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Simple Summary: The standard-of-care treatments of melanoma induce rapid responses but are linked to the 

development of resistance and/or increased risk of side effects for toxicities, highlighting an urgent need for 

novel targeted therapies with favorable efficacy and safety profiles. Given that melanoma progression is 

mediated by activation of a prometastatic network, controlled by the transcription factor E2F1, drugs that 

perturb this network could potentially prevent metastasis. However, this network is highly interconnected and 

forms complex loops, making it difficult to identify druggable targets. Systems pharmacology facilitates the 

characterization of this network and improves the identification of drugs acting against it. We constructed the 

E2F1-controlled network underlying melanoma progression and, using a systems approach, we predicted 

which proteins are likely to prevent metastasis, if targeted. Then, based on the structures of AKT and MDM2, 

we virtually screened compounds to identify leads that can bind to these proteins and inhibit their activity, 

taking also into account their toxicity profiles. Overall, we identified specific AKT and MDM2 inhibitors 

which could constitute efficient and safe therapeutic options for aggressive melanoma, either alone or in 

combination.  

 

Abstract: Skin melanoma presents increasing prevalence and poor outcomes. Progression to aggressive 

stages is characterized by overexpression of the transcription factor E2F1 and activation of downstream pro-

metastatic gene regulatory networks (GRNs). Appropriate therapeutic manipulation of the E2F1-governed 

GRNs holds potential to prevent metastasis, however these networks entail complex feedback and feedforward 

regulatory motifs among various regulatory layers, which make it difficult to identify druggable components. 

To this end, computational approaches such as mathematical modeling and virtual screening are important tools 

to unveil the dynamics of these signaling networks and identify critical components that could be further 
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explored as therapeutic targets. Herein, we integrated a well-established E2F1-mediated epithelial-

mesenchymal transition (EMT) map with transcriptomics data from E2F1-expressing melanoma cells to 

reconstruct a core regulatory network underlying aggressive melanoma. Using logic-based in silico perturbation 

experiments of a core regulatory network, we identified that simultaneous perturbation of AKT1 and MDM2 

drastically reduces EMT in metastatic melanoma. Using the structures of the two protein signatures along with 

virtual screening of lead-like compound library available in ZINC12 database, we identified a number of lead 

compounds that efficiently inhibit AKT1 and MDM2 without eliciting toxicities. We propose that these 

compounds could be taken into account in the design of novel therapeutic strategies for the management of 

aggressive melanoma.  

 

Keywords: Melanoma; Systems pharmacology; Boolean model; Small molecule inhibitors; Virtual screening, 

ADME, E2F1 

 

1. Introduction 

Cutaneous melanoma arises from melanocytes and represents the deadliest form of skin cancer, with 

increasing prevalence. Once it becomes metastatic, the prognosis is very unfavorable. Melanoma formation is 

driven by mutations in the BRAF and NRAS oncogenes [1]. However, these oncogenic aberrations are early 

events in melanomagenesis that alone do not seem to be sufficient to drive metastasis [2]. Over the past years, 

we [3-5] and others [6] have demonstrated that in addition to these driver events, melanoma progression is 

catalyzed by the abundant expression of E2F1, a member of the E2F transcription factor family. Although this 

transcription factor activates tumor-suppressive pathways at early oncogenesis, upon disease progression 

unbalanced E2F1 activity is rewired to deregulated cancer networks that underlie hallmarks of metastatic 

progression, such as resistance to apoptosis, chemoresistance [3,7], neoangiogenesis [8], extravasation [9], 

epithelial-mesenchymal transition (EMT) [10,11], metabolic reprogramming [12], and genomic instability [13]. 

By integrating logic-based network modeling and gene expression profiles of cancer cell lines from E2F1-

driven tumors and patient cohorts displaying cancer aggressiveness, we identified tumor-type specific receptor 

signatures associated to EMT, where the combined action of highly expressed E2F1, TGFBR1 and FGFR1 

triggers the most invasive phenotype [11,14]. Several other protein coding genes (PCGs), miRNA genes and 

lncRNA genes have been identified as constituents of E2F1-activated prometastatic gene regulatory networks 

(GRNs) [11-13,15,16]. Within the E2F1-governed GRNs, non-linear feedback and feedforward regulatory 

motifs are formed among various regulatory network layers, entailing protein-coding and non-coding RNA 

genes [10-13,15,16]. Such regulatory motifs, which are commonly encountered in cancer networks [17,18], 

induce a whole range of dynamic behaviors, thereby evading the use of conventional data analysis methods 

[19]. As a result, the prediction of potential therapeutic targets within this network requires the aid of systems 

biology-based and computational methods. 

Uncovering major epigenetic features and the immune contexture of melanoma has catalyzed the 

development of anti-melanoma therapies within less than two decades. In 2004, no systemic therapies for 

melanoma had been shown to provide a survival benefit. Now, at least four regimens of targeted therapy and 

three for immunotherapy improve overall survival and disease-free survival, with each modality presenting 

distinct benefits and limitations. In particular, in 2011, vemurafenib became the first BRAF-targeted therapy 
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approved by the Food and Drug Administration (FDA) for the treatment of melanoma [20]. Unfortunately, 

responses to BRAF inhibitor monotherapy, although impressive and rapid, were usually transient. In most cases, 

this was due to development of resistance via reactivation of the mitogen activated protein kinase (MAPK) 

pathway. Combined BRAF and MEK inhibition addresses this MAPK-mediated mechanism of resistance and 

constitutes the current standard-of-care for targeted melanoma therapy. Regimens of BRAF plus MEK 

inhibitors achieve longer-lasting disease control and are better tolerated than BRAF inhibitor monotherapy, but 

a major concern is that resistance, although delayed, is eventually developed [21,22]. Likewise, the treatment 

response of patients with mutant NRAS-positive metastatic melanoma to MEK inhibitors is transient and short-

lived [23]. In the context of the paradigm-changing advances in cancer immunotherapy, several next-generation 

immune-based formulations, such as the checkpoint inhibitors ipilimumab, pembrolizumab, and nivolumab, 

have received FDA approval for the indication of metastatic melanoma and ensure durable responses. However, 

they are linked with immune-related toxicities and pose limitations for use in patients with either an overactive 

