

λ1

∫
Ω
|v(x)|2dx 6

∫
Ω
|∇v(x)|2dx,

which λ1 is the smallest positive eigenvalue of the Neumann boundary problem
− ∆ϕ = λϕ, x ∈ Ω,

∂ϕ(x)
∂ν

= 0, x ∈ ∂Ω,

where ν represents the external normal direction of ∂Ω.

Lemma 2 (Banach contraction mapping principle [29]) Let Θ be a contraction operator on a complete
metric space ä, then there exists a unique point u ∈ ä for which Θ(u) = u.

3. Main result

Firstly, the unique existence of the stationary solution of the ecosystem (5) should be considered.
Moreover, the unique stationary solution of the ecosystem should be positive. Based on the two point,
the author presents the following unique existence theorem:

Theorem 1. Suppose (H1) holds. For all r ∈ S, the system (5) possesses a positive stationary solution
u∗ ≡ a

b for all (t, x) ∈ [−τ,+∞)×Ω. If, in addition, the following condition is satisfied:

a < λ1q + 2bN1 (12)

then the positive solution u∗ is the unique stationary solution of the system (5).

Proof. Obviously, for (t, x) ∈ [−τ, 0]×Ω, u∗ ≡ a
b makes the following equations hold:

q∆u∗ + u∗[a− bu∗] = 0, t > 0, x ∈ Ω,

and
∂u∗
∂x

= 0, x ∈ ∂Ω, t > 0.

Thus, Definition 1 yields that u∗ > 0 defined in Theorem 1 is the unique stationary solution of the
system (5).

Below, the author claims that u∗ is the unique stationary solution of the ecosystem (5).
Indeed, if u∗ and v∗(x) are two different stationary solutions of the system (5), then Poincare

inequality and the boundary condition yield

a
∫

Ω
(u∗ − v∗(x))2dx− b

∫
Ω
(u∗ − v∗(x))2(u∗ + v∗(x))dx >λ1q

∫
Ω
|u∗ − v∗(x)|2dx. (13)

The condition (12), Definition 2 and the continuity of u∗ and v∗ lead to

a
∫

Ω
(u∗ − v∗(x))2dx− b

∫
Ω
(u∗ − v∗(x))2(u∗ + v∗(x))dx < λ1

∫
Ω
|u∗ − v∗(x)|2dx,

which contradicts the inequality (13).
This completes the proof.
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Remark 2. As far as I am concerned, Theorem 1 is the first theorem to give the unique existence of the
equilibrium point of a single-species ecosystem under Neumann boundary value.

Next, the global stability of the stationary solution u∗ ≡ a
b should be investigated.

Theorem 2. Set p > 1. Suppose all the conditions of Theorem 1 hold. Assume, in addition, the
condition (H2) holds, and

0 < v < 1, (14)

then zero solution of the system (9) is globally exponential stability in the pth moment, equivalently,
u∗ ≡ a

b of the system (10) is globally exponential stability in the pth moment. where N0 = max{|N1 −
a
b |, N2 − a

b}, µ = inf
k∈N

(tk+1 − tk) > 0,

v =

[
4p−1

(
(a + cr)(

M
qγ

)p + b(
2MN0

qγ
)p + cr(

M
qγ

)p + M2p(max
k
|Mk − 1|)p

(
1 +

1
qγµ

)p
)] 1

p

. (15)

Proof. Banach contraction mapping principle will play a important role in this proof, so the author
formulates a contraction mapping on a suitable complete metric space firstly.

Let ä be the normed space consisting of functions g(t, x) : [−τ,+∞)×Ω → [N1 − a
b , N2 − a

b ],
where g satisfies:

(A1) g is pth moment continuous at t > 0 with t 6= tk(k ∈ N) ;
(A2) for any given x ∈ Ω, lim

t→t−k
g(t, x) and lim

t→t+k
g(t, x) exist, and lim

t→t−k
g(t, x) = g(tk, x);

(A3) g(s, x) = ξ(s, x), ∀ s ∈ [−τ, 0], x ∈ Ω ;
(A4) eαt‖g(t)‖p → 0 as t→ +∞, where α is a positive scalar with 0 < α < qγ.
It is not difficult to verify that the normed space ä is a complete metric space if it is equipped

with the following metric:

dist
(

U, V
)
=

(
sup
t>−τ

‖U(t, x)−V(t, x)‖p
) 1

p

, ∀U, V ∈ä . (16)

Construct an operator Θ such that for any given U ∈ ä,

Θ(U)(t, x) =eqt∆ξ(0, x) +
∫ t

0
eq(t−s)∆

(
− aU(s, x)− bU2(s, x)− cr[U(s, x)−U(s− τ(s), x)]

)
ds

+ eqt∆ ∑
0<tk<t

e−qtk∆(Mk − 1)U(tk, x), t > 0,

∂Θ(U)

∂ν
=0, x ∈ ∂Ω, t > 0,

Θ(U)(s, x) =ξ(s, x), s ∈ [−τ, 0], x ∈ Ω.

