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Simple Summary: The standard-of-care treatments of melanoma induce rapid re-
sponses but are linked to the development of resistance and/or increased risk of side
effects for toxicities, highlighting an urgent need for novel targeted therapies with fa-
vorable efficacy and safety profiles. Given that melanoma progression is mediated by
activation of a prometastatic network, controlled by the transcription factor E2F1,
drugs that perturb this network could potentially prevent metastasis. However, this
network is highly interconnected and forms complex loops, making it difficult to iden-
tify druggable targets. Systems pharmacology facilitates the characterization of this
network and improves the identification of drugs acting against it. We constructed the
E2F1-controlled network underlying melanoma progression and, using a systems ap-
proach, we predicted which proteins are likely to prevent metastasis, if targeted. Then,
based on the structures of AKT and MDM2, we virtually screened compounds to iden-
tify leads that can bind to these proteins and inhibit their activity, taking also into ac-
count their toxicity profiles. Overall, we identified specific AKT and MDM?2 inhibitors
which could constitute efficient and safe therapeutic options for aggressive melanoma,
either alone or in combination.

Abstract: Skin melanoma presents increasing prevalence and poor outcomes. Progres-
sion to aggressive stages is characterized by overexpression of the transcription factor
E2F1 and activation of downstream pro-metastatic gene regulatory networks (GRNs).
Appropriate therapeutic manipulation of the E2F1-governed GRNs holds potential to
prevent metastasis, however these networks entail complex feedback and feedforward
regulatory motifs among various regulatory layers, which make it difficult to identify
druggable components. To this end, computational approaches such as mathematical
modeling and virtual screening are important tools to unveil the dynamics of these
signaling networks and identify critical components that could be further explored as
therapeutic targets. Herein, we integrated a well-established E2F1-mediated epithelial-
mesenchymal transition (EMT) map with transcriptomics data from E2F1-expressing
melanoma cells to reconstruct a core regulatory network underlying aggressive mela-
noma. Using logic-based in silico perturbation experiments of a core regulatory net-
work, we identified that simultaneous perturbation of AKT1 and MDM2 drastically
reduces EMT in metastatic melanoma. Using the structures of the two protein signa-
tures along with virtual screening of lead-like compound library available in ZINC12
database, we identified a number of lead compounds that efficiently inhibit AKT1 and
MDM2 without eliciting toxicities. We propose that these compounds could be taken
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into account in the design of novel therapeutic strategies for the management of ag-
gressive melanoma.

Keywords: Melanoma; Systems pharmacology; Boolean model; Small molecule inhib-
itors; Virtual screening; ADME; E2F1

1. Introduction

Malignant transformation of melanocytes of the skin leads to cutaneous
melanoma. On the one hand, the increasing prevalence and, on the other
hand, the particularly unfavorable prognosis when progressing to metastatic
stages make melanoma one of the most lethal forms of skin cancer. Melanoma
formation is driven by mutations in the BRAF and NRAS oncogenes [1]. How-
ever, these oncogenic aberrations are early events in melanomagenesis that
alone do not seem to be sufficient to drive metastasis [2]. Over the past years,
we [3-5] and others [6] have demonstrated that in addition to these driver
events, melanoma progression is catalyzed by the abundant expression of
E2F1. E2F1 belongs to the E2F transcription factor family. While it activates
tumor-suppressive pathways and has proapoptotic function at early stages, it
switches sides in advanced tumor stages and is rewired to networks that un-
derlie hallmarks of metastatic progression, such as resistance to apoptosis,
chemoresistance [3,7], neoangiogenesis [8], extravasation [9], epithelial-mes-
enchymal transition (EMT) [10,11], metabolic reprogramming [12], and ge-
nomic instability [13]. By integrating logic-based network models and gene
expression profiling of aggressive cancer cell lines and tumor tissues from pa-
tient cohorts with high E2F1 content, we previously identified tumor type-
specific receptor signatures through which E2F1 triggers the invasive pheno-
type [11,14]. Several other protein coding genes (PCGs), miRNA genes and
IncRNA genes have been identified as constituents of E2F1-activated promet-
astatic gene regulatory networks (GRNs) [11-13,15,16]. Within the E2F1-gov-
erned GRNSs, non-linear feedback and feedforward regulatory motifs are
formed among various regulatory network layers, entailing protein-coding
and non-coding RNA genes [10-13,15,16]. Such regulatory motifs, which are
commonly encountered in cancer networks [17,18], induce a whole range of
dynamic behaviors, thereby evading the use of conventional data analysis
methods [19]. As a result, the prediction of potential therapeutic targets within
this network requires the aid of systems biology-based and computational
methods.

Uncovering major epigenetic features and the immune contexture of mel-
anoma has catalyzed the development of anti-melanoma therapies within less
than two decades. In 2004, no systemic therapies for melanoma had been
shown to provide a survival benefit. Now, at least four regimens of targeted
therapy and three for immunotherapy improve overall survival and disease-
free survival, with each modality presenting distinct benefits and limitations.
In particular, in 2011, vemurafenib became the first BRAF-targeted therapy
approved by the Food and Drug Administration (FDA) for the treatment of
melanoma [20]. Unfortunately, responses to BRAF inhibitor monotherapy, alt-
hough impressive and rapid, were usually transient. In most cases, this was
due to development of resistance via reactivation of the mitogen activated
protein kinase (MAPK) pathway. Combined BRAF and MEK inhibition ad-
dresses this MAPK-mediated mechanism of resistance and constitutes the cur-
rent standard-of-care for targeted melanoma therapy. Regimens of BRAF plus
MEK inhibitors achieve longer-lasting disease control and are better tolerated
than BRAF inhibitor monotherapy, but a major concern is that resistance, alt-
hough delayed, is eventually developed [21,22]. Likewise, the treatment re-
sponse of patients with mutant NRAS-positive metastatic melanoma to MEK
inhibitors is transient and short-lived [23]. In the context of the paradigm-
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changing advances in cancer immunotherapy, several next-generation im-
mune-based formulations, such as the checkpoint inhibitors ipilimumab,
pembrolizumab, and nivolumab, have received FDA approval for the indica-
tion of metastatic melanoma and ensure durable responses. However, they
are linked with immune-related toxicities and pose limitations for use in pa-
tients with either an overactive (autoimmune disease patients) or a sup-
pressed (organ transplant recipients) immune system [24]. In summary, tar-
geted therapy shows a rapid response time and generally less toxic off-target
effects. However, resistance can be developed. While immunotherapy offers
increased durability of benefit in all patients irrespective of tumor genotype,
this is also frequently associated with immune-related side-effects, especially
when combinations of immunotherapeutic drugs are used [21,22]. It is there-
fore essential to develop both, effective and safe strategies, that specifically
interfere with the complex melanoma networks. This should enrich the anti-
melanoma drug arsenal with more personalized therapeutic options. The past
decade’s clinical experience taught us that, in general, combination therapies
may be superior in terms of efficacy and/or safety than monotherapies. Com-
bining anticancer drugs is currently seen as the approach most likely to over-
come single-agent resistance, to produce sustained clinical remissions via
multi-targeting effects on distinct mechanisms of action, and to reduce un-
wanted side-effects by usage of lower drug doses [25,26]. In fact, the need for
combinatory therapies is an inevitable consequence of the evolving nature of
tumors. Clonal evolution is particularly active when tumors are under selec-
tive pressures due to medical treatments, thereby promoting resistance to
therapy. It has been suggested that an undetectably small number of resistant
clones exist ab initio within a tumor population and are enriched through the
selective pressure of treatment. Eradication of such clones may be possible if
combinatorial therapies are administered early to prevent their clonal expan-
sion. Simultaneous targeting the driver oncogenic mutations along with the
expected secondary resistance may provide a significant advantage in sur-
vival compared with administration at relapse. However, the narrow thera-
peutic window between tumor cells and host poses limitations to the number
of drug combinations that can be tested [27]. Recently, large scale experiments
in cancer cell lines or patient-derived tumor material have been performed,
where the combinatorial effects of pairs of chemical compounds, in several
doses, was monitored [26]. For example, systematic screening of pairwise
combinations of 104 FDA-approved oncology drugs has been performed in
the NCI-60 panel of human tumor cell lines to produce a comprehensive plat-
form for defining the pairs with enhanced therapeutic efficacy [25]. However,
as the number of drugs and thus the number of combination pairs is con-
stantly increasing, such experimental screening can become a “Herculean
task” even if state-of-the-art high-throughput instruments are used. In addi-
tion, cancer cells exhibit genetic heterogeneity that strongly influences the ef-
ficacy of drug combinations, requiring further lengthy testing in different cel-
lular contexts. The introduction of computational methods can facilitate these
efforts by predicting the most promising combinations in terms of tumor het-
erogeneity, which have a better chance of showing acceptable efficacy profiles
when used in experimental and clinical settings [26,28].

