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Abstract: Deep learning classification is the state-of-the-art of machine learning approach. Earlier 

work proves that the deep convolutional neural network has successfully and brilliantly in different 

applications such as images or video data. Recognizing and clarifying the remote sensing aspect of 

the earth's surface and exploit land cover land use (LCLU). This article summarized the remote 

sensing emerging application and challenges for deep learning methods. We propose and examine 

four ways to learn efficient and effective CNNs to transfer image representation on the ImageNet 

dataset to recognize LCLU datasets. We use VGG16, Inception-ResNet-V2, Inception-V3, and 

DenseNet201 models pre-trained on the ImageNet dataset to extract features from the EAC dataset. 

We use pre-trained CNNs on ImageNet to extract features. The essential thing of our study is that 

we used principal component analysis (PCA) for feature selection to improve accuracy and speed 

up the model. We train our model by multi-layer perceptron (MLP) as a classifier. Lastly, we apply 

the multi-granularity encoding ensemble model. We achieve an overall accuracy of 92.3% for the 

nine-class classification problem. This work will help remote sensing scientists understand deep 

learning tools and apply them in large-scale remote sensing challenges.  

Keywords: Multi-granularity neural networks encoding (MGNNE), multi-classification feature rep-

resentation, Multi-layer perceptron (MLP), Principal component analysis (PCA), Remote Sensing 

Application. 

 

1. Introduction 

Land cover is the physical material of the earth's surface[1], has been using in many 

practical applications such as environmental protection[2], urban planning[3], economic 

resource management[4]. Land cover and land use (LCLU) are issues in remote sensing 

areas to organize the earth's land for actual utilization.  In a modern economic growth, 

land cover and land use are broadly defined to include all the natural provides including 

minerals, forest products, water, and other land resources, and they can support economic 

development. By growing economies and improving living conditions, the accessibility to 

public services makes the main challenges effect of land cover, such as environmental 

degradation, climate change, deforestation, increase demand for public service, and 

pressure on public infrastructure.  The massive amount of remote sensing datasets in the 

earth observation increased in the significant data era. To fight against the challenges of 

the enormous amount of datasets, the applications of the multi-granularity neural network 

encoding approach for LCLU classification using remote sensing imagery datasets have 

become increasing in recent. Deep learning methods have been made significant progress 

in computer vision and artificial intelligence for different tasks such as scene 
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classification[5], change detection[6], and semantic segmentation[7]. Based on sensing 

multi-granularity land use and land cover transformation of functional land structures and 

mapping land use pattern is caused not only by bottom-up residential influence and top-

down influence from movement. The change of land use and land cover patterns is 

accelerating in different land support actions. The large-scale satellite imagery introduces 

new challenges to parse the earth through satellite images that need a contribution to deep 

learning[8], which includes different competition for land use applications[9]. Remote 

sensing data present some new challenges for deep understanding because satellite image 

analysis extending striking gaps such as data are passive multi-model from optical (multi-

band and hyperspectral), Lidar [10]. Synthetic aperture radar (SAR) image segmentation, 

where the imaging geometries and content are entirely different, and unlike imaging 

modalities, missing of three dimensional (3-D), additional convolution of decision 

fusion[11]. Satellite imagery is measured by determining the complex relationship within 

and between spatial, spectral, and temporal dimensions. Classification of complex land 

cover mapping using multispectral for the wetland is not enough because it compares 

wetland vegetation.  Many spatial and spectral classification experiments studies are 

based on the conditional random field model, Markov random field model[12], and 

experimentation of a composite kernel for hyperspectral image classification. Deep 

learning has improved computer vision tasks based on different machine learning tools[13] 

to learn satellite imagery to identify patterns in urban environments at a large scale and 

explain satellite dataset challenges[14]. Machine learning methods emphasize shallow 

convolution structures' limitations, such as support vector machines (SVM) and random 

forests (RF). 

Current deep learning approaches such as Convolutional Neural Networks (CNNs)[15] 

by grouping several convolutional layers trained up to the small patch of local receptive 

range as the deepest input the hierarchical structure. In some image classification problems 

such as scene classification[16],[17],land change detection[18], object detection[19], and 

brain image analysis[20] . deep convolutional neural networks (DCNNs) have been in view 

powerful presentation by extracting multi-source and multi-level features with 

hierarchical representation[21],[22],[23],[24]. It used deep convolutional neural networks 

(DCNNs) methods to implement data-driven in remote sensing scene classification 

problems such as large intra-class variance[25]and information confused from large 

geographical locations [16].  

