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Abstract: Existing methods enhance mid-low resolution remote sensing ship detection by feed-
ing super-resolved images to the detectors. Although these methods marginally improve the
detection accuracy, the correlation between image super-resolution (SR) and ship detection is
under-exploited. In this paper, we propose a simple but effective ship detection method called
ShipSR-Det, in which both the output image and the intermediate features of the SR module are
fed to the detection module. Using the super-resolved feature representation, the potential benefit
introduced by image SR can be fully used for ship detection. We apply our method to the SSD and
Faster-RCNN detectors and develop ShipSR-SSD and ShipSR-Faster-RCNN, respectively. Extensive
ablation studies validate the effectiveness and generality of our method. Moreover, we compare
ShipSR-Faster-RCNN with several state-of-the-art ship detection methods. Comparative results on
the HRSC2016, DOTA and NWPU VHR-10 datasets demonstrate the superior performance of our
proposed method.
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1. Introduction

Optical remote sensing ship detection plays an important role in port management,
marine rescuing and military reconnaissance. With the advances of deep learning,
recent methods [1-3] generally use deep convolution neural networks (DCNNs) for
remote sensing ship detection, and achieve significant improvements over traditional
paradigms. As a key factor for ship detection, high-resolution (HR) images (with ground
sample distance (GSD) smaller than 10 m/pixel) can provide abundant appearance
information and thus introduce benefits to the detection task [4]. However, obtaining
an HR image posts a high requirement on the satellite sensors and generally results in
an expensive cost. In contrast, mid-low resolution images (with GSD larger than 10
m/pixel) can be acquired more cheaply, but their insufficient details post great challenges
to ship detection. To achieve a better trade-off between detection accuracy and resource
consumption, performing image super-resolution (SR) on mid-low resolution remote
sensing images to recover their missing details has become a popular research topic and
has been widely investigated in recent years [5-8].

In the field of remote sensing object detection, several methods [9-12] perform
image SR as a pre-processing approach, and feed the super-resolved image to detection
network to improve the detection performance. In these methods, image SR and object
detection are performed as two separate processes, and the connection between these
two processes is the super-resolved image only. Although the super-resolved images
contain more details, the informative features extracted by the SR module cannot be
fully used by the detection module, which hinders the further improvement of detection
accuracy.

To fully use the informative feature representation provided by the SR network,
in this paper, we propose an SR-based ship detection method for mid-low resolution
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(a) HR + GT (b) Faster RCNN (c) ShipSR-Faster-RCNN
Figure 1. Visual results achieved by Faster-RCNN and our proposed ShipSR-Faster-RCNN on
the HRSC2016 dataset. “HR” denotes high-resolution images and “GT” represents groundtruth
labels. Our method recovers missing details in the input image and achieves promising detection
performance.

remote sensing images. Our method, named ShipSR-Det, consists of an SR module and
a detection module. Different from previous methods that only feed super-resolved
images to the detector, in our method, both output images and intermediate features
produced by the SR module are fed to the detection module. By the assistance of the
super-resolved feature representation, the detection module can extract more informative
features to achieve accurate ship detection. We adopt SSD [13] and Faster-RCNN [14] as
our detection module to develop ShipSR-SSD and ShipSR-Faster-RCNN, respectively, and
demonstrate their effectiveness through extensive ablation studies and visualizations.
As shown in Fig. 1, our ShipSR-Faster-RCNN can well recover the missing details in
the input images to enhance the detection performance. Moreoever, we compare our
ShipSR-Faster-RCNN with several popular detectors on the HRSC2016 [15], DOTA [16]
and NWPU VHR-10 [17] datasets. Comparative results demonstrate the state-of-the-art
performance of our method.

This paper is an extension of our previous conference version [18] in which we
proposed an RDN-based SR network tailored with an SSD detector for ship detection.
Compared to our previous work, we make the following additional contributions in this
paper.

*  We propose a generic SR-based ship detection method which can be applied to
different detectors and backbones to achieve consistent performance improvement.