Herein, aided by in silico workflows, we sought to predict efficient and
safe compounds that either alone or in combination prevent melanoma pro-
gression by specifically targeting components of the prometastatic E2F1-gov-
erned GRNs in melanoma. Using a comprehensive regulatory and functional
map of E2F1 in tumor progression and metastasis [11] which contains differ-
ent types of regulatory factors, including genes, proteins, microRNAs, or com-
plexes, we identified a core regulatory network in melanoma [28,29]. The core
regulatory network was subjected to logic-based modelling for detecting pro-
tein signatures which play an important role in interconnecting many of the
responsive genes that are typically not identified through gene-based differ-
ential expression analysis. Subsequent virtual screening, an increasingly tech-
nique that improves the speed and efficiency of the drug discovery process
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[30,31], was applied to find compound hits against protein signatures eliciting
measurable biological responses and to estimate their safety profiles. Our ap-
proach predicted that MDM2 plus AKT1 inhibitors could be a promising com-
bination that is worthwhile to be further investigated as a novel anti-meta-
static regimen in high E2F1-expressing melanoma patients.

2. Results

2.1. Establishment of computational pipelines for prediction of drug-targetable
components of the E2F1-governed prometastatic GRN in melanoma and in silico
screening of different inhibitors, alone or in combination

Previously, we have designed a comprehensive regulatory and func-
tional map of E2F1 in tumor progression and metastasis [11] which contains
different types of regulatory factors (n= 879) including genes, proteins, mi-
croRNAs, or complexes; and interactions (m=2278) based on information re-
trieved from published literature and databases. The map was modularized
into three E2F1 regulatory compartments such as extra-/intracellular receptor
signaling, post-translational modifications, regulators of E2F1 activity; and
seven functional compartments including cell cycle, quiescence, DNA repair,
metabolism, apoptosis, survival, and angiogenesis/invasion. Using a compu-
tational pipeline, we used the map to unravel a tumor type-specific regulatory
core and to predict receptor protein signatures in bladder and breast cancer
underlying E2F1-mediated EMT transition. The E2F1 map and the previously
used workflow is applied to identify a key functional module (core regulatory
network) in melanoma. This core regulatory network is composed of regula-
tory motifs and critical molecular interactions that drive phenotype switching
in melanoma. The core regulatory network for melanoma was subjected to
our computational pipeline to detect protein signatures that play an important
role in interconnecting many of the responsive genes that are typically not
identified through gene-based differential expression analysis.

Our workflow includes (i) network-based analysis of topological param-
eters to characterize the pattern of factors in a networked system, (ii) mapping
of the gene expression profiles from melanoma cell lines onto the E2F1 map,
(iif) network reduction via a multi-objective function [32] to provide motif
ranking by user-defined weights in an iterative manner, (iv) Boolean model-
ing to analyze and predict the protein signatures linked to aggressiveness in
melanoma, (v) virtual screening to find compound hits against protein signa-
tures that elicit measurable biological responses, and (vi) to predict ADME
behaviors, pharmacokinetic parameters, and drug-likeness of compounds.
The workflow in Figure 1 was used for prioritizing therapeutic targets and
also to screen potential drug candidates that may be validated for the ad-
vanced melanoma tumors.
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Figure 1. Workflow for the identification and prioritization of therapeutic targets regulating metastatic mel-
anoma phenotypes and virtual screening of repurposed drugs. The overall workflow is divided into two
parts. The left part focused on the identification of molecular signatures (mainly proteins) that drive mela-
noma metastasis. This was identified through the in silico perturbation experiments on melanoma-specific
core regulatory network identified from the prioritized motifs from E2F1 interaction map. The right-hand
side of the workflow highlights various filtering steps for the identification of small molecule inhibitors from
large virtual libraries of lead-like substances from public databases, such as ZINC.

2.2. Identification of the metastatic melanoma-specific core regulatory network

We used our previously published network-based approach to construct
a melanoma-specific regulatory core from the comprehensive map of E2F1
[11]. Here, we utilized the workflow and the E2F1 map to identify key net-
work motifs and critical molecular interactions that drive a highly invasive
melanoma cell phenotype. To do this, we have used the data extracted from
the E2F1 map and identified important network motifs by calculation of top-
ological and non-topological properties of each node (Supplementary file 1).

The motifs were prioritized based on a multi-objective optimization func-
tion where the function contains parameters accounting for each property.
Weights are assigned to each property in terms of their importance in a user-
defined manner and then, the motifs are ranked according to the value of the
objective function. The top ten high-scored motifs were selected from each
weighting scenario (Supplementary file 1). Finally, we merged all the top
ranked motifs to obtain a melanoma-specific regulatory core. We expanded
the regulatory core by adding receptor proteins which are the first neighbors
of ranked motif nodes in the E2F1 map. We also added four well-known
markers CDH1, VIM, ZEB1, and SNAI1 [10] in the core to measure the EMT
response (Figure 2a).

