
Communication

Mid-low Resolution Remote Sensing Ship Detection Using
Super-Resolved Feature Representation

Shitian He , Huanxin Zou *, Yingqian Wang , Runlin Li , Fei Cheng and Xu Cao

Citation: He, S.; Zou, H.; Wang, Y.;

Li, R.; Cheng, F. and Cao, X. Mid-low

Resolution Remote Sensing Ship

Detection Using Super-Resolved

Feature Representation. Remote Sens.

2021, 1, 0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright: © 2021 by the authors.

Submitted to Remote Sens. for pos-

sible open access publication under

the terms and conditions of the

Creative Commons Attribution (CC

BY) license (https://creativecom-

mons.org/licenses/by/ 4.0/).

1 College of Electronic Science and Technology, National University of Defense Technology;
heshitian19@nudt.edu.cn (S.H.); wangyingqian16@nudt.edu.cn (Y.W.); lirunlin14@nudt.edu.cn (R.L.);
chengfei08@nudt.edu.cn (F.C.); cx2020@nudt.edu.cn (X.C.)

* Correspondence: hxzou2008@163.com; Tel.: +86-1397-313-3366

Abstract: Existing methods enhance mid-low resolution remote sensing ship detection by feed-1

ing super-resolved images to the detectors. Although these methods marginally improve the2

detection accuracy, the correlation between image super-resolution (SR) and ship detection is3

under-exploited. In this paper, we propose a simple but effective ship detection method called4

ShipSR-Det, in which both the output image and the intermediate features of the SR module are5

fed to the detection module. Using the super-resolved feature representation, the potential benefit6

introduced by image SR can be fully used for ship detection. We apply our method to the SSD and7

Faster-RCNN detectors and develop ShipSR-SSD and ShipSR-Faster-RCNN, respectively. Extensive8

ablation studies validate the effectiveness and generality of our method. Moreover, we compare9

ShipSR-Faster-RCNN with several state-of-the-art ship detection methods. Comparative results on10

the HRSC2016, DOTA and NWPU VHR-10 datasets demonstrate the superior performance of our11

proposed method.12

Keywords: Ship detection; image super-resolution; mid-low resolution remote sensing images13

1. Introduction14

Optical remote sensing ship detection plays an important role in port management,15

marine rescuing and military reconnaissance. With the advances of deep learning,16

recent methods [1–3] generally use deep convolution neural networks (DCNNs) for17

remote sensing ship detection, and achieve significant improvements over traditional18

paradigms. As a key factor for ship detection, high-resolution (HR) images (with ground19

sample distance (GSD) smaller than 10 m/pixel) can provide abundant appearance20

information and thus introduce benefits to the detection task [4]. However, obtaining21

an HR image posts a high requirement on the satellite sensors and generally results in22

an expensive cost. In contrast, mid-low resolution images (with GSD larger than 1023

m/pixel) can be acquired more cheaply, but their insufficient details post great challenges24

to ship detection. To achieve a better trade-off between detection accuracy and resource25

consumption, performing image super-resolution (SR) on mid-low resolution remote26

sensing images to recover their missing details has become a popular research topic and27

has been widely investigated in recent years [5–8].28

In the field of remote sensing object detection, several methods [9–12] perform29

image SR as a pre-processing approach, and feed the super-resolved image to detection30

network to improve the detection performance. In these methods, image SR and object31

detection are performed as two separate processes, and the connection between these32

two processes is the super-resolved image only. Although the super-resolved images33

contain more details, the informative features extracted by the SR module cannot be34

fully used by the detection module, which hinders the further improvement of detection35

accuracy.36

To fully use the informative feature representation provided by the SR network,37

in this paper, we propose an SR-based ship detection method for mid-low resolution38
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(a) HR + GT (b) Faster RCNN (c) ShipSR-Faster-RCNN
Figure 1. Visual results achieved by Faster-RCNN and our proposed ShipSR-Faster-RCNN on
the HRSC2016 dataset. “HR” denotes high-resolution images and “GT” represents groundtruth
labels. Our method recovers missing details in the input image and achieves promising detection
performance.

