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Integrative analysis of multi-omics data identified KLRC3 
as key nodes in a gene regulatory network related to immune 
phenotypes in lung adenocarcinoma. 

Abstract: In a recent study, the PD-1 inhibitor has been widely used in 
clinical trials and shown to improve various cancers. However, 
PD-1/PD-L1 inhibitors showed a low response rate and showed to be 
effective for a small number of cancer patients. Thus, it is important to 
identify key genes, which can enhance the PD-1/PD-L1 response for 
promoting immunotherapy. Here, we used ssGSEA and unsupervised 
clustering analysis to identify three clusters to show different immune 
cell infiltration status, prognosis, and biological action. The cluster C 
showed a better survival rate, high immune cells infiltration, and 
immunotherapy effect enriched in a variety of immune active 
pathways, including  T and B cell signal receptors. Besides, it showed 
more immune subtypes C2 and C3. Further, we used WGCNA analysis 
to confirm the cluster C correlated genes. The red module highly 
correlated with cluster C for 111 genes which were enriched in a variety 
of immune-related pathways. To pick candidate genes in SD/PD and 
CR/PR patients, we used the Least Absolute Shrinkage and SVM-RFE 
algorithms. In conclusion, our LASSO analysis and SVM-RFE based 
research identified targets with better prognosis, activated 
immune-related pathways, and better immunotherapy. The KLRC3 was 
identified as the key gene which can efficiently respond to 
immunotherapy with greater efficacy and better prognosis. 
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Introduction 
According to recent research, lung cancer is a highly 

malignant prognostically poor type of cancer. It ranks among the 
top cancers in terms of morbidity and mortality (1), wherein 
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about 60% of the patients are in the early stages of lung cancer 
undergoing combined treatment of surgery, chemotherapy, and 
radiotherapy were not found satisfactory, and therefore, a quest 
for a novel therapeutic scheme for lung cancer management has 
become important. With the development of molecular biology, 
immunology,  scientific research, and technology, 
immunotherapy has aroused great interest in researchers. Since 
2010, the PD-1 or PD-L1 antibodies have shown significant 
anti-tumor activity, including NSCLC (2, 3). In addition to 
activated T-cells where PD-1 binds to its ligands (PD-L1, PD-L2) 
to suppress T-cell functions, the PD-1 effect is also seen in other 
immune cells (4,5). Interestingly, the interactions of PD-1 with its 
ligands constitute a major immunosuppressive pathway in 
tumors (6,7). Nowadays, several therapeutic antibodies with 
PD-1 or PD-L1 suppressing properties have been formulated for 
managing malignancies like NSCLC clinically. However, these 
immunotherapies show a low remission rate. Thus, a great deal 
of effort has been undertaken to find predictive biomarkers from 
mechanisms involving PD-1 pathway inhibition taking patients 
with optimal response to these inhibitions into consideration, 
and also assess optional personalized regimes for NSCLC/other 
cancer patients with possible responses to PD-1 inhibitors. Thus, 
it is urgent to confirm the targets that can be used for 
immunotherapy with a better survival rate. Here, we used the 
ssGSEA and unsupervised clustering analysis to identify targets 
with better prognosis, immunotherapy and that are activated in 
immune-related pathways based on the red module for 111 
genes that are highly correlated with the cluster C based on the 
LASSO and SVM-RFE analyses. The KLRC3 was identified as a 
key gene with a better prognosis and correlated with 
immunotherapy. 

MATERIALS AND METHODS 
Datasets and Samples 

Gene expressions of a total of 1881 patients with detailed 
survival information obtained from TCGA-LUAD 
(https://portal.gdc.cancer.gov/) and GEO datasets of GSE31210, 
GSE30219, GSE68465, GSE37745, GSE50081, and GSE72094 were 
generated. Expression values were log-transformed, and the 
“ComBat” algorithm was used for reducing probable batch 
effects resulting from the inter-dataset biases (non-biotech) (8). 