This work establishes the Multi-granularity Neural Network encoding based on ImageNet 

feature extraction and multi-granularity transformation, which outputs images within different 

granularity levels. Our classification accuracy improved. We introduce Inception-ResNet-V2, 

InceptionV3, VGGNet, and DenseNet201, consisting of weighted layers in the feature learning-

based representation approach of two awarding methods of the transfer pre-trained feature extraction 

and feature selection through PCA (principal component analysis). Furthermore, by the autoencoder, 

the characteristics approach is applied on the top of the representation feature learned from DCNNs 

pre-trained based features to improve speed up and performance. By grain data augmentations with 

the objective of the segmentation, the grain is due to the batching method. After multi-granularity 

feature extraction, MLP has been applied to classify final output and presents overall accuracy and 
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confusion matrix to distinguish which categories are intra-class diversity and information are 

confused.   

The remainder of this paper is organized as follows. Sections II presents the land 

cover (LCLU) application and its challenges. Section III offers a multi-granularity neural 

network based on feature extraction CNN methods for object recognition tasks to improve 

our classification accuracy, experiment, and results in Comparison. Section IV, we 

concluded, and further work was summarized. 

2. Related Work 

2.1 Remote Sensing Application   

The idea behind this is just multi-class classification at the pixel level [26], we want to 

assign one of the ends, and these inputs might be represented, pixels might be represented 

either as a spectral reflectance curve, could be a temporal time series curve, or we often see 

images being represented a patch where we want to predict the central pixel. Land cover 

and land use classification mainly get the labels for these models from national databases 

such as the USGS to publish the national land cover datasets NLCD. The USDA produces 

a cropland data layer every year. These are used as the ground truth. Still, in many places 

that do not have a national program for collecting these data, we have researchers 

conducting field campaigns to acquire that data or make photo interpretations from very 

high-resolution images[27]. The most common types of machine learning methods that are 

used for this right now are decision tree (DT) and random forests (RF) for supervised 

classification[9]. Still, increasingly deep learning approaches are employed for land cover 

and land use classified. These are typically convolutional neural networks in 1-D, especially 

when looking at the [12]. Many recurrent neural networks (RNN), precisely long short term 

memory (LSTMs) heard earlier today, are used for classifying time series[28]. Image level 

change detection wants to see meaningful change in surface features that were often more 

object-based or deep learning approaches. We compare temporal images at the feature level 

rather than the pixel level. For example, we should apply an autoencoder neural network 

to extract the latent representing the most salient features from two different images and 

compare them in the feature space to see if something meaningful changes. To ignore 

irrelevant variations such as lighting conditions or miss registration. 

2.2 Scene Classification   

Image classification and machine learning, becoming more popular as images of higher 

resolution that we are collecting from these remote sensing satellites[29] where pixels may 

be used to represent an entire field or entire class types, we have more detailed images 

where we might be more interested in finding more neurons classes and these methods are 

enabled by deep learning, in particular convolutional neural networks (CNNs). One 

challenge in scene classification for remote sensing is that there is less labeled training data 

than pixel-level land cover classification. At the pixel level, we might have thousands of 

examples just in this one image. Still, for image classification, we have much fewer. So for 

that reason, many researchers are doing things like transfer learning, pre-training models 
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on larger image datasets, ImageNet, or even benchmark remote sensing datasets and 

transferring these models to fine-tune them for a different task[30] 

2.3 Novelty or Anomaly Detection  

Another common area of machine learning for remote sensing is anomaly detection[25]. The 

unseen detection pattern, outliers defined as spatial may be morphological spectral outliers 

or temporal outliers. It is a kind of tough to do with machine learning typically, because 

looking for large-scale ways and not so much the things that we only see a few of and what 

anomaly detection is suitable for and either unsupervised methods or on class supervised 

process by using machine learning to characterize the regular type. Then we look at 

deviations from that common representation to identify anomalies. The majority of 

machine applications are for novelty detection are using read the [34] detected method that 

computes pixelized anomaly scores, that is, the Mahalanobis distance[9] between a single 

pixel and a background distribution, which could define the background to be a window 

around the pixel the rest of the image or even an entire dataset of typical images. The most 

common methods for anomaly detection in the machine learning literature are 

reconstruction-based methods where minimizing model reconstruction of not common 

examples such that this distance reconstruction error will be significant for the novel[34]. 