*  We conduct extensive ablation studies and perform feature visualizations to investi-
gate our proposed method. Experimental results validate the effectiveness of using
super-resolved feature representation for ship detection.

*  We compare our ShipSR-Faster-RCNN to several state-of-the-art detectors on three
public datasets. Comparative results demonstrate the competitive performance of
our method.

2. Related Works
2.1. Ship Detection

With the development of deep learning techniques in object detection [13,14,19,20],
ship detection has been deeply investigated in recent years. Different from general object
detection, remote sensing ship detection has some special characteristics such as multi-
orientation, complex scenarios, large intra-class and small inter-class distance. Most
works on remote sensing ship detection aim at handling these challenges to improve
the detection accuracy. For example, Ding et al. [21] addressed the arbitrary orientation
issue by modifying RPN with RRol to transform horizontal proposals to rotated ones;
Yang et al. [22] added an IoU constant factor to the smooth L1 loss to address the
boundary problem for the rotating bounding box; Yang et al. [23] proposed an end-to-
end refined single-stage rotation detector using a progressive regression approach to
adapt to the dense arrangement scenarios. To handle the large intra-class and small
inter-class distance issue, Li et al. [24] proposed a shape-adaptive pooling approach to
extract more compact and qualified feature representation for ship classification and
localization. To achieve robust ship detection under complex scenarios, Lei et al. [25]
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introduced a saliency constraint to the CNN model to enhance the object regions for
better detection. Yu et al. [26] developed a pre-processing structure to discriminate
whether an image patch contains objects before detection. Using their method, the
mount of false positives on background areas can be reduced.

Besides the aforementioned challenges, in recent years, some studies [27,28] ad-
dressed the resolution issue in remote sensing images since the low-resolution input
images can degrade the detection performance. These methods modified existing net-
works to extract multi-scale features more effectively, and partially improved the de-
tection performance. However, these methods are relatively complex and have a large
computation consumption. Another solution is to perform image SR as a preprocessing
step to recover the missing details in input images. The related works in image SR and
SR-based ship detection will be briefly reviewed as below.

2.2. Image Super-Resolution

Image super-resolution (SR) aims at reconstructing a high-resolution (HR) image
from one or multiple low-resolution (LR) observations. Recently, deep learning has been
successfully applied to image SR and has achieved continuously improving performance.
Dong et al. [29] proposed the first CNN-based single image SR method to reconstruct HR
images by using a 3-layer CNN. Kim et al. [30] proposed a deeper network named VDSR
to improve the reconstruction accuracy. Zhang et al. [31] combined residual connection
[32] with dense connection [33], and proposed residual dense network (i.e., RDN) to
fully exploit hierarchical feature representations for image SR. Li et al. [34] proposed a
multiscale residual network to fully exploit the hierarchical feature representation for
image super-resolution. Wang et al. [35] explored the sparsity prior in image SR and
used sparse convolutions to achieve accurate and efficient image SR. Subsequently, Wang
et al. [36] proposed a degradation-aware network and achieve image SR with arbitrary
blur kernels and noise levels. Apart from single-image SR methods, several methods
[37-40] enhanced SR performance by exploiting the complementary information among
multiple input images.

2.3. SR-based Detection

In the field of remote sensing object detection, several methods performed image SR
to enhance the detection accuracy. Dong et al. [6] proposed a second-order multi-scale
SR network and demonstrated its effectiveness to object detection. Rabbi et al. [9]
proposed an edge-enhanced generative adversarial network (GAN), and combined it
with an SSD [13] detector in an end-to-end manner to improve the detection accuracy.
Courtrai, Pham, and Le [10] tailored a GAN-based SR network with a detection network
to develop an object-focused detection framework. Wang, Lu, and Zhang [11] modified
the loss function to make the SR network more suitable for the detection task. Noh et al.
[12] selects relatively small region of interests (Rols) to perform image SR to improve
the detection performance. Note that, although these SR-based detection methods have
shown their effectiveness, the benefits introduced by image SR have not been fully
utilized since only super-resolved images are fed to the detectors while the informative
feature representation generated by SR networks is overlooked.