remote sensing images. Our method, named ShipSR-Det, consists of an SR module and39

a detection module. Different from previous methods that only feed super-resolved40

images to the detector, in our method, both output images and intermediate features41

produced by the SR module are fed to the detection module. By the assistance of the42

super-resolved feature representation, the detection module can extract more informative43

features to achieve accurate ship detection. We adopt SSD [13] and Faster-RCNN [14] as44

our detection module to develop ShipSR-SSD and ShipSR-Faster-RCNN, respectively, and45

demonstrate their effectiveness through extensive ablation studies and visualizations.46

As shown in Fig. 1, our ShipSR-Faster-RCNN can well recover the missing details in47

the input images to enhance the detection performance. Moreoever, we compare our48

ShipSR-Faster-RCNN with several popular detectors on the HRSC2016 [15], DOTA [16]49

and NWPU VHR-10 [17] datasets. Comparative results demonstrate the state-of-the-art50

performance of our method.51

This paper is an extension of our previous conference version [18] in which we52

proposed an RDN-based SR network tailored with an SSD detector for ship detection.53

Compared to our previous work, we make the following additional contributions in this54

paper.55

• We propose a generic SR-based ship detection method which can be applied to56

different detectors and backbones to achieve consistent performance improvement.57

• We conduct extensive ablation studies and perform feature visualizations to investi-58

gate our proposed method. Experimental results validate the effectiveness of using59

super-resolved feature representation for ship detection.60

• We compare our ShipSR-Faster-RCNN to several state-of-the-art detectors on three61

public datasets. Comparative results demonstrate the competitive performance of62

our method.63

2. Related Works64

2.1. Ship Detection65

With the development of deep learning techniques in object detection [13,14,19,20],66

ship detection has been deeply investigated in recent years. Different from general object67

detection, remote sensing ship detection has some special characteristics such as multi-68

orientation, complex scenarios, large intra-class and small inter-class distance. Most69

works on remote sensing ship detection aim at handling these challenges to improve70

the detection accuracy. For example, Ding et al. [21] addressed the arbitrary orientation71

issue by modifying RPN with RRoI to transform horizontal proposals to rotated ones;72

Yang et al. [22] added an IoU constant factor to the smooth L1 loss to address the73

boundary problem for the rotating bounding box; Yang et al. [23] proposed an end-to-74

end refined single-stage rotation detector using a progressive regression approach to75

adapt to the dense arrangement scenarios. To handle the large intra-class and small76

inter-class distance issue, Li et al. [24] proposed a shape-adaptive pooling approach to77

extract more compact and qualified feature representation for ship classification and78

localization. To achieve robust ship detection under complex scenarios, Lei et al. [25]79
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introduced a saliency constraint to the CNN model to enhance the object regions for80

better detection. Yu et al. [26] developed a pre-processing structure to discriminate81

whether an image patch contains objects before detection. Using their method, the82

mount of false positives on background areas can be reduced.83

Besides the aforementioned challenges, in recent years, some studies [27,28] ad-84

dressed the resolution issue in remote sensing images since the low-resolution input85

images can degrade the detection performance. These methods modified existing net-86

works to extract multi-scale features more effectively, and partially improved the de-87

tection performance. However, these methods are relatively complex and have a large88

computation consumption. Another solution is to perform image SR as a preprocessing89

step to recover the missing details in input images. The related works in image SR and90

SR-based ship detection will be briefly reviewed as below.91

2.2. Image Super-Resolution92

Image super-resolution (SR) aims at reconstructing a high-resolution (HR) image93

from one or multiple low-resolution (LR) observations. Recently, deep learning has been94

successfully applied to image SR and has achieved continuously improving performance.95

Dong et al. [29] proposed the first CNN-based single image SR method to reconstruct HR96

images by using a 3-layer CNN. Kim et al. [30] proposed a deeper network named VDSR97

to improve the reconstruction accuracy. Zhang et al. [31] combined residual connection98

[32] with dense connection [33], and proposed residual dense network (i.e., RDN) to99

fully exploit hierarchical feature representations for image SR. Li et al. [34] proposed a100

multiscale residual network to fully exploit the hierarchical feature representation for101

image super-resolution. Wang et al. [35] explored the sparsity prior in image SR and102

used sparse convolutions to achieve accurate and efficient image SR. Subsequently, Wang103

et al. [36] proposed a degradation-aware network and achieve image SR with arbitrary104

blur kernels and noise levels. Apart from single-image SR methods, several methods105