2.4 Estimation of Physical Quantities  

There are many applications for this on earth and another common application for 

regression or estimating physical quantities from remote sensing. An example very 

commonly used in agriculture for estimating yields[35] for different types of crops from 

remote sensing data such as maize yield being assessed. The second example is Greg Adler's 

lab[36], where they evaluate the growth carbon density directly from remote sensing data. 

These types of models are often combining multiple data sources to predict these variables. 

Most scientists use regression trees and peat world feed-forward neural networks and 

process models like Gaussian processes. However, increasingly again seeing convolutional 

neural networks (CNNs) and Recurrent Neural Networks (LSTMs) being used[2]. We 

summarized section two by saying remote sensing is non-trivial preprocessing and cleaning. 

Many issues represent time series or describe the data to account for all the variance across 

pixels in the same image, co-registration of ideas, aligning images from two different 

periods, or taking it to another time is a significant challenge. Second, labeling remote 

sensing images often requires domain expertise. For example, it might be self-evident for 

somebody on a mechanical truck to mark cat versus togs for 100% images. This is different 

for labeling things like impact craters or geologic features. Input remote sensing sources 

have different physical units. Lastly, different illumination conditions which are more of a 

problem on other planets where on earth, we kind of can get regular crossing times by 

choosing our orbits and imaging regularly, it is still a problem on land, and it is 

undoubtedly on other planets where you see how in these images showing the same site. 

After reviewing different  
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3. Methods and Materials 

3.1 Study Area and Data  

Dataset used in this experiment were collected from Easter Africa Community in six 

countries (Rwanda, Uganda, Kenya, Tanzania, South-Sudan, and Burundi) by using the 

google earth pro. Software connected with universal map of Google satellite map. After, 

downloading quality and higher resolution imagery from different area of EAC, we clean 

it and resizing256×256 pixels in the RGB space by using python3.7.  EAC-Dataset is a 

novel Land Use Data Set that contains 2110 images, we divide into nine object categories 

such as agricultural and forest, we list each scene category in as fellow agricultural, beach, 

buildings, commercial, desert, flood, forest, mountain, and river . First, we introduce the 

experimental dataset; second, we evaluate indexes and testing procedures by constructing 

an experimental dataset of high-resolution remote sensing images. Figure1 indicates dif-

ferent images located to each class whereby agriculture has 228 images, 249 of beach, 202 

of building, 193 of commercial, 151 of a desert, 290 of a flood, 268 of a forest, 251 of a 

mountain, and 280 of mountain rover. 

 

Figure 1. This is a sample image from the Easter Africa Countries (EAC.)  
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Figure 2. High-level granularity hierarchical representation, A) represent the most principle layers 

of CNN model while B) present VGG-16 architecture for feature learning method. 

We provide a set of state-of-the-art deep learning models along with pre-trained 

weights on ImageNet. These pre-trained models can be used for image classification, 

feature extraction, and transfer learning. Our goal here we were clustering a subset of 

EAC dataset images. Our approach consists of two major components: using a pre-trained 

model VGG-16 to extract the feature of given image classes. We used PCA  to speed up 

and define input features extracted, dense layer, and hidden layers. We used softmax to 

evaluate the performance accuracy classification method within the same process with 

inception-resentv2 and DenseNet201.  

 

Figure 3. Dense Net architecture for the feature extraction, A) indicates five-layer Dense Net Block 

while B) is a Dense Net for three Dense Block. Transition layers concatenate preceding feature 

maps from each layer in a block.  
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Figure4. Structure of Inception-ResNetV2, the number of parameters increases in some layers. 

As we see above figure4, the whole network expanded, this network of Inception-

ResNet-V2 considerably deeper than the InceptionV3. The inception-ResNet-v2 frame-

work is a convolutional neural architecture that constructs the inception-friendly architec-

tures but incorporates residual connection, the filter concatenation stage of the inception 

architecture. It is more accurate than the previous state-of-the-art models. We use weights 

trained on ImageNet as feature extracted; after extracted features using Inception-Resner-

v2 ImageNet weight, we reduce dimensional using PCA to increase speed and overcome 

computational cost. We applied MLP to define the final model effectively and efficiently 

for each concatenated feature selected.   