(autoimmune disease patients) or a suppressed (organ transplant recipients) immune system [24]. In summary, 

targeted therapy shows a rapid response time and generally less toxic off-target effects. However, resistance 

can be developed. While immunotherapy offers increased durability of benefit in all patients irrespective of 

tumor genotype, this is also frequently associated with immune-related side-effects, especially when 

combinations of immunotherapeutic drugs are used [21,22].  It is therefore essential to develop both, effective 

and safe strategies, that specifically interfere with the complex melanoma networks. This should enrich the anti-

melanoma drug arsenal with more personalized therapeutic options. The past decade’s clinical experience 

taught us that, in general, combination therapies may be superior in terms of efficacy and/or safety than 

monotherapies. Combining anticancer drugs is currently seen as the approach most likely to overcome single-

agent resistance, to produce sustained clinical remissions via multi-targeting effects on distinct mechanisms of 

action, and to reduce unwanted side-effects by usage of lower drug doses [25,26]. In fact, the need for 

combinatory therapies is an inevitable consequence of the evolving nature of tumors. Clonal evolution is 

particularly active when tumors are under selective pressures due to medical treatments, thereby promoting 

resistance to therapy. Resistant cell clones often preexist (although undetectable) at the start of treatment, 

supporting the idea that early administration of combinatorial treatments stands a higher chance of eradicating 

such clones when their number is very low, before acquired resistance is overtly diagnosed. Simultaneous 

targeting the driver oncogenic mutations along with the expected secondary resistance may provide a significant 

advantage in survival compared with administration at relapse. However, ab initio combination therapies are 

challenging in the clinical oncology setting because of the narrow therapeutic window between tumor cells and 

host, which overall limits the number of agents that can be simultaneously tested [27]. With recent advances in 

high-throughput screening methods, a systematic evaluation of combinations among large collections of 

chemical compounds in vitro has become feasible. This typically requires large-scale experiments, in which the 

combinatorial responses are tested in various doses on cancer cell lines or patient-derived cells, resulting in 

dose–response matrices that capture the measured combination effects for every concentration pair in a 

particular sample [26]. For example, systematic screening of pairwise combinations of 104 FDA-approved 

oncology drugs has been performed in the NCI-60 panel of human tumor cell lines to produce a comprehensive 

platform for defining the pairs with enhanced therapeutic efficacy [25]. However, even with modern high-

throughput instruments, experimental screening of drug combinations can become a ‘Herculean task’, as the 

number of conceivable drug combinations increases rapidly with the number of drugs under consideration. In 

addition, the inherent heterogeneity of cancer cells further challenges the experimental efforts, as the 
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combinations need to be tested in various cell contexts and genomic backgrounds. Hence, computational 

methods are often recruited to guide the discovery of effective combinations that can be prioritized for further 

pre-clinical and clinical validation [26,28]. 

Herein, aided by in silico workflows, we sought to predict efficient and safe compounds that either 

alone or in combination prevent melanoma progression by specifically targeting components of the 

prometastatic E2F1-governed GRNs in melanoma. Using a comprehensive regulatory and functional map of 

E2F1 in tumor progression and metastasis [11] which contains different types of regulatory factors, including 

genes, proteins, microRNAs, or complexes, we identified a core regulatory network in melanoma [28,29]. The 

core regulatory network was subjected to logic-based modelling for detecting protein signatures which play an 

important role in interconnecting many of the responsive genes that are typically not identified through gene-

based differential expression analysis. Subsequent virtual screening, an increasingly technique that improves 

the speed and efficiency of the drug discovery process [30,31], was applied to find compound hits against 

protein signatures eliciting measurable biological responses and to estimate their safety profiles. Our approach 

predicted that MDM2 plus AKT1 inhibitors could be a promising combination that is worthwhile to be further 

investigated as a novel anti-metastatic regimen in high E2F1-expressing melanoma patients.  

 

2. Results 

2.1. Establishment of computational pipelines for prediction of drug-targetable components of the E2F1-

governed prometastatic GRN in melanoma and in silico screening of different inhibitors, alone or in 

combination  

Previously, we have designed a comprehensive regulatory and functional map of E2F1 in tumor progression 

and metastasis [11] which contains different types of regulatory factors (n= 879) including genes, proteins, 

microRNAs, or complexes; and interactions (m=2278) based on information retrieved from published literature 

and databases. The map was modularized into three E2F1 regulatory compartments such as extra-/intracellular 

receptor signaling, post-translational modifications, regulators of E2F1 activity; and seven functional 

compartments including cell cycle, quiescence, DNA repair, metabolism, apoptosis, survival, and 

angiogenesis/invasion. Using a computational pipeline, we used the map to unravel a tumor type-specific 

regulatory core and to predict receptor protein signatures in bladder and breast cancer underlying E2F1-

mediated EMT transition. The E2F1 map and the previously used workflow is applied to identify a key 

functional module (core regulatory network) in melanoma. This core regulatory network is composed of 

regulatory motifs and critical molecular interactions that drive phenotype switching in melanoma. The core 

regulatory network for melanoma was subjected to our computational pipeline to detect protein signatures that 

play an important role in interconnecting many of the responsive genes that are typically not identified through 

gene-based differential expression analysis.  

Our workflow includes (i) network-based analysis of topological parameters to characterize the pattern of 

factors in a networked system, (ii) mapping of the gene expression profiles from melanoma cell lines onto the 

E2F1 map, (iii) network reduction via a multi-objective function [32] to provide motif ranking by user-defined 

weights in an iterative manner, (iv) boolean modeling to analyze and predict the protein signatures linked to 

aggressiveness in melanoma, (v) virtual screening to find compound hits against protein signatures that elicit 

measurable biological responses, and (vi) to predict ADME behaviors, pharmacokinetic parameters, and drug-

likeness of compounds. The workflow in Figure 1 was used for prioritizing therapeutic targets and also to screen 

potential drug candidates that may be validated for the advanced melanoma tumors. 
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Figure 1: Workflow for the identification and prioritization of therapeutic targets regulating metastatic melanoma 

phenotypes and virtual screening of repurposed drugs. The overall workflow is divided into two parts. The left part focused 

on the identification of molecular signatures (mainly proteins) that drive melanoma metastasis. This was identified through 

the in silico perturbation experiments on melanoma-specific core regulatory network identified from the prioritized motifs 

from E2F1 interaction map. The right-hand side of the workflow highlights various filtering steps for the identification of 

small molecule inhibitors from large virtual libraries of lead-like substances from public databases, such as ZINC.  

2.2. Identification of the metastatic melanoma-specific core regulatory network 

We used our previously published network-based approach to construct a melanoma-specific regulatory core 

from the comprehensive map of E2F1 [11]. Here, we utilized the workflow and the E2F1 map to identify key 

network motifs and critical molecular interactions that drive a highly invasive melanoma cell phenotype. To do 

this, we have used the data extracted from the E2F1 map and identified important network motifs by calculation 

of topological and non-topological properties of each node (Supplementary file 1).  

The motifs were prioritized based on a multi-objective optimization function where the function contains 

parameters accounting for each property. Weights are assigned to each property in terms of their importance in 

a user-defined manner and then, the motifs are ranked according to the value of the objective function. The top 

ten high-scored motifs were selected from each weighting scenario (Supplementary file 1). Finally, we merged 

all the top ranked motifs to obtain a melanoma-specific regulatory core. We expanded the regulatory core by 

adding receptor proteins which are the first neighbors of ranked motif nodes in the E2F1 map. We also added 

four well-known markers CDH1, VIM, ZEB1, and SNAI1 [10] in the core to measure the EMT response (Figure 

2a).  
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2.3. Boolean modelling of the melanoma-specific core regulatory network 

We encoded the core-regulatory network into a Boolean model for stimulus-response and perturbation analyses. 