2.3. Boolean modelling of the melanoma-specific core regulatory network

We encoded the core-regulatory network into a Boolean model for stim-
ulus-response and perturbation analyses. Stimulus-response analysis was
used to identify the effect of up/down expressed receptors on the EMT phe-
notype, and perturbation analysis predicted potential drug target that can
bring the phenotype to lower possible level. In Boolean model, state a node is
represented into one of two possible states i.e., 0 (OFF, inactive) or 1 (ON,
active) [33]. The regulatory relationships between upstream nodes (i.e.,
sources) to downstream nodes (i.e., targets) are encoded into Boolean func-
tions using logical gates ‘NOT’, ‘OR” and ‘AND’. Further, we calibrated the
Boolean functions with fold-change (FC) expression data [11] of publicly
available dataset GSE46517 [34] from Gene Expression Omnibus (GEO).
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To evaluate the input-output behavior, we divided the model into three
layers: 1) Input layer, containing receptor molecules, 2) regulatory layer, com-
prising nodes constituting a core-regulatory network, and 3) Output layer, in-
cluding EMT phenotype (Figure 2b). Input layer was initialized with FC ex-
pression profile i.e., a node with negative FC was represented by a state 0 and
a node with positive FC was represented by a state 1.
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Figure 2. Melanoma-specific core regulatory network. (a) The core regulatory network was derived by
merging the top-ranked motifs from the E2F1 map. The constructed core consists of 183 direct interactions
(edges) involving 34 core proteins and miRNAs, 10 receptor proteins, and 4 EMT marker proteins. Regula-
tory directions were retrieved from the E2F1 map as activation (+1), inhibition (-1), and unidentified (0). (b)
Boolean model of the regulatory network. Model is divided into three layers: input layer containing receptor
molecules (green background), regulatory layer comprising the regulatory network nodes (gray background)
and output layer containing the EMT phenotype (red background). Green color edges represent activation,
red color edges represent inhibition and gray edges represent neutral regulatory relationships among the
nodes. Description of gene symbols appearing in the network: AKT1: AKT serine/threonine kinase 1, AR:
androgen receptor, AXIN2: axin 2, BCL2: BCL2 apoptosis regulator, CCNA2: cyclin A2, CCNBI1: cyclin B1,
CCNE?2: cyclin E2, CDC20: cell division cycle 20, CDH1: cadherin 1, CDK1: cyclin dependent kinase 1, CDK2:
cyclin dependent kinase 2, CDKN2A: cyclin dependent kinase inhibitor 2A, CTNNB1: catenin beta 1, E2F1:
E2F transcription factor 1, E2F2: E2F transcription factor 2, E2F3: E2F transcription factor 3, ESR1: estrogen
receptor 1, FGFRI: fibroblast growth factor receptor 1, FLT4: fms related receptor tyrosine kinase 4, FOXO3:
forkhead box O3, KIAA1524: cancerous Inhibitor Of Protein Phosphatase 2A, LEF1: lymphoid enhancer bind-
ing factor 1, MDM2: MDM2 proto-oncogene, MDM4: MDM4 regulator of p53, MYC: MYC proto-oncogene,
bHLH transcription factor, NR2F2: nuclear receptor subfamily 2 group F member 2, NR4A1: nuclear receptor
subfamily 4 group A member 1, PPP2R1A: protein phosphatase 2 scaffold subunit A alpha, PPP2R1B: protein
phosphatase 2 scaffold subunit A beta, PPP2R2A: protein phosphatase 2 regulatory subunit B alpha,
PPP2R2D: protein phosphatase 2 regulatory subunit B delta, RB1: RB transcriptional corepressor 1, SIRT1:
sirtuin 1, SNAI1: snail family transcriptional repressor 1, SP1: Sp1 transcription factor, TGFBR1: transforming
growth factor beta receptor 1, TGFBR2: transforming growth factor beta receptor 2, THRA: thyroid hormone
receptor alpha, THRB: thyroid hormone receptor beta, TP53: tumor protein p53, VIM: vimentin, ZEB1: zinc
finger E-box binding homeobox 1.

2.4. In silico perturbation simulations using Boolean modeling

Model was simulated with initial values derived from the expression
profile of input nodes and confirmed that the logical state of nodes in a regu-
latory layer represents the data (for details see Supplementary file 2). The
EMT phenotype was regulated by nodes ZEB1, CDHI1, VIM and SNAI1 [10],
and represented by 5 ordinal level ranking from 0 (minimum) to 4 (maxi-
mum):

EMT = ZEB1 + NOT (CDH1) + VIM + SNAI1
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For the initial condition, model simulations result in EMT of level 3,
where ZEB1 and SNAI1 are active and CDHI1 is inactive (see Table 1a). Fur-
ther, we performed perturbation analysis of all nodes (except ZEB1, CDH]1,
VIM and SNAI1) in the regulatory layer of the model to bring EMT from level
3 to minimum level. We identified that for a single perturbation (in this case
inhibition) of MDM2 or MIR25, EMT can be reduced to level 1 (see Table 1b).
CDH1 is activated upon inhibition of MDM2 which inhibit EMT as well as
inhibit CTNNB1 which subsequently inhibit SNAI1 [35,36] to further reduce
EMT. Similar effect was observed upon inhibition of MIR25 [37,38]. On the
other hand, single perturbation (in this case activation) of AKT1 can increase
the EMT to the highest level 4.

Table 1. Stimulus-response and perturbation simulation results. (a) Model simulation results of initial condition
which results in higher EMT level. (b) Single perturbation by inhibiting MDM2 or MIR25 can bring EMT from
level 3 to 1, while upregulating AKT1 resulted in EMT level to 4.

(a) Stimulus-response analysis for initial condition

AR ESR1 FGFR1 FLT4 NR2F2 NR4A1 TGFBR1 TGFBR2 THRA THRB MDM?2 MIR25 AKT1 ZEB1 CDH1 VIM SNAI1 EMT

NaN 1 1 NaN 1 1 1 NaN 0 NaN 1 1 0 1 0 0 1 3

(b) Single perturbations analysis (inhibition of MDM?2, MIR25 and activation of AKT1) for EMT level of 3

AR ESR1 FGFR1 FLT4 NR2F2 NR4A1 TGFBR1 TGFBR2 THRA THRB MDM?2 MIR25 AKT1 ZEB1 CDH1 VIM SNAI1 EMT

NaN 1 1 NaN 1 1 1 NaN 0 NaN 0 1 0 1 1 0 0 1
NaN 1 1 NaN 1 1 1 NaN 0 NaN 1 0 0 1 1 0 0 1
NaN 1 1 NaN 1 1 1 NaN 0 NaN 1 1 1 1 0 1 1 4