3. Network Architecture

In this section, we introduce our method in details. As shown in Fig. 2, our method
consists of two parts including an SR module and a detection module. Without loss of
generality, we use the Faster-RCNN detector as our detection module to introduce the
details of our method.

3.1. SR Module

As shown in Fig. 2, our SR module takes a mid-low resolutionimage Z; r € RHEXWx3
as its input to produce an SR image Zsg € R*#**Wx3 and an intermediate feature
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Figure 2. An overview of our ShipSR-Det.

Fsg € RMIXaWx64 ‘ywhere H and W represent the height and width of the input image,
and « denotes the upscaling factor. Specifically, the input image Z; r is first fed to a 3x3
convolution to generate initial feature Fy € RHXWx64 Then, F is fed to 8 cascaded
residual dense blocks (RDBs) [31] for deep feature extraction. Features from all the RDBs
are concatenated for global fusion, and the fused feature is added with the initial feature
Jo and fed to a sub-pixel layer to generate the upsampled feature Fsg. Finally, Fgp is
fed to a 3x3 convolution to produce the residual prediction which is further added with
the bicubicly upsampled input image to generate the final SR image Zgg.

3.2. Detection Module

As aforementioned, Faster-RCNN is used as our detection module. As a typical
object detection method, Faster-RCNN first uses a backbone network (e.g., ResNet101
[32]) to extract informative features, and then feeds the extracted features (i.e., Fpackpone)
to a region proposal network (RPN) to generate region proposals. Finally, the generated
proposals and Fiy,ckpone are fed to the ROI-Pooling layer to extract and resize the features
of region proposals, and then fed to a classification layer and a localization layer to
produce the final classification and location predictions.

3.3. Feature Connection

When the SR module and the detection module are selected, the SR-based detector
can be built by feeding the SR image to the detection module. However, in most SR-
based detection methods [6,9-11], the informative features are squeezed to an image,
and the backbone of the detection module extracts the features from the SR image for
further prediction. The feature squeeze and re-extraction result in the information lost
inevitably. In our method, to reduce the information lost and fully use the super-resolved
feature representation for ship detection, both the super-resolved image Zsg and the
intermediate feature Fgy are fed to backbone of detection module for feature extraction.
Note that, since features in the SR module and detection module have different depths
and resolutions, we use a 3 x3 convolution to adapt Fgr for ship detection. The weights
of the 3 x3 convolution were initialized as zero values and updated during end-to-end

finetuning. The adapted feature F, giﬂp “d js added to the initial feature extracted from
Zsg for deep feature extraction. In this way, the informative feature representation
generated by the SR module can be fully used by the detection module for ship detection.
Experimental results in Section 3.6 demonstrate the effectiveness of our method. After
deep feature extraction, the extracted feature Fy,cxp0n. is fed to the original neck and
head of detection module to produce the final classification and location predictions.
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3.4. Losses

The loss of our method can be defined as:

Loveratt = Lpet + ALsR, 1)

where the Lp,; and Lgg represent the detection loss and SR loss, respectively. A is a
hyper-parameter to balance the SR loss and detection loss.

Specifically, Lp,; is the detection loss which is identical to that in the Faster-RCNN.
And Lgp is the L, distance between the groundtruth image Iyr and the super-resolved
image Isg. That is,

Lsg = Inr — Isr |1 - ()

In this section, we first introduce the datasets and implementation details, then
conduct ablation studies and perform feature visualizations to validate the effectiveness
of our method. Finally, we compare our method to several state-of-the-art methods on
three public datasets.