Stimulus-response analysis was used to identify the effect of up/down expressed receptors on the EMT 

phenotype, and perturbation analysis predicted potential drug target that can bring the phenotype to lower 

possible level. In Boolean model, state a node is represented into one of two possible states i.e., 0 (OFF, inactive) 

or 1 (ON, active) [33]. The regulatory relationships between upstream nodes (i.e., sources) to downstream nodes 

(i.e., targets) are encoded into Boolean functions using logical gates ‘NOT’, ‘OR’ and ‘AND’. Further, we 

calibrated the Boolean functions with fold-change (FC) expression data [11] of publicly available dataset 

GSE46517 [34] from Gene Expression Omnibus (GEO).  

 

To evaluate the input-output behavior, we divided the model into three layers: 1) Input layer, containing receptor 

molecules, 2) regulatory layer, comprising nodes constituting a core-regulatory network, and 3) Output layer, 

including EMT phenotype (Figure 2b). Input layer was initialized with FC expression profile i.e., a node with 

negative FC was represented by a state 0 and a node with positive FC was represented by a state 1.  

 

 

Figure 2: Melanoma-specific core regulatory network. (a) The core regulatory network was derived by merging the top-

ranked motifs from the E2F1 map. The constructed core consists of 183 direct interactions (edges) involving 34 core proteins 

and miRNAs, 10 receptor proteins, and 4 EMT marker proteins. Regulatory directions were retrieved from the E2F1 map 

as activation (+1), inhibition (-1), and unidentified (0). (b) Boolean model of the regulatory network. Model is divided into 

three layers: input layer containing receptor molecules (green background), regulatory layer comprising the regulatory 

network nodes (gray background) and output layer containing the EMT phenotype (red background). Green color edges 

represent activation, red color edges represent inhibition and gray edges represent neutral regulatory relationships among 

the nodes. Description of gene symbols appearing in the network: AKT1: AKT serine/threonine kinase 1, AR: androgen 

receptor, AXIN2: axin 2, BCL2: BCL2 apoptosis regulator, CCNA2: cyclin A2, CCNB1: cyclin B1, CCNE2: cyclin E2, 

CDC20: cell division cycle 20, CDH1: cadherin 1, CDK1: cyclin dependent kinase 1, CDK2: cyclin dependent kinase 2, 

CDKN2A: cyclin dependent kinase inhibitor 2A, CTNNB1: catenin beta 1, E2F1: E2F transcription factor 1, E2F2: E2F 

transcription factor 2, E2F3: E2F transcription factor 3, ESR1: estrogen receptor 1, FGFR1: fibroblast growth factor receptor 
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1, FLT4: fms related receptor tyrosine kinase 4, FOXO3: forkhead box O3, KIAA1524: cancerous Inhibitor Of Protein 

Phosphatase 2A, LEF1: lymphoid enhancer binding factor 1, MDM2: MDM2 proto-oncogene, MDM4: MDM4 regulator 

of p53, MYC: MYC proto-oncogene, bHLH transcription factor, NR2F2: nuclear receptor subfamily 2 group F member 2, 

NR4A1: nuclear receptor subfamily 4 group A member 1, PPP2R1A: protein phosphatase 2 scaffold subunit A alpha, 

PPP2R1B: protein phosphatase 2 scaffold subunit A beta, PPP2R2A: protein phosphatase 2 regulatory subunit B alpha, 

PPP2R2D: protein phosphatase 2 regulatory subunit B delta, RB1: RB transcriptional corepressor 1, SIRT1: sirtuin 1, 

SNAI1: snail family transcriptional repressor 1, SP1: Sp1 transcription factor, TGFBR1: transforming growth factor beta 

receptor 1, TGFBR2: transforming growth factor beta receptor 2, THRA: thyroid hormone receptor alpha, THRB: thyroid 

hormone receptor beta, TP53: tumor protein p53, VIM: vimentin, ZEB1: zinc finger E-box binding homeobox 1  

 

2.4. In silico perturbation simulations using Boolean modeling  

Model was simulated with initial values derived from the expression profile of input nodes and confirmed that 

the logical state of nodes in a regulatory layer represents the data (for details see Supplementary file 2). The 

EMT phenotype was regulated by nodes ZEB1, CDH1, VIM and SNAI1 [10], and represented by 5 ordinal 

level ranking from 0 (minimum) to 4 (maximum):  

EMT = ZEB1 + NOT (CDH1) + VIM + SNAI1   

For the initial condition, model simulations result in EMT of level 3, where ZEB1 and SNAI1 are active and 

CDH1 is inactive (see Table 1a). Further, we performed perturbation analysis of all nodes (except ZEB1, CDH1, 

VIM and SNAI1) in the regulatory layer of the model to bring EMT from level 3 to minimum level. We 

identified that for a single perturbation (in this case inhibition) of MDM2 or MIR25, EMT can be reduced to 

level 1 (see Table 1b). CDH1 is activated upon inhibition of MDM2 which inhibit EMT as well as inhibit 

CTNNB1 which subsequently inhibit SNAI1 [35,36] to further reduce EMT. Similar effect was observed upon 

inhibition of MIR25 [37,38].  On the other hand, single perturbation (in this case activation) of AKT1 can 

increase the EMT to the highest level 4.  

Table 1: Stimulus-response and perturbation simulation results. (a) Model simulation results of initial condition 

which results in higher EMT level. (b) Single perturbation of MDM2 or MIR25 can bring EMT from level 3 to 

1.  

 (a) Stimulus-response analysis for initial condition 

AR ESR1 FGFR1 FLT4 NR2F2 NR4A1 TGFBR1 TGFBR2 THRA THRB MDM2 MIR25 AKT! ZEB1 CDH1 VIM SNAI1 EMT 

NaN 1 1 NaN 1 1 1 NaN 0 NaN 1 1 0 1 0 0 1 3 

 (b) Single perturbations analysis (inhibition of MDM2, MIR25 and activation of AKT1) for EMT level of 3 

AR ESR1 FGFR1 FLT4 NR2F2 NR4A1 TGFBR1 TGFBR2 THRA THRB MDM2 MIR25 AKT1 ZEB1 CDH1 VIM SNAI1 EMT 

NaN 1 1 NaN 1 1 1 NaN 0 NaN 0 1 0 1 1 0 0 1 

NaN 1 1 NaN 1 1 1 NaN 0 NaN 1 0 0 1 1 0 0 1 

NaN 1 1 NaN 1 1 1 NaN 0 NaN 1 1 1 1 0 1 1 4 

 

2.5. Assessment of protein signatures identified through Boolean modelling 

Our Boolean model simulations suggested two key proteins AKT1 and MDM2 that upon inhibition can bring 

the EMT from level 3 to 1. Interestingly, AKT1 directly activates the VIM, a key marker for EMT. AKT1 also 

activate MDM2 which interact with p53 to regulate immune axis in the metastatic melanoma. MDM2 also 
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indirectly activate the EMT by downregulating another hallmark protein CDH1. We investigated the expression 

profiles of AKT1 and MDM2 and their impact on melanoma patient survival using Kaplan-Meier curve (Figure 

3) using TCGA melanoma SKCM dataset (https://portal.gdc.cancer.gov/projects/TCGA-SKCM). We found 

that higher expression of both AKT1 and MDM2 resulted in poor patient survival. These observations also 

confirm that the Boolean model simulation were successful in predicting potential proteins that may be targeted 

for the treatment of metastatic melanoma.  