 

 

Figure5. Our proposed multi-granularity feature extractor is for improving classification accuracy 

and speed up the computational model.  

3.2 Feature Learning Based on Pre-trained weighs  

The most important thing in computer vision is to take a model trained on a vast dataset and run it 

on your own, smaller dataset and extract the features that the model generates. Our first model for 

feature extraction, VGG, is a convolutional neural network model for image recognition proposed by 

[43], figure2 B) illustrates the architecture of VGG16, the input layer takes an image in the size of 
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224x224x3, and the output layer is a softmax prediction on nine classes based on our dataset. Based on 

ImageNet, the output layer is also softmax prediction on 1000 classes. From the input layer to the last 

max-pooling layer regarded feature extraction part of the model, the rest of the network is considered 

the classification part model. We applied the same steps to the other CNNs architectures.  

3.3 Principal Component Analysis (PCA)  

PCA is a non-parametric method of extracting relevant information from data by reducing complex 

data to a lower dimension. It is also a standard statistical technique that helps to find patterns in data 

of large sizes. It has application in image processing and objects recognition for subspace face 

recognition. It reduces the dimensionality of large data sets by transforming an extensive collection of 

variables into smaller ones containing most of the information in the large stage. To reduce the number 

of variables of a data set naturally comes at the expense of accuracy. Still, the trick in dimensionality 

reduction is to trade a little accuracy for simplicity. The smaller dataset is easier to explore and visualize 

and makes analysis data much easier and faster for machine learning algorithms without extraneous 

variables to process.  It is an unsupervised learning method for dimensionality reduction. We dropped 

to 1000 dimensions, and we found that the dimensionality reduction score points, which shows that 

our PCA can reduce the dimensionality of the data while keeping the original characteristics of the data 

as much as possible. Moreover, lessen the subsequent clustering operation time between15-22s. The 

effect of looking at the score is good. 

3.4 Implementation of Classifiers  

Our implementation is based on the Tensor Flow-GPU1.14.0 framework, Keras, python 3.7, and 

tested on a performance computer (Intel ® Core™ i5 CPU, 8GB RAM) equipped with an NVIDIA- 

GTX 1070 with 8GB of memory. First, we split our dataset randomly into two independent data subsets 

with 80% and 20% for training and testing. Then we normalized the dataset and applied one-hot 

encoding to facility multi-granularity neural network encoding. The trainable classifier block 

parameters are initialized randomly to random values. We used the rmsprop optimizer as a non-

adaptive optimizer, optimizing the neural network for absolute accuracy or multi-class.  An accuracy 

performance metric can be decisive when dealing with imbalanced data. In the step of training, the 

pre-trained feature extraction parameter becomes frozen to their initial values. To make a comparison, 

the number of neural in trainable layers and dropout values remain the same. After that, the feature 

extracted from CNNs was selected to add it between the feature extraction block and the classier block 

of the convolutional neural network. The selection features using PCA (Principal Component 

Analysis), these selected features act as an input to the multi-layer perceptron (MLP) classifier. The 

final step was a multi-layer perceptron (MLC) neural network whereby is a class of feed-forward 

artificial neural consists of at least three layers of nodes, input layer, a hidden layer, and an output 

layer. It applies in different applications such as classification and regression problems. In MLP, we 

use three hidden layers, input, one dense, and output layer. Then we used an error backpropagation 

algorithm to optimize the network parameters with a learning rate of 0.3 on the training dataset. At 

the end of the process, after training of MLP, we get the confusion matrix for both training and test 

datasets, and we get the performance measures of overall accuracy. In this work, we learned about 

measuring different models are accuracy percentage of optimistic or correct predictions. The confusion 

matrix for the EAC dataset was split randomly into two independent data subsets with 80% and 20% 

for training and testing. 
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The loss could be calculated in many different ways: softmax and cross-entropy equation (6). 

 
 

Figure 6. Two figures, left is confusion matrix for MLP classier used VGG16 feature extracted and PCA as feature 

selection, right represent confusion matrix of Inception-ResNet-V2 pretrained elements using PCA as feature 

selected to train MLP  
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Figure 7. Two figures left is the Confusion matrix of DenseNet201 pretrained features using PCA as feature 

selected to train MLP. Right is the confusion matrix of VGG16-DenseNet201 pretrained elements using PCA as a 

feature set to train MLP. 