[37–40] enhanced SR performance by exploiting the complementary information among106

multiple input images.107

2.3. SR-based Detection108

In the field of remote sensing object detection, several methods performed image SR109

to enhance the detection accuracy. Dong et al. [6] proposed a second-order multi-scale110

SR network and demonstrated its effectiveness to object detection. Rabbi et al. [9]111

proposed an edge-enhanced generative adversarial network (GAN), and combined it112

with an SSD [13] detector in an end-to-end manner to improve the detection accuracy.113

Courtrai, Pham, and Le [10] tailored a GAN-based SR network with a detection network114

to develop an object-focused detection framework. Wang, Lu, and Zhang [11] modified115

the loss function to make the SR network more suitable for the detection task. Noh et al.116

[12] selects relatively small region of interests (RoIs) to perform image SR to improve117

the detection performance. Note that, although these SR-based detection methods have118

shown their effectiveness, the benefits introduced by image SR have not been fully119

utilized since only super-resolved images are fed to the detectors while the informative120

feature representation generated by SR networks is overlooked.121

3. Network Architecture122

In this section, we introduce our method in details. As shown in Fig. 2, our method123

consists of two parts including an SR module and a detection module. Without loss of124

generality, we use the Faster-RCNN detector as our detection module to introduce the125

details of our method.126

3.1. SR Module127

As shown in Fig. 2, our SR module takes a mid-low resolution image ILR ∈ RH×W×3
128

as its input to produce an SR image ISR ∈ RαH×αW×3 and an intermediate feature129
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Figure 2. An overview of our ShipSR-Det.

FSR ∈ RαH×αW×64, where H and W represent the height and width of the input image,130

and α denotes the upscaling factor. Specifically, the input image ILR is first fed to a 3×3131

convolution to generate initial feature F0 ∈ RH×W×64. Then, F0 is fed to 8 cascaded132

residual dense blocks (RDBs) [31] for deep feature extraction. Features from all the RDBs133

are concatenated for global fusion, and the fused feature is added with the initial feature134

F0 and fed to a sub-pixel layer to generate the upsampled feature FSR. Finally, FSR is135

fed to a 3×3 convolution to produce the residual prediction which is further added with136

the bicubicly upsampled input image to generate the final SR image ISR.137

3.2. Detection Module138

As aforementioned, Faster-RCNN is used as our detection module. As a typical139

object detection method, Faster-RCNN first uses a backbone network (e.g., ResNet101140

[32]) to extract informative features, and then feeds the extracted features (i.e., Fbackbone)141

to a region proposal network (RPN) to generate region proposals. Finally, the generated142

proposals and Fbackbone are fed to the ROI-Pooling layer to extract and resize the features143

of region proposals, and then fed to a classification layer and a localization layer to144

produce the final classification and location predictions.145

3.3. Feature Connection146

When the SR module and the detection module are selected, the SR-based detector147

can be built by feeding the SR image to the detection module. However, in most SR-148

based detection methods [6,9–11], the informative features are squeezed to an image,149

and the backbone of the detection module extracts the features from the SR image for150

further prediction. The feature squeeze and re-extraction result in the information lost151

inevitably. In our method, to reduce the information lost and fully use the super-resolved152

feature representation for ship detection, both the super-resolved image ISR and the153

intermediate feature FSR are fed to backbone of detection module for feature extraction.154

Note that, since features in the SR module and detection module have different depths155

and resolutions, we use a 3×3 convolution to adapt FSR for ship detection. The weights156

of the 3×3 convolution were initialized as zero values and updated during end-to-end157

finetuning. The adapted feature F adapted
SR is added to the initial feature extracted from158

ISR for deep feature extraction. In this way, the informative feature representation159

generated by the SR module can be fully used by the detection module for ship detection.160

Experimental results in Section 3.6 demonstrate the effectiveness of our method. After161

deep feature extraction, the extracted feature Fbackbone is fed to the original neck and162

head of detection module to produce the final classification and location predictions.163
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3.4. Losses164

The loss of our method can be defined as:

Loverall = LDet + λLSR, (1)

where the LDet and LSR represent the detection loss and SR loss, respectively. λ is a165

hyper-parameter to balance the SR loss and detection loss.166

Specifically, LDet is the detection loss which is identical to that in the Faster-RCNN.
And LSR is the L1 distance between the groundtruth image IHR and the super-resolved
image ISR. That is,

LSR =‖ IHR − ISR ‖1 . (2)

In this section, we first introduce the datasets and implementation details, then167

conduct ablation studies and perform feature visualizations to validate the effectiveness168

of our method. Finally, we compare our method to several state-of-the-art methods on169

three public datasets.170

3.5. Datasets and Implementation Details171

We used the HRSC2016 [15], DOTA [16] and NWPU VHR-10 [17] datasets in our172

experiments.173

• HRSC2016: HRSC2016 is a public remote sensing dataset for ship detection. It174

contains 617 images for training and 438 images for validation. We resized these175

images to 800×512 to generate groundtruth HR images.176

• DOTA: DOTA is a public dataset with 15 object categories for multi-class object177

detection in aerial images. In the experiment, we cropped the images in the original178

datasets into patches of size 512×512, and chose patches containing ship targets179

to build our training and validation sets. We totally generated 4163 images for180

training and 1411 images for validation.181

• NWPU VHR-10: NWPU VHR-10 dataset is a challenging geo-spatial object-detection182

dataset with 10 categories. We performed the same operations as in the DOTA183

dataset to generate training and validation samples. Our customized NWPU VHR-184

10 dataset contains 249 images for training and 52 images for validation.185

We used the aforementioned modified images as HR images and performed 8×186

bicubic downsampling to generate the input mid-low resolution images. We performed187

a large variety of data augmentations including random horizontal and vertical flip-188

ping, random rotation, random color transformation, random brightness and contrast189

transformation.190

Our method was implemented in PyTorch on a PC with an Nvidia RTX 2080Ti GPU.191

We trained our network progressively following a three-stage pipeline. In the first stage,192

we trained our SR module using the generated image pairs with an L1 loss, and used193

the bicubicly upsampled images as input to train our detection module. When training194

the SR module, the batch size was set to 4 and the learning rate was initially set to195

1× 10−4 and halved for every 5× 105 iterations. The training was stopped after 1.2× 106
196

iterations. In the second stage, we tailored the SR module with the pretrained detection197

module via super-resolved image, and performed end-to-end finetuning for 24 epochs.198

In this stage, the learning rate was initially set to 1× 10−4 and decreased by a factor of199

0.1 for every 10 epochs. In the third stage, we further added the super-resolved feature200

representation to the detection module (pretrained in the second stage) and performed201

another round of finetuning. The training settings in this stage were identical to those in202

the second stage.203

For evaluation, we followed [41] to use the mean average precision (mAP) as the204

quantitative metric with the Intersection over Union (IoU) being set to 0.5 (i.e., mAP50)205

and 0.75 (i.e., mAP75).206
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Table 1: Results achieved by different variants on the HRSC2016 dataset. ILR, Ibic, ISR and IHR represent the mid-low
resolution image, bicubicly upsampled image, super-resolved image and original HR image, which are used as the
inputs of the detection module. FT represents the fine-tuning operation, Fea denotes feeding the super-resolved feature
representation to the detection module for ship detection.

Index ILR Ibic ISR FT Fea IHR

SSD [13] Faster-RCNN [14]
VGG16 [42] ResNet50 [32] ResNet101 [32] HRNet [43] ResNeXt101 [44]

mAP50 mAP75 mAP50 mAP75 mAP50 mAP75 mAP50 mAP75 mAP50 mAP75
0 X - - 0.491 0.074 0.490 0.079 0.515 0.114 0.529 0.086
1 X 0.597 0.169 0.788 0.495 0.820 0.626 0.848 0.668 0.837 0.647
2 X 0.688 0.282 0.823 0.611 0.855 0.688 0.857 0.702 0.861 0.689
3 X X 0.711 0.313 0.838 0.663 0.863 0.712 0.863 0.735 0.871 0.717
4 X X X 0.725 0.330 0.858 0.706 0.876 0.744 0.881 0.749 0.885 0.742
5 X 0.773 0.374 0.894 0.728 0.910 0.769 0.915 0.813 0.930 0.808

? Since VGG16 is not fully convolutional, it requires a fixed input image size of 512×512. Consequently, the input images of VGG16 are resized to 512×512 and the results
of ILR on VGG16 are unavailable.