 

 

Figure 3: Kaplan-Meier plots suggest that patient with high expression of (a) AKT1;  (b) MDM2; and (c) high 

expression of AKT1 and MDM2 together have worst clinical outcomes. 

 

2.6. Screening of small molecule inhibitors to block protein signatures 

To identify compound drugs that are most likely to bind to AKT1 and MDM2 protein signatures, molecular 

docking was performed with the filtered library compounds (Supplementary file 3). The information about the 

active sites of proteins is retrieved from the literature and PDB database. More specifically, for AKT1 we 

performed screening against the kinase domain (150-408) which is previously selected to identify ATP-

competitive inhibitors [39,40] (Figure 4a). For MDM2, many recent studies indicate that its overexpression and 

subsequent deactivation of p53 result in failure of apoptosis and cancer cell survival [41-43]. We investigated 

the p53–Mdm2 interaction surface which is ~700 Å2. This druggable pocket of MDM2 where p53 binds 

provides a great opportunity for compound inhibitors to disrupt p53–MDM2 interaction [44] (Figure 4b).  
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Figure 4: Functional binding sites of AKT1 and MDM2 used in the screening of drug library. On the top the surface 

model of AKT1 and MDM2 are shown along with the binding pocket. In case of MDM2 (PDB: 3JZK_chain A), the binding 

site is identified as main hydrophobic cavity that interacts with p53 and in case of AKT1 (PDB: 3OCB_chainA), the kinase 

domain showing the ATP binding pocket, in red spheres respectively. In the bottom, key amino acid residues participating 

in the binding pocket formation are shown.  

The Achieved docked poses were ranked by their docking binding energies and were further analyzed to obtain 

the best conformation and orientation of the ligand in the active site.  

In case of AKT1, docking analyses revealed that the compounds are packed against the residues LEU156, 

GLY157, PHE161, VAL164, ALA177, LYS179, GLU191, HIS194, GLU198, TYR229, ALA230, GLU234, 

ASP274, ASN279, MET281, ASP292, GLY294, LEU295, TYR437, PHE438, ASP439, and PHE442 and was 

stabilized by the hydrogen bonds, electrostatic, hydrophobic, and van der walls interactions.  

Three hits namely, ZINC000043178353 [45], ZINC000040429080 [46], and ZINC000043202934 [47] are 

reported as selective AKT1 inhibitors with IC50 values of 0.5, 0.03, and 1.0 nM respectively, and displayed 

potency against AKT1, AKT2, and AKT3 within cells [40,47]. However, we found two novel hits 

(ZINC000001491367: binding energy -12.6 kcal/mol; ZINC000003939645: binding energy -12.5 kcal/mol) 

that were not investigated as AKT1 inhibitors before. Their binding energies towards the ATP binding pocket 

of AKT1 is comparable to ATP competitive inhibitors [40]. These two novel hits are reportedly inhibitors of 

CDKs and their cyclin partners, particularly CDK7/cyclin H and CDK2/cyclin E which are often deregulated 

in cancer. Both hits showed a considerable activity when compared with Seliciclib, a drug in phase II clinical 

trial for the treatment of cancer [48]. Interestingly, the number of interactions that strongly bind these two 

compounds into the cavity was also reasonably high as compared to other hits (Figure 5).  

To determine the difference between the binding mode of novel hits to AKT1 from that of previously known 

inhibitors, a comparative analysis was performed. It was found that the common interacting residues in all 

inhibitors were GLU234 and ASP292. The amino acid residue GLU234 of the protein backbone is necessary 

for the AKT1 biological activity and this interaction was found with most of the previously known ATP-

competitive kinase inhibitors [49,50]. The second set of electrostatic interactions and hydrogen bonds to 

ASP292 in AKT1 is critical because this position is typically occupied by a divalent cation (Mg2+) bound to 

ATP [50]. Other common amino acid residues for all the five hits were PHE161 and LYS179; which indicates 

that the top screening hits ZINC000001491367 and ZINC000003939645 are reliable and promising for further 

evaluation. 
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[SG1] 

Figure 5: 2D interaction diagrams for docking poses of AKT1 with top five screened hits: ZINC000001491367,  

ZINC000003939645, ZINC000043178353, ZINC000043202934, and ZINC000040429080 

In case of MDM2, the molecular docking was performed into lining residues of this pocket containing amino 

acids (LEU54, LEU57, ILE61, MET62, TYR67, GLN72, VAL75, PHE86, PHE91, VAL93, HIS96, ILE99, 

TYE100, and ILE101). These residues form a hydrophobic cavity on the MDM2 protein structure and are 

potentially occupied by known inhibitors [51,52]. The docked compound hits bind to MDM2 by interacting 

with key residues and particularly, hydrophobic interaction with residues VAL93 and LEU54 can be seen in all 

five hits (Figure 6).  

The first compound hit ZINC000000537755 (Fluspirilene), exhibits a convincing binding mode into the MDM2 

pocket. Fluspirilene is reported to show anti-proliferative activity at 10 µm in the NCI60 tumor cell line [53]. 

The second hit ZINC000169352550 is a compound containing morpholinone which is highly potent and 

selective MDM2 inhibitors [44]. The third hit, ZINC000095605306 is a close analog of trans-morpholinone 

and binds to the protein in the same mode as inhibitors. The fourth hit, ZINC000084689539 (AM-8553) interact 

with the three key p53 binding residues (PHE19, TRP23, and LEU26) in the pocket. The compound is effective 

in the inhibition of tumor growth in the SJSA-1 mouse xenograft model [44,54]. The two hits, 

ZINC000169352550 and ZINC000096286451 showed p53 ubiquitination in vitro with IC50 values of 0.84 µm 

and 1.5 µm [55], respectively. All compound hits showed good complementarity within the binding pocket. 