2.5. Assessment of protein signatures identified through Boolean modelling

Our Boolean model simulations suggested two key proteins AKT1 and
MDM2 that upon inhibition can bring the EMT from level 3 to 1. Interestingly,
AKT1 directly activates the VIM, a key marker for EMT. AKT1 also activate
MDM2 which interact with p53 to regulate immune axis in the metastatic mel-
anoma. MDM2 also indirectly activate the EMT by downregulating another
hallmark protein CDH1. We investigated the expression profiles of AKT1 and
MDM2 and their impact on melanoma patient survival using Kaplan-Meier
curve (Figure 3) using TCGA melanoma SKCM dataset (https://por-
tal.gdc.cancer.gov/projects/TCGA-SKCM). We found that higher expression
of both AKT1 and MDM?2 resulted in poor patient survival. These observa-
tions also confirm that the Boolean model simulation were successful in pre-
dicting potential proteins that may be targeted for the treatment of metastatic
melanoma.
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Figure 3. Kaplan-Meier plots suggest that patient with high expression of (a) AKT1; (b) MDM2; and (c) high
expression of AKT1 and MDM?2 together have worst clinical outcomes.

2.6. Screening of small molecule inhibitors to block protein signatures

To identify compound drugs that are most likely to bind to AKT1 and
MDM2 protein signatures, molecular docking was performed with the filtered
library compounds (Supplementary file 3). The information about the active
sites of proteins is retrieved from the literature and PDB database. More spe-
cifically, for AKT1 we performed screening against the kinase domain (150-
408) which is previously selected to identify ATP-competitive inhibitors
[39,40] (Figure 4a). For MDM2, many recent studies indicate that its overex-
pression and subsequent deactivation of p53 result in failure of apoptosis and
cancer cell survival [41-43]. We investigated the p53-Mdm? interaction sur-
face which is ~700 A2. This druggable pocket of MDM2 where p53 binds pro-
vides a great opportunity for compound inhibitors to disrupt p53-MDM?2 in-
teraction [44] (Figure 4b).

%" Hydrophobic
& cavity

Figure 4. Functional binding sites of AKT1and MDM2 used in the screening of drug
library. On the top the surface model of AKT1 and MDM?2 are shown along with the
binding pocket. In case of MDM2 (PDB: 3JZK_chain A), the binding site is identified
as main hydrophobic cavity that interacts with p53 and in case of AKT1 (PDB:
30CB_chainA), the kinase domain showing the ATP binding pocket, in red spheres
respectively. In the bottom, key amino acid residues participating in the binding
pocket formation are shown.
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The Achieved docked poses were ranked by their docking binding ener-
gies and were further analyzed to obtain the best conformation and orienta-
tion of the ligand in the active site.

In case of AKT1, docking analyses revealed that the compounds are
packed against the residues LEU156, GLY157, PHE161, VAL164, ALA177,
LYS179, GLU191, HIS194, GLU198, TYR229, ALA230, GLU234, ASP274,
ASN279, MET281, ASP292, GLY294, LEU295, TYR437, PHE438, ASP439, and
PHE442 and was stabilized by the hydrogen bonds, electrostatic, hydropho-
bic, and van der walls interactions.

Three hits namely, ZINC000043178353 [45], ZINC000040429080 [46], and
ZINC000043202934 [47] are reported as selective AKT1 inhibitors with IC50
values of 0.5, 0.03, and 1.0 nM respectively, and displayed potency against
AKT1, AKT2, and AKT3 within cells [40,47]. However, we found two novel
hits (ZINC000001491367: binding energy -12.6 kcal/mol; ZINC000003939645:
binding energy -12.5 kcal/mol) that were not investigated as AKT1 inhibitors
before. Their binding energies towards the ATP binding pocket of AKT1 is
comparable to ATP competitive inhibitors [40]. These two novel hits are re-
portedly inhibitors of CDKs and their cyclin partners, particularly CDK7/cy-
clin H and CDK2/cyclin E which are often deregulated in cancer. Both hits
showed a considerable activity when compared with Seliciclib, a drug in
phase Il clinical trial for the treatment of cancer [48]. Interestingly, the number
of interactions that strongly bind these two compounds into the cavity was
also reasonably high as compared to other hits (Figure 5).

To determine the difference between the binding mode of novel hits to
AKT1 from that of previously known inhibitors, a comparative analysis was
performed. It was found that the common interacting residues in all inhibitors
were GLU234 and ASP292. The amino acid residue GLU234 of the protein
backbone is necessary for the AKT1 biological activity and this interaction was
found with most of the previously known ATP-competitive kinase inhibitors
[49,50]. The second set of electrostatic interactions and hydrogen bonds to
ASP292 in AKT1 is critical because this position is typically occupied by a di-
valent cation (Mg2+) bound to ATP [50]. Other common amino acid residues
for all the five hits were PHE161 and LYS179; which indicates that the top
screening hits ZINC000001491367 and ZINC000003939645 are reliable and
promising for further evaluation.
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Figure 5. 2D interaction diagrams for docking poses of AKT1 with top five screened hits:
ZINC000001491367, ZINC000003939645, ZINC000043178353, ZINC000043202934, and ZINC000040429080.
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In case of MDM2, the molecular docking was performed into lining resi-
dues of this pocket containing amino acids (LEU54, LEU57, ILE61, MET62,
TYR67, GLN72, VAL75, PHE86, PHE91, VAL93, HIS%6, ILE99, TYE100, and
ILE101). These residues form a hydrophobic cavity on the MDM2 protein
structure and are potentially occupied by known inhibitors [51,52]. The
docked compound hits bind to MDM2 by interacting with key residues and
particularly, hydrophobic interaction with residues VAL93 and LEU54 can be
seen in all five hits (Figure 6).

The first compound hit ZINC000000537755 (Fluspirilene), exhibits a con-
vincing binding mode into the MDM?2 pocket. Fluspirilene is reported to show
anti-proliferative activity at 10 um in the NCI60 tumor cell line [53]. The sec-
ond hit ZINC000169352550 is a compound containing morpholinone which is
highly potent and selective MDM?2 inhibitors [44]. The third hit,
ZINC000095605306 is a close analog of trans-morpholinone and binds to the
protein in the same mode as inhibitors. The fourth hit, ZINC000084689539
(AM-8553) interact with the three key p53 binding residues (PHE19, TRP23,
and LEU26) in the pocket. The compound is effective in the inhibition of tu-
mor growth in the SJSA-1 mouse xenograft model [44,54]. The two hits,
ZINC000169352550 and ZINC000096286451 showed p53 ubiquitination in
vitro with IC50 values of 0.84 um and 1.5 um [55], respectively. All compound
hits showed good complementarity within the binding pocket. More specifi-
cally, ZINC000095605306 and ZINC000084689539 forms hydrogen bond in-
teractions with hydrophobic residues PHE55 and GLY58; and LEU54 respec-
tively, suggesting a stable binding of compounds to the p53-binding pocket
on MDM2.