(17)

Below, it is necessary to show that Θ : ä→ ä, which may require four steps to achieve the goal.
Step 1. The author claim that for U ∈ ä, Θ(U) must be pth moment continuous at t > 0 with

t 6= tk(k ∈ N) .
Indeed, U ∈ [N1 − a

b , N2 − a
b ] means the boundedness of U, and let δ be small enough scalar, a

routine proof yields that if δ→ 0, for t ∈ [0,+∞) \ {tk}∞
k=1,

‖Θ(U)(t + δ, x)−Θ(U)(t, x)‖p 6 4p−1‖eq(t+δ)∆ξ(0, x)− eqt∆ξ(0, x)‖p

+ 4p−1‖
∫ t+δ

0
eq(t+δ−s)∆[−aU(s, x)− bU2(s, x)]ds−

∫ t

0
eq(t−s)∆[−aU(s, x)− bU2(s, x)]ds‖p

+ 4p−1‖
∫ t+δ

0
eq(t+δ−s)∆[cr(U(s, x)−U(s− τ(s), x))]ds−

∫ t

0
eq(t−s)∆[cr(U(s, x)−U(s− τ(s), x))]ds‖p

+ 4p−1‖eq(t+δ)∆ ∑
0<tk<t+δ

e−qtk∆(Mk − 1)U(tk, x)− eqt∆ ∑
0<tk<t

e−qtk∆(Mk − 1)U(tk, x)‖p → 0,
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which proves the claim. And then (A1) is verified.

Step 2. Verifying Θ(U) satisfies (A2), where U ∈ ä.
In fact, for U ∈ ä, people can easily see it from (17) that lim

t→t−k
Θ(U)(t, x) and lim

t→t+k
Θ(U)(t, x) exist,

and lim
t→t−k

Θ(U)(t, x) = Θ(U)(tk, x), which verifies (A2).

Step 3. Verifying Θ(U) satisfies (A3), where U ∈ ä. Indeed, the third equation of (17) verifies (A3)
directly.

Step 4. Verifying (A4), i.e., for U ∈ ä, verifying

eαt
∥∥∥Θ(U)(t)

∥∥∥p
→ 0, if t→ +∞. (19)

Indeed,

eαt‖Θ(U)(t, x)‖p = eαt‖eqt∆ξ(0, x) +
∫ t

0
eq(t−s)∆

(
− aU(s, x)− bU2(s, x)− cr[U(s, x)−U(s− τ(s), x)]

)
ds

+ eqt∆ ∑
0<tk<t

e−qtk∆(Mk − 1)U(tk, x)‖p

65p−1eαt‖eqt∆ξ(0, x)‖p + 5p−1eαt‖
∫ t

0
eq(t−s)∆[−aU(s, x)− bU2(s, x)]ds‖p + 5p−1eαt‖

∫ t

0
eq(t−s)∆crU(s, x)ds‖p

+ 5p−1eαt‖
∫ t

0
eq(t−s)∆crU(s− τ(s), x)ds‖p + 5p−1eαt‖eqt∆ ∑

0<tk<t
e−qtk∆(Mk − 1)U(tk, x)‖p, t > 0,

(20)
Moreover,

eαt‖eqt∆ξ(0, x)‖p 6 Mpeαte−γqt‖ξ(0, x)‖p → 0, if t→ +∞. (21)

U ∈ ä means U ∈ [N1 − a
b , N2 − a

b ], and

U2 6 N0|U|, where N0 = max{|N1 −
a
b
|, N2 −

a
b
}. (22)

and Holder inequality yield

eαt‖
∫ t

0
eq(t−s)∆

(
− aU(s, x)− bU2(s, x)

)
ds‖p

62p−1 Mp
[

ap(
1

qγ
)p−1

∫ t

0
e−(qγ−α)(t−s)eαs‖U(s, x)‖pds + bp Np

0 (
1

qγ
)p−1

∫ t

0
e−qγ(t−s)‖U‖pds

]
.