More specifically, ZINC000095605306 and ZINC000084689539 forms hydrogen bond interactions with 

hydrophobic residues PHE55 and GLY58; and LEU54 respectively, suggesting a stable binding of compounds 

to the p53-binding pocket on MDM2. 

ZINC000001491367-AKT1 
(-12.6 kcal/mol)

ZINC000043202934-AKT1
(-12.2 kcal/mol)

ZINC000040429080-AKT1 
(-12.2 kcal/mol)

ZINC000003939645-AKT1 
(-12.5 kcal/mol)

ZINC000043178353-AKT1 
(-12.3 kcal/mol)

Conventional Hydrogen Bond
Van der Walls
Carbon Hydrogen Bond
Pi-Anion
Salt Bridge
Pi-Sulfur
Pi-Sigma
Alkyl
Pi-Alkyl
Amide-Pi Stacked

Intramolecular interactions
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Figure 6: 2D interaction diagrams for docking poses of MDM2 with top five screened hits: ZINC000000537755, 

ZINC000169352550, ZINC000095605306, ZINC000084689539, and ZINC000096286451. 

 

2.7 ADME/pharmacokinetic predictions and drug-likeness 

Bioavailability: 

The bioavailability radar plots (Figure 7) show a rapid appraisal of drug-likeness based on the physicochemical 

properties of the lead molecules. In the graphical output, the radar area (pink color) is in the optimal range for 

compound hits ZINC000001491367, ZINC000003939645, ZINC000043178353, ZINC000000537755, 

ZINC000095605306, and ZINC000084689539 giving information that the hits are falling entirely within the 

physicochemical range on each axis and could be considered drug-like. However, the compounds hits 

ZINC000040429080, ZINC000043202934, ZINC000000537755, and ZINC000096286451 are predicted to be 

not orally bioavailable because they are too polar and fraction Csp3 (in-saturation) is too high.  
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Figure 7: Radar plots of screened hits for oral bioavailability based on physicochemical properties LIPO (lipophilicity), 

SIZE (molecular weight), POLAR (topological polar surface area), INSOLU (insolubility), INSATU (in-saturation), and 

FLEX (flexibility). The pink-colored area represents the ideal range for each property i.e. XLOGP3 (− 0.7 and + 5.0), MW 

(150 and 500 g/mol), TPSA (20 and 130 Å2), Log S (<6), Fraction Csp3 (<1), and Rotatable bonds (<9), respectively. 

Bioaccumulation: 

As shown in Table 2, the compound hits ZINC000001491367, ZINC000003939645, ZINC000095605306, 

ZINC000084689539, and ZINC000096286451 did not exhibit in silico inhibition of CYP2C9 and CYP2D6, 

members of the drug-metabolizing cytochrome P450 family of enzymes [49,56]. Though, other hits are 

interacting with CYP isoenzymes which could lead to bioaccumulation of compounds and toxicity.  

Aqueous solubility and gastrointestinal absorption: 

The aqueous solubility for all hits is estimated to be moderate except ZINC000000537755 which is predicted 

to be poorly soluble. Prediction of passive gastrointestinal absorption (GIA) was high for all the hits except 

ZINC000043202934 and it is based on the Intestinal Estimated permeation model [57]. It is observed that hits 

ZINC000001491367 and ZINC000003939645 are non-substrate to P-glycoprotein (multidrug resistance protein 

in the cell membrane) [58], suggesting that they are likely to have high intestinal absorption and bioavailability.  

Compliance with Lipinski’s, Ghose, Veber, Egan, and Muegge rules associated with drug-likeness: 

Moreover, compound hits ZINC000001491367, ZINC000003939645, ZINC000043178353, 

ZINC000040429080, ZINC000095605306, ZINC000084689539, and ZINC000096286451 are not violating 

the Lipinski’s, Ghose, Veber, Egan, and Muegge rules. All compound hits except ZINC000096286451 have 

passed the PAINS and Brenk filters for not containing any problematic fragments. In addition, toxicity profiles 

[59] such as carcinogenicity, immunotoxicity, mutagenicity, and cytotoxicity profiles of ZINC000001491367, 

ZINC000003939645, ZINC000095605306, ZINC000084689539, and ZINC000096286451 are predicted to be 

inactive. Overall, the results of the ADME and drug-likeness reveals that ZINC000001491367, 

ZINC000003939645 (AKT1 hits), and ZINC000095605306 and ZINC000084689539 (MDM2 hits) show good 

pharmacokinetic properties and are predicted to be orally bioavailable, non-toxic, and good absorption. 
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Table 2: Prediction of ADMET, pharmacokinetic, drug-likeness properties and medicinal friendliness of the screened hits for AKT1 and MDM2. 2 
Protein 

Signatures 

ZINC ID Water 

solubility 
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Chemistry 
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AKT1 ZINC000001491367 Moderate 0 0 0 0 0 0 High No No No No × × × × 

ZINC000003939645 Moderate 0 0 0 0 0 0 High No No No No × × × × 

ZINC000043178353 Moderate 0 0 0 0 0 0 High No Yes No Yes × ✓ × × 

ZINC000040429080 Moderate 0 0 0 0 0 0 High No Yes Yes Yes × ✓ × × 

ZINC000043202934 Moderate 0 0 2 1 1 1 Low No Yes Yes Yes ✓ ✓ ✓ × 

MDM2 ZINC000000537755 Poor 0 1 1 0 0 1 High Yes Yes Yes Yes × ✓ × × 

ZINC000169352550 Moderate 0 0 0 0 0 0 High Yes Yes No No × × × × 

ZINC000095605306 Moderate 0 0 0 0 0 0 High No Yes No No × × × × 

ZINC000084689539 Moderate 0 0 0 0 0 0 High No Yes No No × × × × 

ZINC000096286451 Moderate 1 0 0 0 0 0 High No No No No × × × × 

Popular names of compound hits 

ZINC000001491367: BDBM50358241; (3R,4S)-4-[[6-(benzylamino)-9-isopropyl-purin-2-yl]amino]-2,2-dimethyl-hexan-3-ol 

ZINC000003939645: BDBM50358233; 4-[9-isopropyl-6-(2-pyridylmethylamino)purin-2-yl]amino-2,2-dimethyl-hexan-3-ol 

ZINC000043178353: PF-AKT400; AKT-0286; CS-5109; BDBM50322393; N-{[(3s)-3-amino-1-(5-ethyl-7h-pyrrolo[2,3-D]pyrimidin-4-Yl)pyrrolidin-3-Yl]methyl}-2,4-difluorobenzamide 

ZINC000040429080: BDBM50278836; N-((S)-1-amino-3-(3-fluorophenyl)propan-2-yl)-4-bromo-5-(1H-pyrrolo[2,3-b]pyridin-4-yl)thiophene-2-carboxamide 