TR
PHE
AT VAL ASL A6

VAL
GIN AT5
A24

PHE ILE
AsSL A6
PHE
A91 TYR ey
ILE
AbL
GLY LEU AT2 @ i A58
= ey AS8 Assd Hr A4 e
1L
S @ 8
VAL
2 At e LEY s 2 pre ILE ATS
ASY 03 AB6 A:103 AL

ZINC000000537755-MDM2 ZINC000169352550-MDM2 ZINC000095605306-MDM2
(-11.0 kcal/mol) (-10.9 kcal/mol) (-10.9 kcal/mol)

GIN HIS
A:24 TYR A:96
A:100
PHE
ASS

LEU LEU
As4 A58

2 LEY
0~ o PHE AST
©E A55 2
A19 LEU )
A7
GLY 1E
A58 A:103
Intramolecular interactions

ILE "
:;Ss A:99 I Conventional Hydrogen Bond

ILE VAL [__] Van der Walls
A1 :’AE PHE A:93 [] Carbon Hydrogen Bond
&35 [ Pi-Anion

GLY Salt Brid

ILE AiS8 I s2 ee
VAL AG9 o e [ Pi-Sulfur
833 AT : . m PiSigma

ZINC000084689539-MDM2 ZINC000096286451-MDM2 E :il-k/;l\lkyl

(-10.7 kcal/mol) (-10.5 keal/mol) I Amide-Pi Stacked

Figure 6. 2D interaction diagrams for docking poses of MDM2 with top five screened hits:
ZINC000000537755, ZINC000169352550, ZINC000095605306, ZINC000084689539, and ZINC000096286451.

2.7. ADME/pharmacokinetic predictions and drug-likeness
2.7.1. Bioavailability

The bioavailability radar plots (Figure 7) show a rapid appraisal of drug-
likeness based on the physicochemical properties of the lead molecules. In the
graphical output, the radar area (pink color) is in the optimal range for com-
pound hits ZINC000001491367, ZINC000003939645, ZINC000043178353,
ZINCO000000537755, ZINC000095605306, and ZINC000084689539 giving in-
formation that the hits are falling entirely within the physicochemical range
on each axis and could be considered drug-like. However, the compounds hits
ZINC000040429080,  ZINC000043202934, ZINC000000537755, and
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ZINC000096286451 are predicted to be not orally bioavailable because they
are too polar and fraction Csp3 (in-saturation) is too high.
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Figure 7. Radar plots of screened hits for oral bioavailability based on physicochem-
ical properties LIPO (lipophilicity), SIZE (molecular weight), POLAR (topological po-
lar surface area), INSOLU (insolubility), INSATU (in-saturation), and FLEX (flexibil-
ity). The pink-colored area represents the ideal range for each property i.e. XLOGP3 (-
0.7 and + 5.0), MW (150 and 500 g/mol), TPSA (20 and 130 A2), Log S (<6), Fraction
Csp3 (<1), and Rotatable bonds (<9), respectively.

2.7.2. Bioaccumulation

As shown in Table 2, the compound hits ZINC000001491367,
ZINCO000003939645,  ZINC000095605306, ZINC000084689539,  and
ZINC000096286451 did not exhibit in silico inhibition of CYP2C9 and CYP2De,
members of the drug-metabolizing cytochrome P450 family of enzymes
[49,56]. Though, other hits are interacting with CYP isoenzymes which could
lead to bioaccumulation of compounds and toxicity.

Aqueous solubility and gastrointestinal absorption:

The aqueous solubility for all hits is estimated to be moderate except
ZINC000000537755 which is predicted to be poorly soluble. Prediction of pas-
sive gastrointestinal absorption (GIA) was high for all the hits except
ZINC000043202934 and it is based on the Intestinal Estimated permeation
model [57]. Itis observed that hits ZINC000001491367 and ZINC000003939645
are non-substrate to P-glycoprotein (multidrug resistance protein in the cell
membrane) [58], suggesting that they are likely to have high intestinal absorp-
tion and bioavailability.

Compliance with Lipinski’s, Ghose, Veber, Egan, and Muegge rules as-
sociated with drug-likeness:

Moreover, compound hits ZINC000001491367, ZINC000003939645,
ZINC000043178353, ZINC000040429080, ZINC000095605306,
ZINC000084689539, and ZINC000096286451 are not violating the Lipinski’s,
Ghose, Veber, Egan, and Muegge rules. All compound hits except
ZINC000096286451 have passed the PAINS and Brenk filters for not contain-
ing any problematic fragments. In addition, toxicity profiles [59] such as car-
cinogenicity, immunotoxicity, mutagenicity, and cytotoxicity profiles of
ZINC000001491367, ZINC000003939645, ZINC000095605306,
ZINC000084689539, and ZINC000096286451 are predicted to be inactive.
Overall, the results of the ADME and drug-likeness reveals that
ZINC000001491367, ZINC000003939645 (AKT1 hits), and ZINC000095605306
and ZINC000084689539 (MDM2 hits) show good pharmacokinetic properties
and are predicted to be orally bioavailable, non-toxic, and good absorption.
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Table 2. Prediction of ADMET, pharmacokinetic, drug-likeness properties and medicinal friendliness of the screened hits for AKT1 and MDM2. 1
Water . . . .
solubil- Medlc.lnal Drug-likeness (#violations) Pharmacokinetics Tox1c1-ty pro-
‘ ity Chemistry file
Protein ZINCID Gastro-intesti-Blood-brain bar- P-glycopro- Coa g
Signatures ESOL PAINS & nal (GI) ab- rier (BBB) per-  tein (Pgp) CYP2C9  CYP2D6 2 ° .g g
Class BRENK LipinskiGhoseVeberEganMuegge soroti t bstrat inhibitor inhibitor 'S g -%0 2
ption mean substrate =) S
alerts o g § o
ZINC000001491367Moderate 0 0 0 0 0 0 High No No No No X X x X
ZINC000003939645Moderate 0 0 0 0 0 0 High No No No No X x x X
AKT1 ZINC000043178353Moderate 0 0 0 0 0 0 High No Yes No Yes x v x x
ZINC000040429080Moderate 0 0 0 0 0 0 High No Yes Yes Yes x v x x
ZINC000043202934Moderate 0 0 2 1 1 1 Low No Yes Yes Yes v v v ox
ZINC000000537755 Poor 0 1 1 0 0 1 High Yes Yes Yes Yes x v x x
ZINC000169352550Moderate 0 0 0 0 0 0 High Yes Yes No No X X x X
MDM2 ZINC000095605306Moderate 0 0 0 0 0 0 High No Yes No No X X x X
ZINC000084689539Moderate 0 0 0 0 0 0 High No Yes No No X X x X
ZINC000096286451Moderate 1 0 0 0 0 0 High No No No No x x x X