 

Table 1. Comparison accuracy for multi-class based EAC dataset  

Model  Execution time with 

PCA/second   

OA Acc. Pre-trained param  MLP Param# 

VGG16+PCA 11.6646 90.90% 14714688 424,969 

Inception V3+PCA 12.4267 87.79% 21,802,784 424,969 

Inception ResNet v2+PCA 24.3376 88.03% 54336736 424,969 

DenseNet201+PCA 33.6673 90.43% 18,321,984 424,969 

Ensemble 

VGG16+DenseNet201+PCA 

17.2245 90.88 14,848,329 424,969 

Within equal-weighted of 0.3 92.30% - - 

 
Figure 7. Sample of feature map visualizing of MG-ENN (VGG16) on EAC dataset. The first figure indicates the output 

of the ensemble encoding neural network for random images. The second figure demonstrates that two images are 

randomly selected during testing and used to generate feature maps, and the network is established from different 

granularity levels of networks. 
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4. Discussion 

The multi-granularity neural network encoding (MNNE) model comes from three 

concepts: sparse interaction, parameter sharing, and equivariant representation. Some 

ideas transform to the network configuration demonstrates in Figure2A. The network may 

be viewed mainly of two feature learning processes: convolution, nonlinearity, and pool-

ing stages incorporated to the fully connected stage to extract the features in deep. Our 

approach aims to study D-CNNs for classification imagery to address the gap of class sim-

ilarity and dissimilarities between classes. The CNN has more powerful granular feature 

extraction to enhance the achievement of state-of-the-art deep learning methods. To build 

MNNE model training, we used four models to extract features such as pre-trained 

VGG16, InceptionResNetV2, Inception-V3, and DenseNet201 ImageNet weights to train 

and test parts. It explained the process of using pre-trained weights as feature extractors 

for both neural networks. After the feature is extracted, we use PCA (Principal component 

analysis) for dimensions reduction and feature selection. First, we verified the ideal num-

ber of PCA components not to lose much information, and we remind that the n_compo-

nents must be lower than the number of features. Then we pick the optimal number of 

members; this is how many features we would have for our machine learning. After se-

lecting features, we applied a multi-layer perceptron with three hidden dense layers, ReLu 

as activation and softmax. We used adaptive learning rate gradient decent RMSPROP and 

absolute accuracy for regularization within existing metrics learning to learn discrimina-

tive feature representations. The purpose of PCA is to reduce the number of features for 

speed training. It is a beneficial step for visualizing and processing high-dimensional da-

tasets, still retaining as much of the variance in the dataset as possible. 

We discussed and analyzed different contributions from ImageNet challenges in re-

mote sensing tasks. The first critical aspect of classification for full convolution (FCN) en-

codes Net. Convolution neural network, which is maintained computational cost increase 

resolution of the intermediate feature map. This approach is smaller and can be added to 

any model, takes away for thought: parameterized everything including high-order hyper-

parameters. After summarizing different remote sensing applications, we present our 

work using pre-trained models for feature extraction in image classification. We investi-

gated the performance of VGG16 InceptionResNet-V2, Inception-V3, and DenseNet201 as 

feature extractors under internal classify validation using PCA for feature selection. Image 

classification is an exciting challenge. Lastly, we selected features and concatenating to 

feed multi-layer perceptron to improve final results.  

5. Conclusions 

In this work, we investigate the emerging application of remote sensing. Also, we pro-

posed four different approaches for the EAC dataset scene classification. For the extraction 

of features using pre-trained and PCA, we visualized and plotting of figure. The traditional 

and classical convolution neural network model fails to use multi-source satellite imagery. 

It has been used for RGB bands or small numbers of the dataset. The classic analyzing 

digital image is based on single granularity and with limited accuracy. Due to the granular 

computing with multiple delicate layers for brain big data processing and the data-driven 

granular cognitive computing, this framework supports the combination of multi-granu-

larity and convolutional neural networks on distributed multi-granularity encoding mod-

ule. Our results indicate that these methods could prove helpful to classify data of any 

domain with a smaller dataset or with a limited dataset. We suggested this design frame-

work to increase the helpfulness. Further work, we would investigate multi-granularity 

cascading cross the channel parameters pooling for large remote sensing imagery.  
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