ZINC000043202934: BDBM50306157; 3-((S)-2-amino-3-(1H-indol-3-yl)propoxy)-5-(3-methyl-1H-pyrazolo[4,3-b]pyrazin-5-yl)-6-(2-methylfuran-3-yl)pyridin-2-amine 

ZINC000000537755: Fluspirilene; Redeptin; BDBM26948; 8-[4,4-bis(4-fluorophenyl)butyl]-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one 

ZINC000169352550: BDBM50020715; 7-(2-methyl-4,5-diphenyl-1H-pyrrol-3-yl)tetrazolo[1,5-a]pyrimidine 

ZINC000095605306: BDBM50432652; 2-[(2S,5R,6S)-6-(3-chlorophenyl)-5-(4-chlorophenyl)-4-[(1S)-1-(hydroxymethyl)propyl]-3-oxo-morpholin 

ZINC000084689539: AM-8553; BDBM50388626; {(3r,5r,6s)-5-(3-chlorophenyl)-6-(4-chlorophenyl)-1-[(2s,3s)-2-hydroxypentan-3-Yl]-3-methyl-2-oxopiperidin-3-Yl}acetic acid 

ZINC000096286451: BDBM50442784; 10-(3-chlorophenyl)-9-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4-dione 

3 
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3. Discussion 

A common approach to anticancer drug development has been based on a workflow, whereby 

molecules that are designed from scratch, to specifically interfere with a certain pathway, are anticipated to 

target and eradicate tumors in a highly selective manner, analogous to the “lock-and-key” specificity, hence 

maximizing efficacy and minimizing side effects [60]. Despite their promising results in the preclinical setting, 

the majority of innovative drugs are proven insufficient or suboptimal when administered in clinical patients, 

thereby leading to unacceptably low success rates of clinical trials [61,62]. The high failure rate of this approach 

is the consequence of several unpredictable parameters, mainly: (a) the individual genetic background of cancer 

patients, which limits the therapeutic benefits only to specific patient subpopulations and necessitates treatment 

personalization [22]; (b) the fact that cancer-related genes are highly interconnected and regulate each other 

through complex loops from different pathways [63-65]; (c) the inherent ability of tumors to adapt and evolve, 

which catalyzes acquisition of resistance to therapies, especially monotherapies [27]. To address these 

challenges, computational methodologies including, but not limited to, algorithms and machine learning tools, 

are now being increasingly recruited in many drug discovery programs. For example, computational approaches 

that 'dock' small molecules into the structures of macromolecular targets and 'score' their potential 

complementarity to binding sites are widely used in hit identification and lead optimization and are currently 

reforming the pharmacopeia landscape [66]. This approach allows for fast and comprehensive screening of the 

efficacy and safety profiles of a high number of leads, in the context of a particular cancer type. Prioritization 

of the top-resulting leads or combinations thereof could subsequently facilitate faster introduction to clinical 

trials and significantly reduce the costs for drug development. 

Having in mind that metastasis is linked with activation of E2F1-governed GRNs, we applied a 

transcriptomics-aided bioinformatics workflow, followed by virtual drug screening to comprehensively 

characterize novel therapeutic targets in melanoma and predict their corresponding drug inhibitors. Due to the 

documented ability of targeted drugs to show superior safety and efficacy in combination schemes [22], we 

were particularly interested on drugs that can perturb these prometastatic GRNs when used simultaneously. 

Using a well-established E2F1 map [11], we derived a set of three-node FBLs (n = 44) and used a ranking 

scheme that applies a weighted multi-objective function integrating topological and non-topological properties 

of each node. Topological properties such as node degree (number of edges connected to the node) are known 

for their importance in network organization and playing as central hubs in orchestrating molecular connections 

[67]. It is reported that cancer-associated proteins have large betweenness centrality as they control the 

communication between different components of a network [68]. Among non-topological properties, we have 

calculated the involvement of the motif constituents in the disease pathway, the gene prioritization score, and 

average Log2 fold change for each motif based on the change in expression values of each node from non-

invasive to invasive phenotypes derived from in vitro experiments. Since the network was originally constructed 

around E2F1, the topological properties for some nodes are expected to be higher than other nodes. Therefore, 

to give equal importance to all nodes, we used different weighting scenarios in the multi-objective optimization 

function to avoid biases and ranked motifs accordingly. The top ranked motifs are merged to understand their 

combined effect on the regulation of EMT in melanoma. We further expanded the regulatory core network by 
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adding receptor proteins the first neighbours of the ranked motif nodes and four marker proteins and their direct 

connections from the E2F1 map. Receptor proteins work as determinative factors and markers proteins are 

required to measure the EMT response. We developed a three-layered logic-based model of the regulatory core 

consisting of an input layer, a regulatory layer, and an output layer. We analyzed the regulatory core by using 

boolean logic for the input and regulatory layers, and multi-valued logic for the output layer which allows us to 

assess the combined effect of various network components on the EMT phenotype. Our model simulations 

identified two protein signatures AKT1 and MDM2 as potential drivers of EMT in melanoma. Further virtual 

drug screening with particular emphasis on the prediction of compounds with minimal toxicities revealed that 

AKT1 and MDM2 inhibitors, either alone or in combination with each other, can efficiently and safely suppress 

E2F1-driven invasion in melanoma.  

The PI3K-AKT signaling pathway is predominantly activated in melanomas, upon mutations of crucial 

melanoma drivers, in parallel with the MAPK (Ras-Raf-MEK-ERK) pathway. The BRAF/MEK inhibitors, 

which constitute the standard-of-care in the targeted therapeutics of melanoma, suppress the MAPK pathway. 

However, an active PI3K-AKT pathway offers alternative avenues for evasion of MAPK-targeting regimens 

and disease progression. Indeed, members of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway are 

implicated in melanoma progression, metastasis, and acquired resistance to MAPK-targeting therapies. AKT1 

activation frequently occurs through silencing of PTEN, a tumor-suppressor gene encoding a phosphatase which 

acts on lipid and protein substrates. The major PTEN substrate is phosphatidylinositol-3,4,5-triphosphate 

(PIP3), which recruits AKT to the membrane and activates it by phosphorylation. By specifically 

dephosphorylating PIP3, PTEN suppresses the downstream signaling of AKT and, vice-versa its loss results in 

increased PIP3 levels and subsequent AKT1 activation. Combination of PTEN silencing with BRAFV600E 

expression in vivo leads to melanoma formation, while further ectopic expression of activated AKT1 in this 

genetic context co-operates with PTEN silencing to accelerate metastasis to lungs and brain [69]. Progressing 

melanomas, in their vast majority, develop resistance to therapy due to reactivation of MAPK signaling, 

commonly via alterations in BRAF, NRAS and MEK1/2. However, a small proportion of resistant melanomas 

rely on the activation of the compensatory PI3K/AKT signaling cascade. PI3K/AKT-activating mutations in 

melanoma do not override proliferative arrest induced by BRAF/MEK inhibition, but rather enable the survival 

of a small dormant subpopulation of MAPK-inhibited melanoma cells. The persistent exposure of this cell 

subpopulation to the constant selective pressure of BRAF/MEK inhibition eventually promotes reorganization 

of signaling circuits and accelerates the evolution of tumor subclones that are highly resistant to targeted 

therapies [70]. Upregulation of the PI3K-AKT pathway is a critical event during the early and late evolution of 

resistance to MAPK pathway inhibition [71]. It has been proposed that AKTi combined with BRAFi-based 

therapy may benefit patients with tumors harboring BRAF mutations along with PTEN deletions or AKT 

mutations [72]. In agreement with these studies, our analysis highlighted inhibition of AKT1 as an attractive 

strategy for preventing EMT-driven metastatic progression of melanomas with a high-E2F1 content.  