Popular names of compound hits
ZINC000001491367: BDBM50358241; (3R,4S)-4-[[6-(benzylamino)-9-isopropyl-purin-2-ylJamino]-2,2-dimethyl-hexan-3-ol
ZINC000003939645: BDBM50358233; 4-[9-isopropyl-6-(2-pyridylmethylamino)purin-2-ylJamino-2,2-dimethyl-hexan-3-ol
ZINC000043178353: PF-AKT400; AKT-0286; CS-5109; BDBM50322393; N-{[(3s)-3-amino-1-(5-ethyl-7h-pyrrolo[2,3-D]pyrimidin-4-Yl)pyrrolidin-3-Yl]Jmethyl}-2,4-difluoroben-
zamide
ZINC000040429080: BDBM50278836; N-((S)-1-amino-3-(3-fluorophenyl)propan-2-yl)-4-bromo-5-(1H-pyrrolo[2,3-b]pyridin-4-yl)thiophene-2-carboxamide
ZINC000043202934: BDBM50306157; 3-((S)-2-amino-3-(1H-indol-3-yl)propoxy)-5-(3-methyl-1H-pyrazolo[4,3-b]pyrazin-5-yl)-6-(2-methylfuran-3-yl)pyridin-2-amine
ZINC000000537755: Fluspirilene; Redeptin, BDBM26948; 8-[4,4-bis(4-fluorophenyl)butyl]-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one
ZINC000169352550: BDBM50020715; 7-(2-methyl-4,5-diphenyl-1H-pyrrol-3-yl)tetrazolo[1,5-a]pyrimidine
ZINC000095605306: BDBM50432652; 2-[(2S,5R,65)-6-(3-chlorophenyl)-5-(4-chlorophenyl)-4-[(1S)-1-(hydroxymethyl)propyl]-3-oxo-morpholin
ZINC000084689539: AM-8553; BDBM50388626; {(3r,51,65)-5-(3-chlorophenyl)-6-(4-chlorophenyl)-1-[(2s,3s)-2-hydroxypentan-3-Y1]-3-methyl-2-oxopiperidin-3-Yl}acetic acid
ZINC000096286451: BDBM50442784; 10-(3-chlorophenyl)-9-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4-dione
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3. Discussion

A common approach to anticancer drug development has been based on
a workflow, whereby molecules that are designed from scratch, to specifically
interfere with a certain pathway, are anticipated to target and eradicate tu-
mors in a highly selective manner, analogous to the “lock-and-key” specific-
ity, hence maximizing efficacy and minimizing side effects [60]. Despite their
promising results in the preclinical setting, the majority of innovative drugs
are proven insufficient or suboptimal when administered in clinical patients,
thereby leading to unacceptably low success rates of clinical trials [61,62]. The
high failure rate of this approach is the consequence of several unpredictable
parameters, mainly: (a) the individual genetic background of cancer patients,
which limits the therapeutic benefits only to specific patient subpopulations
and necessitates treatment personalization [22]; (b) the fact that cancer-related
genes are highly interconnected and regulate each other through complex
loops from different pathways [63-65]; (c) the inherent ability of tumors to
adapt and evolve, which catalyzes acquisition of resistance to therapies, espe-
cially monotherapies [27]. To address these challenges, computational meth-
odologies including, but not limited to, algorithms and machine learning
tools, are now being increasingly recruited in many drug discovery programs.
For example, computational approaches that 'dock’ small molecules into the
structures of macromolecular targets and 'score' their potential complementa-
rity to binding sites are widely used in hit identification and lead optimization
and are currently reforming the pharmacopeia landscape [66]. This approach
allows for fast and comprehensive screening of the efficacy and safety profiles
of a high number of leads, in the context of a particular cancer type. Prioriti-
zation of the top-resulting leads or combinations thereof could subsequently
facilitate faster introduction to clinical trials and significantly reduce the costs
for drug development.

Having in mind that metastasis is linked with activation of E2F1-gov-
erned GRNs, we applied a transcriptomics-aided bioinformatics workflow,
followed by virtual drug screening to comprehensively characterize novel
therapeutic targets in melanoma and predict their corresponding drug inhib-
itors. Due to the documented ability of targeted drugs to show superior safety
and efficacy in combination schemes [22], we were particularly interested on
drugs that can perturb these prometastatic GRNs when used simultaneously.
Using a well-established E2F1 map [11], we derived a set of three-node FBLs
(n = 44) and used a ranking scheme that applies a weighted multi-objective
function integrating topological and non-topological properties of each node.
Topological properties such as node degree (number of edges connected to
the node) are known for their importance in network organization and play-
ing as central hubs in orchestrating molecular connections [67]. It is reported
that cancer-associated proteins have large betweenness centrality as they con-
trol the communication between different components of a network [68].
Among non-topological properties, we have calculated the involvement of the
motif constituents in the disease pathway, the gene prioritization score, and
average Log2 fold change for each motif based on the change in expression
values of each node from non-invasive to invasive phenotypes derived from
in vitro experiments. Since the network was originally constructed around
E2F1, the topological properties for some nodes are expected to be higher than
other nodes. Therefore, to give equal importance to all nodes, we used differ-
ent weighting scenarios in the multi-objective optimization function to avoid
biases and ranked motifs accordingly. The top ranked motifs are merged to
understand their combined effect on the regulation of EMT in melanoma. We
further expanded the regulatory core network by adding receptor proteins the
first neighbours of the ranked motif nodes and four marker proteins and their
direct connections from the E2F1 map. Receptor proteins work as determina-
tive factors and markers proteins are required to measure the EMT response.
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We developed a three-layered logic-based model of the regulatory core con-
sisting of an input layer, a regulatory layer, and an output layer. We analyzed
the regulatory core by using Boolean logic for the input and regulatory layers,
and multi-valued logic for the output layer which allows us to assess the com-
bined effect of various network components on the EMT phenotype. Our
model simulations identified two protein signatures AKT1 and MDM?2 as po-
tential drivers of EMT in melanoma. Further virtual drug screening with par-
ticular emphasis on the prediction of compounds with minimal toxicities re-
vealed that AKT1 and MDM?2 inhibitors, either alone or in combination with
each other, can efficiently and safely suppress E2F1-driven invasion in mela-
noma.