Gene signature and single-sample gene set enrichment 
analysis 

A set of marker genes for types of immune cells was 
selected based on Bindea et al. (9). For enrichment computation 
in the individual sample gene set, the absolute enrichment 
fractions were derived via the GSEA program for traits that have 
been validated by prior experimentation. For confirming the 
immune cell populations, the ssGSEA analysis of each sample 
was accomplished using the immune cell signature gene 
predictions(10).   

Gene set variation analysis (GSVA) and functional annotation 
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To explore the biological event differences between clusters 
A, B, and C, we used the “GSVA” R packages to conduct the 
GSVA enrichment analysis (Figure 2A.). The 
“c2.cp.kegg.v7.2.symbols.gmt” was obtained from the MSig DB 
dataset, and the p-adjust< 0.5 was considered as statistically 
significant. The subtypes also were seen to correlate with the 
immune studies and prognosis by Thorsson and colleagues (15), 
aggressive subtype by Elisa Dama and colleagues (16), and 
luminal and basal Subtypes by Shuang G. Zhao and colleagues 
(17) to analyze the overlap with our study cluster C (Figure 3A.). 
To confirm the events in the different subgroups, the 
distribution of mutant gene frequencies affected by SNVs and 
CNVs was investigated across various subtypes (Figure 3B.). 
The frequency of mutations in each gene was significantly 
different across subtypes (Fisher exact test with BH test 
correction, adjusted P <0.05). 

Consensus Clustering for Tumor-Infiltrating Immune Cells and DEGs 
For each sample, hierarchical agglomerative clustering was 

implemented for LUAD depending on a specific pattern. In this 
procedure, the “Consensus Cluster Plus” R package was used to 
perform “Pam” analysis, which is a Euclidean distance and 
Ward’s linkage-based unsupervised clustering approach. To 
ensure clustering stability, the aforementioned process was 
repeated about 100 times.  

DEGs associated with the two clusters  
Depending on the infiltration of immune cells, patients 

were classified into high and low immune-cell infiltration 
subtypes. To determine DEGs between two clusters, the limma R 
package was utilized, and absolute fold change was designated 
to >1, and significance criterion adjusted to p < 0.05.  

Construction of signature gene of lung adenocarcinoma 
For immunotherapy response assessment of lung cancer 

patients presenting newly defined immunophenotypes, the gene 
expression profiles and clinical outcome data of 348 patients 
from the Imvigor210 (a clinical response trial dealing with PD-L1 
blockade by atezolizumab) were collected. The responses to 
anti-PD-L1 therapy constituted the observed endpoints, which 
were complete response (CR), partial response (PR), progression 
of disease (PD), and stability of disease (SD). Regarding the 
objective response rate (ORR) and disease control rate (DCR), 
they respectively involved patients with CR and PR (for ORR) 
and patients with CR, PR, and SD (for DCR). Based on the top 10 
marked genes of metabolic subtypes, we separated the 
Imvigor210 cohort into three subtypes(cluster A, cluster B, 
cluster C). 

For candidate gene selection, we used a Least Absolute 
Shrinkage and Selector Operation (LASSO) algorithm, whose 
penalty parameter was adjusted by setting a cross-validation 
(10-folds) approach. Meanwhile, we used another algorithm, 
Support Vector Machine-Recursive Feature Elimination 
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(SVM-RFE), to accomplish gene selection for the CR/PR and 
SD/PD patients. For further narrowing on the gene among the 
training cohort, L1 penalized Cox analysis was eventually 
carried out through gene integrations from either of the above 
two algorithms. 

Gene Expression Data with Immunotherapy 
Under the Creative Commons 3.0 license 

(http://research-pub.gene.com/IMvigor210CoreBiologies), the 
IMvigor210 dataset was obtained from an accessible, 
well-documented software & data package. To determine the 
status of binary response in various clusters, 298 urothelial 
cancer patients and 80 immunotherapy recipients with 
cutaneous melanoma having complete clinical records were 
analyzed. 

Statistical Analysis 
GraphPad and R 4.0.0. were used for all statistical analyses. 