(23)

On the other hard, eαt‖Ui(t)‖p → 0 means that for any ε > 0, there exists t∗ > 0 such that all
eαt‖Ui(t)‖p < ε. And so,

∫ t

0
e−(qγ−α)(t−s)eαs‖U(s, x)‖pds

6 max
s∈[0,t∗ ]

(eαs‖U(s, x)‖p)e−(qγ−α)t 1
qγ− α

e(qγ−α)t∗ + ε
1

qγ− α
,

which together with the arbitrariness of ε implies that

∫ t

0
e−(qγ−α)(t−s)eαs‖U(s, x)‖pds→ 0, t→ +∞. (24)
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Similarly as the proof of (23), people can prove

eαt‖
∫ t

0
eq(t−s)∆[−aU(s, x)− bU2(s, x)]ds‖p, t→ +∞. (25)

eαt‖
∫ t

0
eq(t−s)∆crU(s, x)ds‖p, , t→ +∞. (26)

Due to U(s, x) = ξ(s, x) is bounded on [−τ, 0]×Ω, it is not difficult to prove similarly

eαt‖
∫ t

0
eq(t−s)∆crU(s− τ(s), x)ds‖p, t→ +∞. (27)

Next, using the definition of Riemann integral
∫ b

a esds results in

eαt‖eqt∆ ∑
0<tk<t

e−qtk∆(Mk − 1)U(tk, x)‖p

62p−1 max
k
|Mk − 1|

[
e−(pqγ−α)t

(
∑

0<tk6t∗
eqγtk‖U(tk, x)‖

)p

+ ε
1

(qγ− α
p )

p

]
→ 0.

(28)

Combining (20)-(28) yields (19).
It follows from the above four steps that

Θ(ä) ⊂ä . (29)

Finally, the author claims that Θ is a contractive mapping on ä.
Indeed, for any U, V ∈ ä, Holder inequality and (H2) yield

‖
∫ t

0
eq(t−s)∆[U(s, x)−V(s, x)]ds‖p

6
(

M
∫ t

0
e−qγ(t−s)‖U(s, x)−V(s, x)‖ds

)p

6Mp
(
(

1
qγ

)
p−1

p (
1

qγ
)

1
p [ sup

t>−τ
‖U(t, x)−V(t, x)‖p]

1
p

)p

6(
M
qγ

)p[dist(U, V)]p.

(30)

Similarly,

‖
∫ t

0
eq(t−s)∆[U2(s, x)−V2(s, x)]ds‖p

6
(

2MN0

∫ t

0
e−qγ(t−s)‖U(s, x)−V(s, x)‖ds

)p

6(
2MN0

qγ
)p[dist(U, V)]p,

(31)

and
‖
∫ t

0
eq(t−s)∆[U(s− τ(s), x)−V(s− τ(s), x)]ds‖p 6 (

M
qγ

)p[dist(U, V)]p (32)
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Suppose tj−1 < t 6 tj, then the definition of Riemann integral
∫ b

a esds yields

‖eqt∆ ∑
0<tk<t

e−qtk∆(Mk − 1)[U(tk, x)−V(tk, x)]‖p

6M2p(max
k
|Mk − 1|)p

[
e−qγt

(
eqγtj−1 +

1
µ ∑

0<tk6tj−2

eqγtk (tk+1 − tk)
)
· dist(U, V)

]p

6M2p(max
k
|Mk − 1|)p

(
1 +

1
qγµ

)p
· [dist(U, V)]p.

(33)

It follows from (30)-(33) that

‖Θ(U)−Θ(V)‖p

64p−1(a + cr)‖
∫ t

0
eq(t−s)∆[U(s, x)−V(s, x)]ds‖p + 4p−1b‖

∫ t

0
eq(t−s)∆[U2(s, x)−V2(s, x)]ds‖p

+ 4p−1cr‖
∫ t

0
eq(t−s)∆[U(s− τ(s), x)−V(s− τ(s), x)]ds‖p

+ 4p−1‖
∫ t

0
eq(t−s)∆eqt∆ ∑

0<tk<t
e−qtk∆(Mk − 1)[U(tk, x)−V(tk, x)]‖p

64p−1
(
(a + cr)(

M
qγ

)p + b(
2MN0

qγ
)p + cr(

M
qγ

)p + M2p(max
k
|Mk − 1|)p

(
1 +

1
qγµ

)p
)
[dist(U, V)]p,

which derives
dist(Θ(U), Θ(V)) 6 (max

r∈S
vr) dist(U, V), ∀U, V ∈ä,

where vr satisfies 0 < vr < 1. This shows that Θ : ä→ ä is a contraction mapping such that there
exists the fixed point U of Θ in ä, which implies that U is the solution of the system (9), satisfying

eαt
∥∥∥U
∥∥∥p
→ 0, t→ +∞ so that eαt

∥∥∥u− u∗
∥∥∥p
→ 0, t→ +∞ . Therefore, zero solution of the system (9)

is globally exponential stability in the pth moment, equivalently, u∗ ≡ a
b of the system (10) is globally

exponential stability in the pth moment.