 In addition to the PI3K/AKT pathway, the manipulation of the p53-controlled pathways is emerging 

as an alternative therapeutic option with a potential to overcome the suboptimal response rates for MAPK-

targeting therapies [73]. The TP53 gene represents a well-established player in carcinogenesis [73]. Over 50% 

of all tumors carry p53 loss-of-function mutations, leading to synthesis of functionally impaired protein 

products which are unable to transactivate genes that induce cell cycle arrest and apoptosis in response to 

oncogenic stress [74].  Tumors maintaining wild-type p53 exhibit other types of downstream p53 inactivation, 

such as hyperactivation of its endogenous post-repressor mouse double minute 2 (MDM2), an ubiquitin ligase 
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that catalyzes p53 degradation and inactivation [74].  Most melanomas retain a wild-type p53 and exhibit low 

TP53 mutation rates, but instead show frequent inactivation of the cyclin-dependent kinase inhibitor 2A 

(CDKN2A), which eventually lead to MDM2 upregulation and subsequent p53 inhibition [75]. As a result, 

small-molecule inhibitors that block the p53-MDM2 interaction have been pursued as a new cancer therapeutic 

strategy for restoring the tumor-suppressive function of p53 in TP53 wild-type tumors [76]. Shattuck-Brandt et 

al. [77] recently highlighted the therapeutic efficacy of MDM2 inhibition against TP53WT melanomas with 

either a wild-type or a mutant BRAF background. They showed that a MDM2 antagonist (namely KRT-232) 

alone or in combination with BRAF and/or MEK inhibitors can inhibit tumor growth in patient-derived 

xenografts (PDX) from 15 patients with melanoma by suppressing p53 degradation. MDM2 inhibitor 

monotherapy was effective against BRAFV600WT tumors, while a combination of KRT-232 plus BRAF/MEK 

inhibitors exhibited a synergistic effect on BRAFV600E mutant PDXs [77]. In a similar note, our study revealed 

that a number of small-molecule MDM2 inhibitors show a potential for preventing E2F1-driven metastatic 

progression.  

Overall, our approach predicted AKT1 and MDM2 inhibitors as promising anti-melanoma drugs. If 

combined with each other or with the standard-of-care regimens for melanoma, such as BRAF and MEK 

inhibitors, these substances could offer appealing alternative therapeutic strategies, potentially overcoming 

therapeutic resistance and improving disease-free survival of melanoma patients. Future experiments are 

essential to confirm the metastasis-preventing potential of such combinations in melanoma animal models. 

Given that combinations of targeted therapeutics and immunotherapeutics hold a potential to produce durable 

responses to clinical patients [78], another significant question that is worth further investigation is whether 

AKT1 and/or MDM2 inhibitors can effectively synergize with checkpoint inhibitors to improve patient survival.  

Melanoma is a highly heterogeneous and dynamically evolving cancer type. The increased 

intratumoral cell diversity can accelerate somatic evolution, because a tumor consisting of a genetically 

heterogeneous cell population has more possibilities to respond to microenvironmental changes, to evolve, and 

to spread [79]. It is noteworthy that melanomas can, in several cases, evolve through unorthodox pathways, via 

the same genes that can successfully inhibit melanoma proliferation. For example, while tyrosinase inhibition 

is seen as an approach to successfully target proliferative melanoma cells, its loss can trigger EMT-mediated 

melanoma progression [80]. In a similar manner, stabilization of the tumor-suppressor p53 can drive therapeutic 

resistance and it was recently suggested that inhibiting rather than activating wild-type p53 may sensitize 

previously resistant metastatic melanoma cells to therapy [81]. Advanced computational methods, such as 

artificial intelligence and machine learning are anticipated to shed more light on the roles of target genes and 

unveil the spatiotemporal complexity of networks underlying metastasis [82] towards developing personalized 

therapies.  

 

4. Materials and Methods  

4.1. Network analysis and motif identification 

The Cytoscape version of the E2F1 map was downloaded from https://sourceforge.net/projects/e2f1map/files 

and converted into a format suitable for Cytoscape plugin NetDS v3.0 [17]. The purpose of this was to identify 

important nodes and network motifs in the network. The loop length was set to three nodes and feedback motifs 

(n = 444) were retrieved. We then used the Cytoscape plugin NetworkAnalyzer to evaluate the topological 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 August 2021                   doi:10.20944/preprints202108.0327.v1

https://sourceforge.net/projects/e2f1map/files
https://doi.org/10.20944/preprints202108.0327.v1


 

 

properties of nodes [83]. More specifically, we calculated the average number of neighbours for each node in 

the network (degree) [84] and the density of connections among the neighbours of a node (betweenness 

centrality) [85] to understand the overall organization of the network. Among non-topological properties, we 

calculated the number of nodes in a motif involved in the KEGG melanoma pathway (KEGG: 05218), and a 

prioritization score for each gene from the web resource DISEASES [86] shown in Supplementary file 1.  

4.2. Array data from aggressive melanoma cell lines 

SK-Mel-103 and SK-Mel-147 melanoma cells were harvested 48 hours after infection with Ad.control shRNA 

or Ad.shE2F1 for RNA extraction. Equal amounts of RNA were analyzed using Affymetrix GeneChip Human 

Genome U133 Plus 2.0 Arrays (Affymetrix Inc., Santa Clara, CA,). Analysis was done in duplicate for each 

sample. Background-corrected signal intensities were determined and processed using MAS5 function of the 

R/Bioconductor affy package (Department of Biostatistical Science, Dana-Farber Cancer Institute, Boston, 

MA). Gene transcripts not detected in any samples were excluded from statistical analysis. Normalization of 

expression data, statistical tests, and clustering was accomplished by GeneSpring GX 9.0 (Agilent Technologies 

Inc, Palo Alto, CA). Expression profiles of both cell lines expressing either control shRNA or shE2F1 were 

grouped and statistically analyzed using t test and multiple testing correction (Benjamini and Hochberg False 

Discovery Rate). Only targets displaying a minimum twofold induction or reduction (P < .05) by E2F1 

knockdown were included for clustering [3]. 