The Wilcoxon test was conducted for pair-wise comparison 
analysis, Kruskal-Wallis test was adopted for comparison 
among more than two groups. The FDRs in Limma and GSEA 
were adjusted by the Benjamini–Hochberg approach with a 
significance level of p < 0.05. The correlation of categorical 
clinical information with defined clusters was statistically 
examined by Fisher’s exact test. All statistical differences were 
considered significant when p-value <0.05. 

Results 
Identification of different Subtypes 

In this study, the immune cells infiltration matrix was used 
to identify two clusters with different survival rates (Figure 1A., 
B.) and cluster 1 showed high immune cells infiltration (Figure 
1C.) such as the DC, B-cells, CD8 T-cells, Cytotoxic cells, DC, 
iDC, Macrophages, Mast cells, Neutrophils, NK, CD-56 dim 
cells, T-cells, T-helper cells, Tcm, Tem, TFH, Tgd, Th1-cells, and 
T-Reg. Further, the PD-1 and PD-L1 showed high expression in 
cluster 2(Figure 1E). Differential expressions of 110 genes 
between the two clusters (Figure 1D; tableS1)were enriched in 
various immune-related pathways such as T-cell activation and 
cytokine activity (Figure 1F). 

Identification of Gene Subtypes and association with known 
subtypes 

With the aid of the Limma package, the differential 
expression genes (DEGs) analyses for transcriptome evolution 
investigation among these clusters performed to identify the 
biological function of different clusters showed 110 differential 
gene expressions. For the elimination of redundant genes, the 
cox analysis was performed to collect significantly correlated 
prognosis genes (tableS2).  

The survival records used to assess the prognostic 
implication of the clusters (Figure 2B.) showed clusters B and C 
to have a better survival rate than cluster A (P = 0.005). 
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Meanwhile, cluster C showed greater immune cells infiltrations 
such as aDC, B cells, CD8 T cells, Cytotoxic cells, DC, 
Eosinophils, iDC, Macrophages, Mast cells, Neutrophils, NK 
CD56-dim cells, T cells, Tcm, Tem, TFH, Tgd and Th1 cells 
(Figure 2C). Further, enrichment of cluster C showed multiple 
immune-associated pathways, including those for signaling T- 
and B-cell receptors (Figure 2D-F). Additionally,  cluster C 
showed high tumor mutational burden, neo-antigen (indel and 
SNV), and PD-1 expression than other subtypes (Figure 2H-K.).  

Our findings showed clusters B and C to have high immune 
subtypes C3 and C2, high frequency of LumB subtype, and 
aggressive Subtype C4 (Figure 3C.). Of these subtypes, the 
immune subtype C3, LumA subtype, and aggressive subtype C4 
found in our study (Figure 2B) were consistent with the findings 
of others for a better prognosis. In addition to this, a majority of 
immune-checkpoint relevant signatures (CD274, CTLA4, 
HAVCR2, IDO1, LAG3, and PDCD1) and immune-activity 
relevant signatures (CD8A, CXCL9, CXCL10, GZMA, GZMB, 
IFNG, PRF1, TBX2, and TNF)  exhibited significant high 
expression in cluster C (Figure 3D.).  

Immunotherapy response 
Our findings also showed that the cluster A subtype had 

high SD/PD with 72.6% and low CR/PR with 27.4%; however, 
the cluster A subtype had high CR/PR with 19.2% than the 
cluster C subtype (Figure 3F). In the Imvigor210 cohort, the 
cluster C subtype had a higher survival rate than other subtypes 
from anti-PD-1 treatment (Figure 3E). 

WGCNA analysis  
Aided by the R package “WGCNA”, the co-expression 

network was created from the expression levels of 11,518 genes 
(18). Clustering of 1,881 samples was performed by calculating 
the mean linkage and Pearson’s correlation coefficient. The soft 
threshold power was set at β = 3, scale-free R2 = 0.96 to ensure 
the scale-free network was constructed (Figs. 4A, 4B). A dynamic 
mixing and cutting technique was employed to establish the 
hierarchical clustering tree, each of whose leaves was used to 
refer to a gene. Meanwhile, a tree branch constituted gene 
assemblies resembling expression data that were used to refer to 
a gene module. In this study, a total of 6 modules were produced 
(Figure 4C, D), of which the red module showed a high 
correlation with cluster C from 111 genes enriched by T-cell 
activation, cytokine activity, and regulation of T-cell activation 
(Figure 4E.). The median expressions of red module genes 
showed a high correlation with PD-1/PD-L1 expression (Figure 
4F).  