3.6. Ablation Study207

We compare our method with several variants to investigate the potential benefits208

introduced by our design choices. Here, we validate the effectiveness of our method by209

introducing the following variants.210

• Model-0: We fed the mid-low resolution image to the detection module. We in-211

troduce this variant to demonstrate the challenges of mid-low resolution ship212

detection.213

• Model-1: We bicubicly upsampled the mid-low resolution image to the target reso-214

lution, and fed the upsampled image to the detection module. We introduce this215

variant to produce baseline results.216

• Model-2: We use the pretrained SR module to super-resolve the input image, and217

fed the super-resolved image to the detection module.218

• Model-3: We finetuned model-2 to investigate the benefits introduced by end-to-end219

finetunning.220

• Model-4: This is our proposed method. Based on model-3, we integrated the super-221

resolved feature representation to the detection module and performed another222

round of finetuning.223

• Model-5: We directly fed the original HR images to detection module. We introduce224

this variant to produce upper-bound results.225

Table 1 shows the comparative results achieved by our method and its variants.226

It can be observed that model-0 achieves a very poor detection performance. That is227

because, the detectors cannot exploit enough useful information from mid-low resolution228

images. Compared to model-0, model-1 uses the bicubicly upsampled versions of the229

mid-low resolution images as input, and achieves an improved detection performance.230

Note that, the detection accuracy is significantly improved if image SR is introduced.231

Taking the ResNet101-based Faster-RCNN detector as an example, model-2 achieves an232

improvement of 3.5% in mAP50 and an improvement of 6.2% in mAP75 over model-1. It233

demonstrates that the details recovered by the SR module are beneficial to ship detection.234

Further improvements (0.8% in mAP50 and 2.4% in mAP75) can be achieved if end-to-235

end finetuning is performed. That is because, by performing end-to-end finetuning, the236

SR module in model-3 can learn to super-resolve an image in a detection-driven manner.237

Compared to model-3 which only feeds the super-resolved image to the detection module,238

our proposed method (i.e., model-4) can further achieve a performance gain (1.3% in239

mAP50 and 3.2% in mAP75) by reusing the features in the SR module. It is worth240

noting that, model-4 can approximate its upper bound (i.e., 91.0% in mAP50 and 76.9%241

in mAP75) achieved by model-5 on the HR image. The above results demonstrate the242

effectiveness of using super-resolved feature representation for ship detection. Moreover,243

it can be observed that our method is generic and can introduce consistent performance244

improvements to different detectors and backbones.245
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Figure 3. Visualizations of the bicubicly upsampled image (i.e., Ibic), super-resolved image (i.e., ISR), the absolute difference of ISR and
Ibic (i.e., |ISR − Ibic|), and the heatmaps produced by using the Grad-CAM method.

To qualitatively illustrate how the super-resolved feature representation contributes246

to ship detection, we use the Gradient-weighted Class Activation Mapping (Grad-CAM)247

[45] method to perform feature visualizations. As a widely used visual explanation248

method for CNNs, Grad-CAM can highlight feature regions with a larger influence on the249

final prediction. Here, we focus on the feature FSR which is fed to the detection module.250

Figure 3 shows two example scenes on the HRSC2016 dataset. It can be observed that251

the major differences between SR images and bicubicly upsampled images are located in252

the edges. That is, SR images can provide much more edge information than bicubicly253

upsampled images. As shown in the heatmaps produced by the Grad-CAM method,254

edges in FSR are highlighted and thus make more contributions to the final detection255

results. The above results demonstrate that the super-resolved feature representation256

contributes to ship detection by providing abundant edge information.257

Table 2: Results achieved by our method with different settings of λ.