The PI3K-AKT signaling pathway is predominantly activated in melano-
mas, upon mutations of crucial melanoma drivers, in parallel with the MAPK
(Ras-Raf-MEK-ERK) pathway. The BRAF/MEK inhibitors, which constitute
the standard-of-care in the targeted therapeutics of melanoma, suppress the
MAPK pathway. However, an active PI3K-AKT pathway offers alternative
avenues for evasion of MAPK-targeting regimens and disease progression.
Indeed, members of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway
are implicated in melanoma progression, metastasis, and acquired resistance
to MAPK-targeting therapies. AKT1 activation frequently occurs through si-
lencing of PTEN, a tumor-suppressor gene encoding a phosphatase which
acts on lipid and protein substrates. The major PTEN substrate is phosphati-
dylinositol-3,4,5-triphosphate (PIP3), which recruits AKT to the membrane
and activates it by phosphorylation. By specifically dephosphorylating PIP3,
PTEN suppresses the downstream signaling of AKT and, vice-versa its loss
results in increased PIP3 levels and subsequent AKT1 activation. Combina-
tion of PTEN silencing with BRAFV600E expression in vivo leads to mela-
noma formation, while further ectopic expression of activated AKT1 in this
genetic context co-operates with PTEN silencing to accelerate metastasis to
lungs and brain [69]. Progressing melanomas, in their vast majority, develop
resistance to therapy due to reactivation of MAPK signaling. In a small sub-
population of melanoma cells, resistance to MAPK inhibition is also promoted
by activation of the PI3K/AKT signaling cascade. In this case, stimulation of
this compensatory pathway does not bypass the BRAF/MEK inhibition, but
allows a small subpopulation of MAPK-inhibited cells to survive on treat-
ment. The persistent exposure of this cell subpopulation to the constant selec-
tive pressure of BRAF/MEK inhibition eventually promotes reorganization of
signaling circuits and accelerates the evolution of tumor subclones that are
highly resistant to targeted therapies [70]. Upregulation of the PI3K-AKT
pathway is a critical event during the early and late evolution of resistance to
MAPK pathway inhibition [71]. It has been proposed that AKTi combined
with BRAFi-based therapy may benefit patients with tumors harboring BRAF
mutations along with PTEN deletions or AKT mutations [72]. In agreement
with these studies, our analysis highlighted inhibition of AKT1 as an attrac-
tive strategy for preventing EMT-driven metastatic progression of melanomas
with a high-E2F1 content.

In addition to the PI3K/AKT pathway, the manipulation of the p53-con-
trolled pathways is emerging as an alternative therapeutic option with a po-
tential to overcome the suboptimal response rates for MAPK-targeting thera-
pies [73]. The p53 gene represents a well-established player in carcinogenesis.
It synthesizes a transcription factor which, in response to oncogenic stress,
activates genes involved in cell cycle arrest, senescence and apoptosis [73].
The majority of tumors either carry p53 loss-of-function mutations or another
form of downstream p53 inactivation. A frequent event of p53 inactivation in
tumors with wild-type p53 is the hyperactivation of the mouse double minute
2 (MDM2) gene. MDM 2 is an ubiquitin ligase that catalyzes p53 degradation
and constitutes one of the most common post-translational suppressors of the
p53 protein [74]. Most melanomas retain a wild-type p53 and exhibit low p53
mutation rates, but instead show frequent inactivation of the cyclin-depend-
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ent kinase inhibitor 2A (CDKN2A), which eventually lead to MDM2 upregu-
lation and subsequent p53 inhibition [75]. As a result, small-molecule inhibi-
tors that block the p53-MDM?2 interaction have been pursued as a new cancer
therapeutic strategy for restoring the tumor-suppressive function of p53 in
wild-type tumors [76]. Shattuck-Brandt et al. [77] recently highlighted the
therapeutic efficacy of MDM?2 inhibition against p53WT melanomas with ei-
ther a wild-type or a mutant BRAF background. They showed that a MDM2
antagonist (namely KRT-232) alone or in combination with BRAF and/or MEK
inhibitors can inhibit tumor growth in patient-derived xenografts (PDX) from
15 patients with melanoma by suppressing p53 degradation. MDM2 inhibitor
monotherapy was effective against BRAFV600WT tumors, while a combina-
tion of KRT-232 plus BRAF/MEK inhibitors exhibited a synergistic effect on
BRAFV600E mutant PDXs [77]. In a similar note, our study revealed that a
number of small-molecule MDM2 inhibitors show a potential for preventing
E2F1-driven metastatic progression.

Overall, our approach predicted AKT1 and MDM2 inhibitors as promis-
ing anti-melanoma drugs. If combined with each other or with the standard-
of-care regimens for melanoma, such as BRAF and MEK inhibitors, these sub-
stances could offer appealing alternative therapeutic strategies, potentially
overcoming therapeutic resistance and improving disease-free survival of
melanoma patients. Future experiments are essential to confirm the metasta-
sis-preventing potential of such combinations in melanoma animal models.
Given that combinations of targeted therapeutics and immunotherapeutics
hold a potential to produce durable responses to clinical patients [78], another
significant question that is worth further investigation is whether AKT1
and/or MDM2 inhibitors can effectively synergize with checkpoint inhibitors
to improve patient survival.

Melanoma is a highly heterogeneous and dynamically evolving cancer
type. The increased intratumoral cell diversity can accelerate somatic evolu-
tion, because a tumor consisting of a genetically heterogeneous cell popula-
tion has more possibilities to respond to microenvironmental changes, to
evolve, and to spread [79]. It is noteworthy that melanomas can, in several
cases, evolve through unorthodox pathways, via the same genes that can suc-
cessfully inhibit melanoma proliferation. For example, while tyrosinase inhi-
bition is seen as an approach to successfully target proliferative melanoma
cells, its loss can trigger EMT-mediated melanoma progression [80]. In a sim-
ilar manner, stabilization of the tumor-suppressor p53 can drive therapeutic
resistance and it was recently suggested that inhibiting rather than activating
wild-type p53 may sensitize previously resistant metastatic melanoma cells to
therapy [81]. Advanced computational methods, such as artificial intelligence
and machine learning are anticipated to shed more light on the roles of target
genes and unveil the spatiotemporal complexity of networks underlying me-
tastasis [82] towards developing personalized therapies.

4. Materials and Methods
4.1. Network analysis and motif identification

The Cytoscape version of the E2F1 map was downloaded from
https://sourceforge.net/projects/e2flmap/files and converted into a format
suitable for Cytoscape plugin NetDS v3.0 [17]. The purpose of this was to
identify important nodes and network motifs in the network. The loop length
was set to three nodes and feedback motifs (n = 444) were retrieved. We then
used the Cytoscape plugin NetworkAnalyzer to evaluate the topological
properties of nodes [83]. More specifically, we calculated the average number
of neighbours for each node in the network (degree) [84] and the density of
connections among the neighbours of a node (betweenness centrality) [85] to
understand the overall organization of the network. Among non-topological
properties, we calculated the number of nodes in a motif involved in the
KEGG melanoma pathway (KEGG: 05218), and a prioritization score for each
gene from the web resource DISEASES [86] shown in Supplementary file 1.
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4.2. Array data from aggressive melanoma cell lines

We used gene expression data from a previous study generated in SK-Mel-
103 and SK-Mel-147 cell lines (obtained from Dr. M. Soengas) with and
without endogenous E2F1 depletion as described [3].