Identification of predictive signature 
Further, the most significant genes were selected via two 

algorithms from the CR/PR and SD/PD patients, and the lasso 
algorithms were used to identify the prognosis gene (Table S3.). 
A total of 106 gene candidates were identified after the 
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integration of LASSO-and SVMRFE-selected genes from which, 
6 genes were selected by both algorithms (Figure 5A-C.). The 
correlations were seen between the overlapping genes, including 
the PNOC, RHOH, ACAP1, CYTIP, IL10RA, and KLRC3 along 
with the immune cell infiltrations (Figure 5D.). The expression of 
KLRC3 showed significant response/Non−response of PD−L1 
(Figure 6A-F.) and better survival (Figure 6G). 

DISCUSSION 
With the developments in immunotherapy, the 

PD-1/CTLA4 inhibitors have been widely used in clinical 
applications and in improving various cancer prognoses. The 
effect of PD-1 inhibitor still exists in low remission, which is 
mainly restricted by many factors, such as tumor mutational 
burden (11), microsatellite instability (MSI), effective DNA 
mismatch repair (DMMR) (12), and expression of neoantigen 
(13) and PD-L1 (14), whose associations with response to tumor 
immunotherapy have been demonstrated. These remain in low 
remissions are due to many factors such as the degree of CD8+ 
T-cell infiltration and tumor microenvironment. Here, in our 
research, we identified those factors, which can show better 
prognosis, immune cells infiltration, and used for 
immunotherapy. We identified KLRC3 as a key gene through 
cluster C analysis, which can affect predictions in 
immunotherapy and prognosis. At first, the ssGSEA algorithm 
with 1881 samples was used to acquire 24 immune cells 
infiltration matrix, and based on the matrix findings; the 
unsupervised clustering analysis was used to build two clusters, 
including high and low immune cells infiltration clusters (Figure 
1C.), having different significant survival rate (Figure 1B.). The 
above findings showed that cluster C had a high 
immune-activated potential to elicit an effective immune 
response. The 110 genes having different expressions in two 
clusters (Figure 1D) were enriched in the various 
immune-related pathways implying that the immune cells 
infiltration levels correlated with immune-related pathways 
such as T-cell activation and cytokine activity. Based on the 
differential gene expressions, we identified three clusters 
subtypes that showed different survival and immunotherapy 
effects. The immunotherapy techniques in various cancers in 
different studies exhibited greater potential in improving the 
prognosis and were effective in killing the tumor cells (19,20). 
However, with the application of these immunotherapeutic 
strategies, the effective rate of the therapy especially using the 
PD-1 inhibitors, is limited (21).s Various factors show a low 
remission rate in immunotherapy, such as the tumor mutation 
burden (TMB) (22), effective DNA mismatch repair (DMMR) or 
microsatellite instability (MSI) (23), neo-antigen (24), and PD-L1 
expression (25), whose associations with response to tumor 
immunotherapy have been demonstrated earlier. Our findings 
coincided with these findings by high TMB, Silent Mutation 
Rate, and Neoantigens (SNV and Indel) and identified an 
immune hot phenotype, favorable immune-activity with 
increased infiltration of aDC, B cells, CD8 T-cells, Cytotoxic cells, 
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DC, iDC, macrophages, mast cells, neutrophils, NK, CD56dim 
cells, T-cells, T-helper cells, Tcm, Tem, TFH, Tgd, Th1 cells, and 
TReg and were enriched in various immune-related pathways, 
implying an effective immune-reaction group. In accordance 
with the findings of Thorsson and colleagues, our research 
showed cluster A with high immune subtypes C1 and cluster B 
and C with high immune subtypes C3 which also corresponded 
with the finding in the outcomes for C2 and C1 to be less 
favorable despite the substantial presence of immune 
components and high CD8+ l and CD4+ T-cell in C3showing 
better survival.  