Remark 3. As far as I am concerned, it is the first paper to apply the Laplacian semigroup theory to
deal with the stability of a single-species ecosystem with Markovian jumping and delayed feedback.

4. Numerical example

Example 1. Set S = {1, 2}, c1 = 0.1, c2 = 0.06, q = 0.2, a = 0.5, b = 0.2, N1 = 2, N2 = 3, then
N0 = 0.5, u∗ = 2.5. Suppose, in addition, Ω = (0, π), then by computing the eigenfunctions of −∆,
one can get ‖et∆‖ 6 e−π2t, t > 0, and so γ = π2 = λ1, M = 1. Direct computation yields

0.5 = a < 2.7739 = λ1q + 2bN1,

which implies that the condition (12) is satisfied. Theorem 1 yields that the positive solution u∗ ≡ 2.5
is the unique stationary solution of the system (5).

Example 2.Suppose all the data of Example are applied to this example. Assume, in addition, p =

1.5, Mk ≡ 1.02, µ = 5, Obviously the condition (H2) holds in Example 1, and direct calculations yield:

v1 =

[
4p−1

(
(a + c1)(

M
qγ

)p + b(
2MN0

qγ
)p + c1(

M
qγ

)p + M2p(max
k
|Mk − 1|)p

(
1 +

1
qγµ

)p
)] 1

p

,

and

v2 =

[
4p−1

(
(a + c2)(

M
qγ

)p + b(
2MN0

qγ
)p + c2(

M
qγ

)p + M2p(max
k
|Mk − 1|)p

(
1 +

1
qγµ

)p
)] 1

p

.
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And hence the condition (14) is satisfied.
Thereby, Theorem 2 yields that zero solution of the system (9) is globally exponential stability in

the pth moment, equivalently, u∗ ≡ 2.5 of the system (10) is globally exponential stability in the pth
moment.

5. Conclusions and further considerations

In this paper, there are some improvements on mathematical methods, for it is the first paper to
employ fixed point theory, Laplacian semigroup theory and variational methods to solve the unique
existence of the globally stable positive equilibrium point of a single-species ecosystem with Markovian
jumping and delayed feedback. Numerical examples are given to show the feasibility of artificial
management of nature by way of impulse control.

As pointed out in [28, Definition 1], the author originally proposed a class of global asymptotical
stability in the meaning of switching in [27, Definition 3]. Particularly, in the case of one subsystem,
the switched system becomes non-switched common system, the global asymptotical stability in the
meaning of switching becomes that in the classical meaning. The author actually gave both of the
mentioned two classes of global stability for the unique (positive) stationary solution in [27]. Now the
author wants to know whether the two classes of global stability can be applied to ecosystem, and
what meanings about the stability in the meaning of switching for an ecosystem ? This is an interesting
problem. Besides, in [27, Statement 2], the author originally design an example to show that under
the influence of diffusion, the unique equilibrium point of ordinary differential system with Lipschitz
continuous activation function becomes at least three equilibrium points of its corresponding partial
differential system. Now the author wants to know whether the unique equilibrium point is globally
stable. Furthermore, the author in [27, Section 5] originally proposed four problems, particularly [27,
Problem 1 ] and [27, Problem 4 ] can also be suitable for the case of Neumann boundary value in this
paper. Such problems are also interesting. Moreover, how to consider the case of infinite delays in [10,
Problem 6] to ecosystem ? It is also an interesting problem. To sum up, the following problems are
more interesting:

Problem 1. Is the zero solution of the ordinary differential equation in [21, Theorem 3] or [27, Statement
2] global stable?

Problem 2. How to design another example somewhat similar to [21, Theorem 3] or [27, Statement 2]
with Lipschitz continuous activation function, where the ordinary differential equation possesses a
globally stable equilibrium point, but its corresponding partial differential equation owns at least two
stationary solutions.
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