3.5. Datasets and Implementation Details

We used the HRSC2016 [15], DOTA [16] and NWPU VHR-10 [17] datasets in our
experiments.

e HRSC2016: HRSC2016 is a public remote sensing dataset for ship detection. It
contains 617 images for training and 438 images for validation. We resized these
images to 800x 512 to generate groundtruth HR images.

¢ DOTA: DOTA is a public dataset with 15 object categories for multi-class object
detection in aerial images. In the experiment, we cropped the images in the original
datasets into patches of size 512512, and chose patches containing ship targets
to build our training and validation sets. We totally generated 4163 images for
training and 1411 images for validation.

e  NWPU VHR-10: NWPU VHR-10 dataset is a challenging geo-spatial object-detection
dataset with 10 categories. We performed the same operations as in the DOTA
dataset to generate training and validation samples. Our customized NWPU VHR-
10 dataset contains 249 images for training and 52 images for validation.

We used the aforementioned modified images as HR images and performed 8 x
bicubic downsampling to generate the input mid-low resolution images. We performed
a large variety of data augmentations including random horizontal and vertical flip-
ping, random rotation, random color transformation, random brightness and contrast
transformation.

Our method was implemented in PyTorch on a PC with an Nvidia RTX 2080Ti GPU.
We trained our network progressively following a three-stage pipeline. In the first stage,
we trained our SR module using the generated image pairs with an L loss, and used
the bicubicly upsampled images as input to train our detection module. When training
the SR module, the batch size was set to 4 and the learning rate was initially set to
1 x 10~* and halved for every 5 x 10° iterations. The training was stopped after 1.2 x 10°
iterations. In the second stage, we tailored the SR module with the pretrained detection
module via super-resolved image, and performed end-to-end finetuning for 24 epochs.
In this stage, the learning rate was initially set to 1 x 10~* and decreased by a factor of
0.1 for every 10 epochs. In the third stage, we further added the super-resolved feature
representation to the detection module (pretrained in the second stage) and performed
another round of finetuning. The training settings in this stage were identical to those in
the second stage.

For evaluation, we followed [41] to use the mean average precision (mAP) as the
quantitative metric with the Intersection over Union (IoU) being set to 0.5 (i.e., mAP50)
and 0.75 (i.e., mAP75).
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Table 1: Results achieved by different variants on the HRSC2016 dataset. Irg, Iy, Isg and Iyg represent the mid-low
resolution image, bicubicly upsampled image, super-resolved image and original HR image, which are used as the
inputs of the detection module. FT represents the fine-tuning operation, Fea denotes feeding the super-resolved feature
representation to the detection module for ship detection.

SSD [13] Faster-RCNN [14]
Index Iir Tyic Isr FT Fea Inr VGG16 [42] ResNet50 [32] ResNet101 [32] HRNet [43] ResNeXt101 [44]
mAP50 mAP75 | mAP50 mAP75 | mAP50 mAP75 | mAP50 mAP75 | mAP50 mAP75
0 v - - 0.491 0.074 0.490 0.079 0.515 0.114 0.529 0.086
1 v 0.597 0.169 0.788 0.495 0.820 0.626 0.848 0.668 0.837 0.647
2 v 0.688 0.282 0.823 0.611 0.855 0.688 0.857 0.702 0.861 0.689
3 v v 0.711 0.313 0.838 0.663 0.863 0.712 0.863 0.735 0.871 0.717
4 v v v 0.725 0.330 0.858 0.706 0.876 0.744 0.881 0.749 0.885 0.742
5 v 0.773 0.374 0.894 0.728 0.910 0.769 0.915 0.813 0.930 0.808

* Since VGG16 is not fully convolutional, it requires a fixed input image size of 512 x512. Consequently, the input images of VGG16 are resized to 512x512 and the results

of I;g on VGG16 are unavailable.

3.6. Ablation Study

We compare our method with several variants to investigate the potential benefits
introduced by our design choices. Here, we validate the effectiveness of our method by
introducing the following variants.

*  Model-0: We fed the mid-low resolution image to the detection module. We in-
troduce this variant to demonstrate the challenges of mid-low resolution ship
detection.