λ 0.001 0.01 0.1 1 10 100

mAP50 0.880 0.876 0.869 0.880 0.878 0.869
mAP75 0.728 0.732 0.740 0.751 0.744 0.739

Moreover, we investigate the influence of the hyper-parameter λ to the detection258

performance. As shown in Table 2, it can be observed that mAP75 changes more259

obviously than mAP50 with the increasing of λ, and when λ = 1, our ShipSR-Faster-260

RCNN can achieve the best performance in terms of both mAP50 and mAP75. Based on261

the comparative results, we set λ = 1 in our experiments.262
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Table 3: Quantitative results (i.e., mAP75) achieved by different methods (based on ResNet101) on the HRSC2016, DOTA
and NWPU VHR-10 datasets. Here, we adopt the Faster-RCNN detector as our detection module. Our ShipSR-Faster-
RCNN achieves state-of-the-art detection performance.

Method
Datasets

Parameters (MB) Inference time (ms)
HRSC2016 [15] DOTA [16] NWPU VHR-10 [17]

GFL [49] 0.632 0.181 0.488 411.2 46.95
Reppoints [48] 0.453 0.161 0.563 331.8 51.28
HTC [46] 0.679 0.296 0.568 791.3 104.17
DetectoRS [47] 0.735 0.311 0.580 1336.9 158.73
Faster-RCNN [14] 0.626 0.233 0.549 485.6 48.31
ShipSR-Faster-RCNN 0.744 0.342 0.608 503.3 56.50

? Inference time is averaged on the HRSC2016 dataset with an input mid-low resolution image of size 100×64.

3.7. Comparison to the State-of-the-art Methods263

We apply our method to Faster-RCNN and compare our ShipSR-Faster-RCNN with264

four state-of-the-art detection methods including HTC [46], DetectoRS [47], Reppoints265

[48] and GFL [49]. We use the bicubicly upsampled images as the inputs of the compared266

methods to ensure the input size of different detectors is identical to our detection267

module.268

3.7.1. Quantitative results269

Comparative results are shown in Table 3. It can be observed that our ShipSR-Faster-270

RCNN achieves significant improvements over the original Faster-RCNN with only 17.7271

MB increase of model size and 8.19 ms/image increase in inference time. Moreover,272

our ShipSR-Faster-RCNN outperforms Reppoints, GFL, HTC and DetectoRS on all the273

three datasets. Compared with DetectoRS, our method achieves a better performance274

with much fewer parameters and less inference time. Note that, although HTC and275

DetectoRS are also developed on Faster-RCNN, these two methods are less competitive276

due to the missing details in the input bicubicly upsampled images. In contrast, by using277

the super-resolved images and features, our method can well handle this problem and278

achieves state-of-the-art detection accuracy.279

3.7.2. Qualitative results280

Figure 4 shows the detection results achieved by different methods on three typical281

scenes, and these scenes indicate the following three challenges in ship detection: packed,282

multi-scaled and with complex background. It can be observed that the ships in scene283

A are closely packed, thus most detectors can not detect them accurately, and produce284

miss detection or error detection. That is because, the insufficient detail information285

makes the boundaries of these ships blurring, and thus only the most salient target286

can be recognized. By using the super-resolved images and feature representation, our287

ShipSR-Faster-RCNN can detect all the targets. In scene B, the background similar to the288

target (i.e., the docks marked by the red circle and ellipse) cannot be recognized due to289

the missing details of input images. Although the ships in scene C are salient for human290

vision, most detectors cannot detect them due to the insufficient appearance information.291

Note that, the small ships in both scene A and scene C cannot be detected by most292

detectors. In contrast, our ShipSR-Faster-RCNN can detect them accurately by using293

the beneficial detail information provided by the super-resolved images and feature294

representations.295

4. Conclusion296

In this paper, we propose a novel SR-based method ShipSR-Det for mid-low res-297

olution ship detection. In our method, both the output image and the intermediate298

feature representation from the SR module are fed to the detection module to better299
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Figure 4. Qualitative results achieved by different methods on four example scenes. “HR” denotes high-resolution images and “GT”
represents groundtruth labels. We use green bounding boxes to mark the detection results.
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utilize the super-resolved information. Extensive ablation studies and visualizations300

have demonstrated the effectiveness of our method with different detection modules301

and backbones. Comparative results on three public datasets have demonstrated that302

our method can well recover the missing details in the mid-low resolution images, and303

achieves higher detection accuracy as compared to several state-of-the-art methods.304
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