4.3. Motif prioritization

The regulatory motifs were prioritized using a ranking score for each mo-
tifs considering key topological and non-topological properties with respect
to the relevance for the melanoma phenotype. The motif ranking score is cal-
culated using Eq. (1).

Wi (ND)i (BC)i (DP)i (GP)i (|FC|)i
2 (max (ND)  max (BC)) 2 max (DP) + W max (GP) + W max {|FC|)

The equation uses a multi-objective function which is normalized to the
maximum property value under consideration. We used a ranking scheme
that is previously developed [11] by assigning different weights to various
topological and non-topological parameters. In particular, the weights to two
topological parameters (node degree
(ND) and betweenness centrality (BC)) was divided to half for avoiding over-
emphasizes topological properties and assigning equal weighting factors
W,; — W,; to give equal importance to other properties (disease pathway as-
sociation {DP), gene prioritization score (GP), Log?2 fold change (|FC])) in mo-
tif prioritization. The equation generates a ranking score for each motif i
(1...n) depending on the sets of values chosen for the weighting scenarios j (1
to13) shown in Supplementary file 1. Later, top 10 motifs were selected from
each of the weighting scenario (13¢10=130 motifs). Furthermore, unique set of
motifs were identified and processed for the construction of melanoma-spe-
cific core regulatory network. The optimization of multi-objective function is
discussed in detail [11].

Ranking score;; =

4.4. Derivation of core requlatory network

All the top ranked motif identified in the previous steps were merged to
create a regulatory core. Additionally, we also considered receptor proteins
as critical factors determining the EMT phenotype and directly interacting/
regulating nodes present in the top-ranked motifs. In total, we found and in-
cluded ten receptor proteins (AR, ESR1, FGFR1, FLT4, NR2F2, NR4A1l,
TGFBR1, TGFBR2, THRA, and THRB) into the regulatory core. These receptor
proteins are the first neighbors of ranked motif nodes and present in the E2F1
map. In addition, we added four EMT marker proteins (CDH1, VIM, ZEBI,
and SNAI1) and direct connections with motif nodes (Supplementary file 1)
in our regulatory core.

4.5. Logic-based modeling to derive protein signatures

To identify protein signatures in the regulatory core, the network is trans-
lated into a logic-based model and in silico perturbation experiments were per-
formed in the software tool CellNetAnalyzer [87]. For this, we derived Bool-
ean rules for the input (receptor proteins) layer and propagation of signals
from the input layer to the output layer through the nodes present in the reg-
ulatory layer. The network is simulated to determine the impact of the input
layer vectors on the EMT phenotype (output layer). We performed single and
double perturbation experiments iteratively for the initial conditions that is
determined through the additional publicly available gene expression dataset
(GSE46517) from Gene Expression Omnibus (GEO). The perturbation experi-
ments were performed by changing the Boolean state of each node alone and
in combination to other nodes in the regulatory layer to see the impact on the
invasiveness. Those node(s) which upon inhibition change the EMT to mini-
mum level or upon activation to maximum level are further evaluated as ef-
fective protein signatures associated with EMT transition in melanoma (Sup-
plementary file 2).
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4.6. Virtual screening of drugs

For virtual drug screening was performed as follows:

(i) Chemical library preparation

The lead-like compound subset is downloaded from the ZINC12 data-
base (http://zinc.dock-ing.org/zinc/). Textual descriptors calculated from the
3D SDF files using Open Babel 3.1.1 (https://pypi.org/project/openba-
bel/3.1.1/). The compounds are selected meeting Lipinski’s rule of five (molec-
ular weight <500 Dalton, hydrogen bond donor <5, hydrogen bond acceptor
<10, and an octanol-water partition coefficient iLOGP <5).

(ii) Structure preparation

The crystal structure of protein signatures AKT1 (PDB: 30CB) and
MDM2 (PDB: 3JZK) were downloaded from the RCSB Protein Data Bank
(https://www.rcsb.org/). Proteins were pre-processed by removal of heteroa-
toms, adding polar hydrogens, and gasteiger charges using the AutoDock
Vina [88]. Further, the coordinates of the active site residues were determined.

(iii) Molecular docking study

Virtual screening was carried out in PyRx v 0.8 (AutoDock Vina-based)
screening tool [89]. The library compounds were first imported as SDF files in
open babel of PyRx and further energy minimization of all the library com-
pounds was performed followed by conversion into PDBQT format files.
Later, a gird box was designed to cover the binding site residues within the protein
signatures and then the library compounds were subjected to docking against
AKT1 and MDM2. At each step, the energy of interaction of compound and
protein was evaluated using binding energy (Kcal/mol) value (Supplemen-
tary file 3). The docked complexes and graphical visualization were done in
DS Visualizer [90].

(iv) ADMET risk and pharmacokinetic prediction

The docked compounds were sorted based on binding energy (kcal/mol)
and further filtered by computing a pool of ADMET risk, pharmacokinetics,
drug-likeness, and medicinal chemistry friendliness prediction using the
SwissADME server (http://www.swissadme.ch/) [57] (Supplementary file 3).

5. Conclusions

Cancer is a disease where multiple pathways are dysregulated, and its
development and progression involve both independent and overlapping
molecular targets. Advanced computational methods can unravel the proper-
ties of cancer-related proteins and their interactions in the molecular net-
works and enable designing of next generation targeted therapeutics. With
the computational pipeline used in this study, we were successful in the iden-
tification of key protein signatures that derive melanoma metastasis pheno-
types using in silico perturbation experiments. Using the virtual screening of
lead compounds library, we identified key compounds that bind to AKT1 and
MDM2 and suppress their metastatic activity. Some of the top hits were al-
ready investigated as potential inhibitors of the identified protein signatures.
However, we also find novel hits, some of them were investigated for other
caner types and can be further investigated for their potential to check mela-
noma metastasis. Among the top  hits- ZINC000001491367,
ZINC000003939645 are predicted as potential inhibitors for AKT1 and
ZINCO000095605306, ZINC000084689539 for MDM2 inhibition. These com-
pound hits would facilitate the discovery and development of effective inhib-
itors for clinical use in melanoma metastasis.

Supplementary Materials: Supplementary file 1: Four sheets including topological
and non-topological properties of three-node FBLs and prioritization score; the top
ranked FBLs identified in melanoma; weighting scenarios for motif prioritization; and
regulatory core interactions in melanoma, Supplementary file 2: Effect on EMT pheno-
type after single/ double perturbation simulation experiments in melanoma, Supple-
mentary file 3: Two sheets containing binding energies of compounds which bind to
protein signatures AKT1 and MDMZ2; and prediction of ADMET, pharmacokinetic,
drug-likeness, and medicinal friendliness score of each docked compound.
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