*  Model-1: We bicubicly upsampled the mid-low resolution image to the target reso-
lution, and fed the upsampled image to the detection module. We introduce this
variant to produce baseline results.

*  Model-2: We use the pretrained SR module to super-resolve the input image, and
fed the super-resolved image to the detection module.

*  Model-3: We finetuned model-2 to investigate the benefits introduced by end-to-end
finetunning.

*  Model-4: This is our proposed method. Based on model-3, we integrated the super-
resolved feature representation to the detection module and performed another
round of finetuning.

*  Model-5: We directly fed the original HR images to detection module. We introduce
this variant to produce upper-bound results.

Table 1 shows the comparative results achieved by our method and its variants.
It can be observed that model-0 achieves a very poor detection performance. That is
because, the detectors cannot exploit enough useful information from mid-low resolution
images. Compared to model-0, model-1 uses the bicubicly upsampled versions of the
mid-low resolution images as input, and achieves an improved detection performance.
Note that, the detection accuracy is significantly improved if image SR is introduced.
Taking the ResNet101-based Faster-RCNN detector as an example, model-2 achieves an
improvement of 3.5% in mAP50 and an improvement of 6.2% in mAP75 over model-1. It
demonstrates that the details recovered by the SR module are beneficial to ship detection.
Further improvements (0.8% in mAP50 and 2.4% in mAP75) can be achieved if end-to-
end finetuning is performed. That is because, by performing end-to-end finetuning, the
SR module in model-3 can learn to super-resolve an image in a detection-driven manner.
Compared to model-3 which only feeds the super-resolved image to the detection module,
our proposed method (i.e., model-4) can further achieve a performance gain (1.3% in
mAP50 and 3.2% in mAP75) by reusing the features in the SR module. It is worth
noting that, model-4 can approximate its upper bound (i.e., 91.0% in mAP50 and 76.9%
in mAP75) achieved by model-5 on the HR image. The above results demonstrate the
effectiveness of using super-resolved feature representation for ship detection. Moreover,
it can be observed that our method is generic and can introduce consistent performance
improvements to different detectors and backbones.
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HR Images

Grad-CAM Results
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Figure 3. Visualizations of the bicubicly upsampled image (i.e., I;.), super-resolved image (i.e., Isg), the absolute difference of Isg and
Iic (i-e., | Isg — Ipic]), and the heatmaps produced by using the Grad-CAM method.

To qualitatively illustrate how the super-resolved feature representation contributes
to ship detection, we use the Gradient-weighted Class Activation Mapping (Grad-CAM)
[45] method to perform feature visualizations. As a widely used visual explanation
method for CNNs, Grad-CAM can highlight feature regions with a larger influence on the
final prediction. Here, we focus on the feature 7R which is fed to the detection module.
Figure 3 shows two example scenes on the HRSC2016 dataset. It can be observed that
the major differences between SR images and bicubicly upsampled images are located in
the edges. That is, SR images can provide much more edge information than bicubicly
upsampled images. As shown in the heatmaps produced by the Grad-CAM method,
edges in F°R are highlighted and thus make more contributions to the final detection
results. The above results demonstrate that the super-resolved feature representation
contributes to ship detection by providing abundant edge information.

Table 2: Results achieved by our method with different settings of A.

A 0.001 0.01 0.1 1 10 100

mAP50 0.880 0.876 0.869 0.880 0.878 0.869
mAP75 0.728 0.732 0.740 0.751 0.744 0.739

Moreover, we investigate the influence of the hyper-parameter A to the detection
performance. As shown in Table 2, it can be observed that mAP75 changes more
obviously than mAP50 with the increasing of A, and when A = 1, our ShipSR-Faster-
RCNN can achieve the best performance in terms of both mAP50 and mAP75. Based on
the comparative results, we set A = 1 in our experiments.
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Table 3: Quantitative results (i.e., mAP75) achieved by different methods (based on ResNet101) on the HRSC2016, DOTA
and NWPU VHR-10 datasets. Here, we adopt the Faster-RCNN detector as our detection module. Our ShipSR-Faster-
RCNN achieves state-of-the-art detection performance.