4.3. Motif prioritization 

The regulatory motifs were prioritized using a ranking score for each motifs considering key topological and 

non-topological properties with respect to the relevance for the melanoma phenotype. The motif ranking score 

is calculated using Eq. (1).  

 

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒𝑖𝑗 =
𝑊1𝑗

2
 (

⟨𝑁𝐷⟩𝑖

max ⟨𝑁𝐷⟩
 +  

⟨𝐵𝐶⟩𝑖

max  ⟨𝐵𝐶⟩
) + 𝑊2𝑗  

⟨𝐷𝑃⟩𝑖

max ⟨𝐷𝑃⟩
+ 𝑊3𝑗  

⟨𝐺𝑃⟩𝑖

max ⟨𝐺𝑃⟩

+  𝑊4𝑗  
⟨|𝐹𝐶|⟩𝑖

max ⟨|𝐹𝐶|⟩
 

 

The equation uses a multi-objective function which is normalized to the maximum property value under 

consideration. We used a ranking scheme that is previously developed [11] by assigning different weights to 

various topological and non-topological parameters. In particular, the weights to two topological parameters 

(node degree ⟨𝑁𝐷⟩ and betweenness centrality ⟨𝐵𝐶⟩) was divided to half for avoiding over-emphasizes  

topological properties  and assigning equal weighting factors 𝑊2𝑗 − 𝑊4𝑗 to give equal importance to other 

properties (disease pathway association ⟨𝐷𝑃⟩, gene prioritization score ⟨𝐺𝑃⟩, Log2 fold change ⟨|𝐹𝐶|⟩) in motif 

prioritization. The equation generates a ranking score for each motif 𝑖 (1…n) depending on the sets of values 

chosen for the weighting scenarios 𝑗 (1 to13) shown in Supplementary file 1. Later, top 10 motifs were selected 

from each of the weighting scenario (13•10=130 motifs). Furthermore, unique set of motifs were identified and 

processed for the construction of melanoma-specific core regulatory network. The optimization of multi-

objective function is discussed in detail [11]. 

 

4.4. Derivation of core regulatory network 
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All the top ranked motif identified in the previous steps were merged to create a regulatory core. Additionally, 

we also considered receptor proteins as critical factors determining the EMT phenotype and directly interacting/ 

regulating nodes present in the top-ranked motifs. In total, we found and included ten receptor proteins (AR, 

ESR1, FGFR1, FLT4, NR2F2, NR4A1, TGFBR1, TGFBR2, THRA, and THRB) into the regulatory core. These 

receptor proteins are the first neighbors of ranked motif nodes and present in the E2F1 map. In addition, we 

added four EMT marker proteins (CDH1, VIM, ZEB1, and SNAI1) and direct connections with motif nodes 

(Supplementary file 1) in our regulatory core.  

 

4.5. Logic-based modeling to derive protein signatures 

To identify protein signatures in the regulatory core, the network is translated into a logic-based model and in 

silico perturbation experiments were performed in the software tool CellNetAnalyzer [87]. For this, we derived 

Boolean rules for the input (receptor proteins) layer and propagation of signals from the input layer to the output 

layer through the nodes present in the regulatory layer. The network is simulated to determine the impact of the 

input layer vectors on the EMT phenotype (output layer). We performed single and double perturbation 

experiments iteratively for the initial conditions that is determined through the additional publicly available 

gene expression dataset (GSE46517) from Gene Expression Omnibus (GEO). The perturbation experiments 

were performed by changing the Boolean state of each node alone and in combination to other nodes in the 

regulatory layer to see the impact on the invasiveness. Those node(s) which upon inhibition change the EMT 

to minimum level or upon activation to maximum level are further evaluated as effective protein signatures 

associated with EMT transition in melanoma (Supplementary file 2). 

 

4.6. Virtual screening of drugs 

For virtual drug screening was performed as follows: 

(i) Chemical library preparation 

The lead-like compound subset is downloaded from the ZINC12 database (http://zinc.dock-ing.org/zinc/). 

Textual descriptors calculated from the 3D SDF files using Open Babel 3.1.1 

(https://pypi.org/project/openbabel/3.1.1/). The compounds are selected meeting Lipinski’s rule of five 

(molecular weight <500 Dalton, hydrogen bond donor <5, hydrogen bond acceptor <10, and an octanol-water 

partition coefficient iLOGP <5).  

 

(ii) Structure preparation 

The crystal structure of protein signatures AKT1 (PDB: 3OCB) and MDM2 (PDB: 3JZK) were downloaded 

from the RCSB Protein Data Bank (https://www.rcsb.org/). Proteins were pre-processed by removal of 

heteroatoms, adding polar hydrogens, and gasteiger charges using the AutoDock Vina [88]. Further, the 

coordinates of the active site residues were determined. 

 

(iii) Molecular docking study 

Virtual screening was carried out in PyRx v 0.8 (AutoDock Vina-based) screening tool [89]. The library 

compounds were first imported as SDF files in open babel of PyRx and further energy minimization of all the 

library compounds was performed followed by conversion into PDBQT format files. Later, a gird box was 

designed to cover the binding site residues within the protein signatures and then the library compounds were 

subjected to docking against AKT1 and MDM2. At each step, the energy of interaction of compound and protein 
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was evaluated using binding energy (Kcal/mol) value (Supplementary file 3). The docked complexes and 

graphical visualization were done in DS Visualizer [90]. 

 

(iv) ADMET risk and pharmacokinetic prediction 

The docked compounds were sorted based on binding energy (kcal/mol) and further filtered by computing a 

pool of ADMET risk, pharmacokinetics, drug-likeness, and medicinal chemistry friendliness prediction using 

the SwissADME server (http://www.swissadme.ch/) [57] (Supplementary file 3).  

 

5. Conclusions 

Cancer is a disease where multiple pathways are dysregulated, and its development and progression 

involve both independent and overlapping molecular targets. Advanced computational methods can unravel the 

properties of cancer-related proteins and their interactions in the molecular networks and enable designing of 

next generation targeted therapeutics. With the computational pipeline used in this study, we were successful 

in the identification of key protein signatures that derive melanoma metastasis phenotypes using in silico 

perturbation experiments. Using the virtual screening of lead compounds library, we identified key compounds 

that bind to AKT1 and MDM2 and suppress their metastatic activity. Some of the top hits were already 

investigated as potential inhibitors of the identified protein signatures. However, we also find novel hits, some 

of them were investigated for other caner types and can be further investigated for their potential to check 

melanoma metastasis. Among the top hits- ZINC000001491367, ZINC000003939645 are predicted as potential 

inhibitors for AKT1 and ZINC000095605306, ZINC000084689539 for MDM2 inhibition. These compound 

hits would facilitate the discovery and development of effective inhibitors for clinical use in melanoma 

metastasis. 
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