The invasiveness of cancers is always the main reason for 
poor prognosis. Our research findings showed the cluster A 
subtype to have higher aggressive subtype C1, similar to the 
findings of Elisa Dama confirming it to be a poor prognosis, 
which is also similar in advanced lung cancer conditions. 
Further, the immune-relate genes, including CD274, CTLA4, 
HAVCR2, IDO1, LAG3, and PDCD1 as 
immune-checkpoint-relevant signatures, and CD8A, CXCL10, 
CXCL9, GZMA, GZMB, IFNG, PRF1, TBX2, and TNF 
(immune-activity-relevant signatures) displayed high 
expression in cluster C than other subtype suggesting cluster C 
to have high levels of immune-reactivity. We also used the 
WGCNA analysis to confirm the cluster C correlated red module 
with 111 genes. The LASSO and SVMRFE algorithms confirmed 
that the key gene, KLRC3, is correlated with the CR/PR status 
with a better prognosis. 

Based on our findings in this study, the cell infiltration 
landscapes and specific alterations in the mutational aspects, 
transcriptome profile, and biological functions can have a huge 
impact on improving immunotherapy. The KLRC3 can be 
considered as a suitable gene for prognosis and correlated with 
the SD/PD and CR/PR patients. 
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Figure 1: A: Consensus clustering-based identification of two clusters (n = 

1,881). Sample consensus is displayed by heatmaps shown in white 

(consensus value = 0). for samples that never aggregated jointly and blue color 

(consensus value = 1) for samples that always aggregated jointly. B: Survival 

analysis of patients with two clusters. C: landscape immune cells infiltration 

in two clusters.  D: Differential gene expressions were imaged by volcano 

plot. E: The different expressions of PD-1/PD-L1 in the two clusters. F: The 

GO analysis showing differential gene expressions. 
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Figure 2 A.: Identification of three clusters by consensus clustering. B: Patient 

survival analysis C: The landscapes of immune cells infiltration D-F: The 

KEGG analysis G-J: The distribution of TMB, neo-antigens (Indel, SNV), and 

silent mutation rate in the three clusters.  
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Figure 3  A.: Overlay of different clusters (inner ring) with LUAD expression 

subtypes (outer ring). B: The Oncoprint distributions of somatic mutation 

(SNV/indel) and copy number variation (CNV) events in different clusters. C: 

The distribution of immune, aggressive luminal, and basal subtypes in 

different clusters. D: The distribution of immune-related genes expression in 

different clusters. E: Rate of clinical response to anti-PD-L1 immunotherapy in 
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different clusters and F: Kaplan-Meier curves for samples with different 

clusters in the IMvigor210 cohort. 

 

 

Figure 4   A.: Scale-free fit index analysis of 1–20 soft threshold power β. 

B: Mean connectivity analysis of 1–20 soft threshold power. C: Genes are 

hierarchically clustered into various modules indicated by different colors. D: 

Heatmap displaying correlations among module eigen genes. E: the GO 

analysis of the red module genes. F: Correlation of the median expression of 

genes (red module) with the PD-1/PD-L1 level. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 August 2021                   doi:10.20944/preprints202108.0366.v1

https://doi.org/10.20944/preprints202108.0366.v1


 

 

 

 

 

 

 

 

 

 

 

Figure 5   A.: LASSO and (B) SVM-RFE algorithms in detection cohort. C: 

Overlap of incorporated genes selected from two algorithms in detection 

cohort.  D: The intersection of characteristic genes with PD/RD and cox 

analysis genes. E: Correlation between immune cells infiltration and selected 

genes.  
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Figure 6  A-F.: The expression of selected genes with varying anti-PD-1 

responses.  B: Kaplan-Meier graphs ofKLRC3 expression in IMvigor210 

cohort. 
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Table S1: The differential gene expressions between high and low immune 

infiltrations. 

 

Table S2: The cox analysis to collect significantly correlated prognosis genes. 

 

Table S3: The lasso algorithms used to identify the prognosis genes. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 August 2021                   doi:10.20944/preprints202108.0366.v1

https://doi.org/10.20944/preprints202108.0366.v1