Method FIRSC2016 [15] | D O”,[F) :tfals;]ts NWPU VHR-10 [17] Parameters (MB) | Inference time (ms)
GFL [49] 0.632 0.181 0.488 411.2 46.95
Reppoints [48] 0.453 0.161 0.563 331.8 51.28
HTC [46] 0.679 0.296 0.568 791.3 104.17
DetectoRS [47] 0.735 0.311 0.580 1336.9 158.73
Faster-RCNN [14] 0.626 0.233 0.549 485.6 48.31
ShipSR-Faster-RCNN 0.744 0.342 0.608 503.3 56.50

* Inference time is averaged on the HRSC2016 dataset with an input mid-low resolution image of size 100 x 64.

3.7. Comparison to the State-of-the-art Methods

We apply our method to Faster-RCNN and compare our ShipSR-Faster-RCNN with
four state-of-the-art detection methods including HTC [46], DetectoRS [47], Reppoints
[48] and GFL [49]. We use the bicubicly upsampled images as the inputs of the compared
methods to ensure the input size of different detectors is identical to our detection
module.

3.7.1. Quantitative results

Comparative results are shown in Table 3. It can be observed that our ShipSR-Faster-
RCNN achieves significant improvements over the original Faster-RCNN with only 17.7
MB increase of model size and 8.19 ms/image increase in inference time. Moreover,
our ShipSR-Faster-RCNN outperforms Reppoints, GFL, HTC and DetectoRS on all the
three datasets. Compared with DetectoRS, our method achieves a better performance
with much fewer parameters and less inference time. Note that, although HTC and
DetectoRS are also developed on Faster-RCNN, these two methods are less competitive
due to the missing details in the input bicubicly upsampled images. In contrast, by using
the super-resolved images and features, our method can well handle this problem and
achieves state-of-the-art detection accuracy.

3.7.2. Qualitative results

Figure 4 shows the detection results achieved by different methods on three typical
scenes, and these scenes indicate the following three challenges in ship detection: packed,
multi-scaled and with complex background. It can be observed that the ships in scene
A are closely packed, thus most detectors can not detect them accurately, and produce
miss detection or error detection. That is because, the insufficient detail information
makes the boundaries of these ships blurring, and thus only the most salient target
can be recognized. By using the super-resolved images and feature representation, our
ShipSR-Faster-RCNN can detect all the targets. In scene B, the background similar to the
target (i.e., the docks marked by the red circle and ellipse) cannot be recognized due to
the missing details of input images. Although the ships in scene C are salient for human
vision, most detectors cannot detect them due to the insufficient appearance information.
Note that, the small ships in both scene A and scene C cannot be detected by most
detectors. In contrast, our ShipSR-Faster-RCNN can detect them accurately by using
the beneficial detail information provided by the super-resolved images and feature
representations.

4. Conclusion

In this paper, we propose a novel SR-based method ShipSR-Det for mid-low res-
olution ship detection. In our method, both the output image and the intermediate
feature representation from the SR module are fed to the detection module to better
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Scene A

Scene B

(a) HR + GT (b) Faster RCNN

Scene C

(a) HR + GT

(e) HTC

(f) DetectoRS (g) ShipSR-Faster-RCNN

Figure 4. Qualitative results achieved by different methods on four example scenes. “HR” denotes high-resolution images and “GT”
represents groundtruth labels. We use green bounding boxes to mark the detection results.
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utilize the super-resolved information. Extensive ablation studies and visualizations
have demonstrated the effectiveness of our method with different detection modules
and backbones. Comparative results on three public datasets have demonstrated that
our method can well recover the missing details in the mid-low resolution images, and
achieves higher detection accuracy as compared to several state-of-the-art methods.
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